

# Regulation Clearing and Benefits Factor Calculation

Regulation Performance Impacts

**Operating Committee Meeting** 

August 11, 2015

Michael Olaleye

Senior Engineer, Real-Time Market Operations

www.pjm.com PJM©2015



- Regulation is cleared every hour for one hour look-ahead
  - > Pricing is done every 5 minutes along with energy LMP in real-time
- Regulation is cleared to meet the established requirements
  - ➤ 525 Effective MW for Off-peak (0000 0500)
  - > 700 Effective MW On-Peak (0500 0000)
- One RTO Regulation market and therefore one uniform clearing price (RMCP)
  - Clearing is based on merit (cost, performance, and benefits to the system)
  - > Clearing price separates into capability and performance clearing prices (CCP and PCP)
  - No clearing price based on signal type (RegA, RegD)
- The Area Control Error (ACE) is not a factor in the clearing process
  - > Regulation is cleared one hour before operating time



Regulation requirement is met with effective MW

 $Effective\ MW = RegMW\ * Performance\ Score\ * Benefits\ Factor$ 

- > Effective MW is used only in the market clearing
- Regulation Dispatch and Operation use RegMW (not effective MW)
- Market Settlements credit resources based on RegMW and performance (not effective MW)
- Example: A RegD of RegMW = 32: assume PS = 1.0, and BF = 2.5
  - ➤ Market: Effective MW = 32\*1\*2.5 = 80
  - ➤ Operation and Dispatch: RegMW = 32
  - Market Settlements credit: based on RegMW and real-time performance score, and signal mileage ratio



#### Effective MW vs. Actual



|     | Effective<br>MW | Ave. Actual<br>MW | Ave.<br>MBF |
|-----|-----------------|-------------------|-------------|
| Off | 525             | 511               | 2.20        |
| On  | 700             | 697               | 2.14        |





- The Benefits Factor (BF) models the rate of substitution between traditional RegA and dynamic RegD resources;
- It enables the market to translate a fast moving resource's regulation MW into traditional MW, or effective MW;
- It also adjusts the total cost of a RegD resource to make it attractive to the market clearing engine until the least cost optimum mix of RegD effective MW as a percentage of the regulation effective requirement;
- Resource specific BF is calculated for all eligible RegD resources during the regulation market clearing process;
- The benefits factor for RegA resource is 1



#### **Benefits Factor Curve**





- BF is calculated for all eligible RegD resources
- The calculation is one of the initial steps in the regulation clearing and pricing
  - Clearing in Ancillary Service Market Optimizer (ASO) an hour ahead
  - Pricing in Locational Pricing Calculator (LPC) in real-time
- The Marginal Benefits Factor is the BF of the last RegD resource cleared to provide regulation service
  - ➤ MBF is a value determined after regulation clearing is completed
    - It has no effect in the regulation clearing
    - It is not used in regulation pricing
    - ❖ It is not used in the Market Settlement for regulation credit



- Two Market Clearing Issues identified
  - Adjusted Total Cost formulation is ineffective in instances of RegD self-scheduled and/or offered at \$0;
    - Market Clearing Engine is unable to optimally procure RegA/D mix
  - The current Benefits Factor curve is not aligned with regulation signal type dispatch in Operation
    - RegD control signal at times in opposite of ACE control due to energy neutrality reset



Step 1: Performance Adjusted MW

### $Performance\ Adjusted\ MW = RegMW\ *PS$

- ☐ Performance Adjusted MW is the same as initial effective MW (BF set to 1 for all)
- ☐ PS is the historic performance score of the resource
  - ➤ PS is a rolling average of actual hourly performance score of the last 100 hours a resource has operated or
  - > PS is a weighted average of the initial or requalification scores that are then averaged with available actual hourly performance scores



- Step 2: Initial Adjusted Total Cost
- All eligible RegD resources are ranked in ascending order of the Adjusted Total Cost
  - The calculation uses LMP energy-only
  - The initial BF of all RegD are assumed to be 1





The Adjusted Total Cost 
$$(\$) = \left(\frac{Cap\$ + LOC\$ + Perf\$}{PS * BF}\right)$$

- The modeling equation has performance score (PS) and benefits factor (BF) as denominators
  - > Resources with high PS should look cheaper to the clearing engine
  - > RegD resource with BF > 1 should look cheaper while BF < 1 should look expensive
  - > The modeling equation is ineffective for instance when
    - Multiple resources self-scheduled for regulation
    - Multiple resources offered for regulation at \$0



## Numerical Example - Effect of Issue 1 (Good)

| Resource | Offer MW | Offer \$ | Performance<br>Score | Effective<br>MW | Adjusted Total Cost \$ |
|----------|----------|----------|----------------------|-----------------|------------------------|
| Α        | 10       | 5        | 1.0                  | 10              | 5                      |
| В        | 10       | 5        | 0.9                  | 9               | 5.56                   |
| С        | 10       | 5        | 0.8                  | 8               | 6.25                   |
| D        | 10       | 5        | 0.7                  | 7               | 7.14                   |
| Е        | 10       | 5        | 0.5                  | 5               | 10                     |

- ➤ Among the goals of the Performance Based Regulation is to value a higher performing resource than a low performer
- > Resource A is valued more then B, then C ... because of the performance score
- ➤ The Adjusted Total Cost is the measure of chance to clear the cheaper, the high chance



## Numerical Example - Effect of Issue 1 (Not Good)

| Resource | Offer MW | Offer \$ | Performance<br>Score | Effective<br>MW | Adjusted Total Cost \$ |
|----------|----------|----------|----------------------|-----------------|------------------------|
| Α        | 10       | 0        | 1.0                  | 10              | 0                      |
| В        | 10       | 0        | 0.9                  | 9               | 0                      |
| С        | 10       | 0        | 0.8                  | 8               | 0                      |
| D        | 10       | 0        | 0.7                  | 7               | 0                      |
| Е        | 10       | 0        | 0.5                  | 5               | 0                      |

- ➤ The current cost modeling equation is not effective in instance of regulation self-scheduled or offered at \$0
- > Resource A is not valued differently from E
- > This issue has a negative effect on benefits factor calculation for RegD resources



Effective MW Summation Based on Adjusted Total Cost (rank ascending)

| Resource | Offer<br>MW | Offer \$ | Performance<br>Score | Effective<br>MW | Adjusted Total Cost \$ | Rolling<br>Eff_MW |
|----------|-------------|----------|----------------------|-----------------|------------------------|-------------------|
| А        | 10          | 0        | 1.0                  | 10              | 0                      |                   |
| В        | 10          | 0        | 0.9                  | 9               | 0                      |                   |
| С        | 10          | 0        | 0.8                  | 8               | 0                      | 39                |
| D        | 10          | 0        | 0.7                  | 7               | 0                      |                   |
| Е        | 10          | 0        | 0.5                  | 5               | 0                      |                   |
| F        | 10          | 0.01     | 0.5                  | 5               | 0.02                   | 44                |

www.pjm.com 14 PJM©2015



### Benefits Factor Calculation - Step 4

- Resource specific benefits factor determination
  - ➤ The BF is the intersection on the Y (BF) axis of the corresponding rolling effective MW on the X (percentage RegD) axis
  - > The slope equation is:

$$BF_i = \frac{EffMW_{i^*}(0.0001-2.9)}{Percentage\ RegD*RegReq} + 2.9$$





# Benefits Factor Calculation Step 4 – Numerical Example

### Resource Specific Benefits Factor Assignment

| Resource | Offer<br>MW | Offer \$ | Performance<br>Score | Effective<br>MW | Adjusted Total Cost \$ | Rolling<br>Eff_MW | Benefits<br>Factor |
|----------|-------------|----------|----------------------|-----------------|------------------------|-------------------|--------------------|
| Α        | 10          | 0        | 1.0                  | 10              | 0                      |                   | 2.6394             |
| В        | 10          | 0        | 0.9                  | 9               | 0                      |                   | 2.6394             |
| С        | 10          | 0        | 0.8                  | 8               | 0                      | 39                | 2.6394             |
| D        | 10          | 0        | 0.7                  | 7               | 0                      |                   | 2.6394             |
| E        | 10          | 0        | 0.5                  | 5               | 0                      |                   | 2.6394             |
| F        | 10          | 0.01     | 0.5                  | 5               | 0.02                   | 44                | 2.6060             |

> Resources with the same adjusted total cost share the same BF

www.pjm.com 16 PJM©2015



### Summary of Issue 1 and Recommendation

BF with Current Logic

| Perf_Adj_MW | BF     | Eff_MW |
|-------------|--------|--------|
| 10          | 2.6394 | 26.4   |
| 9           | 2.6394 | 23.8   |
| 8           | 2.6394 | 21.1   |
| 7           | 2.6394 | 18.5   |
| 5           | 2.6394 | 13.2   |
| 5           | 2.6060 | 13.0   |
| Total Eff_N | 116    |        |

#### BF with another logic

| Perf_Adj_MW | BF     | Eff_MW |
|-------------|--------|--------|
| 10          | 2.8332 | 28.3   |
| 9           | 2.773  | 2.05   |
| 8           | 2.7196 | 21.8   |
| 7           | 2.6728 | 18.7   |
| 5           | 2.6394 | 13.2   |
| 5           | 2.6060 | 13.0   |
| Total Eff_M | 120    |        |

- > Current Adjusted Total Cost formulation is ineffective when resources self-scheduled or have offered at \$0
  - High performing resources are not well valued
  - Effective MW is lost and may result in unnecessary additional MW commitment from RegA or RegD
- Recommend a revision to the current Adjusted Total Cost formulation



### Understanding Benefits Factor Curve – Issue 2



- ➤ The current curve allows for more RegD clearing than the right mix;
- The right mix should be consistent with operation experience on regulation dispatch for ACE control

www.pjm.com 18 PJM©2015



# Marginal Benefits Factor Lookup Table

Performance Adjusted MW (for BF calculation)

| 700 | -26.1  | -16.43 | -11.6  | -8.7   | -6.766 | -5.385   | -4.35    | -3.544   | -2.9    | -2.373    | -1.933  | -1.777 | -1.561 | -1.243 | -0.967 | -0.725 | -0.322 | 0.0001 |
|-----|--------|--------|--------|--------|--------|----------|----------|----------|---------|-----------|---------|--------|--------|--------|--------|--------|--------|--------|
| 525 | -18.85 | -11.6  | -7.975 | -5.8   | -4.35  | -3.314   | -2.537   | -1.933   | -1.45   | -1.054    | -0.725  | -0.608 | -0.446 | -0.207 | 0.0001 | 0.1813 | 0.4834 | 0.7251 |
| 500 | -17.81 | -10.91 | -7.457 | -5.385 | -4.005 | -3.018   | -2.278   | -1.703   | -1.243  | -0.866    | -0.552  | -0.441 | -0.287 | -0.059 | 0.1382 | 0.3108 | 0.5985 | 0.8286 |
| 475 | -16.78 | -10.22 | -6.939 | -4.971 | -3.659 | -2.722   | -2.019   | -1.473   | -1.036  | -0.678    | -0.38   | -0.274 | -0.127 | 0.0889 | 0.2763 | 0.4403 | 0.7136 | 0.9322 |
| 450 | -15.74 | -9.528 | -6.421 | -4.557 | -3.314 | -2.426   | -1.761   | -1.243   | -0.828  | -0.489    | -0.207  | -0.107 | 0.032  | 0.2368 | 0.4144 | 0.5697 | 0.8286 | 1.0358 |
| 425 | -14.71 | -8.838 | -5.903 | -4.143 | -2.969 | -2.13    | -1.502   | -1.013   | -0.621  | -0.301    | -0.034  | 0.0602 | 0.1913 | 0.3848 | 0.5525 | 0.6992 | 0.9437 | 1.1393 |
| 400 | -13.67 | -8.147 | -5.385 | -3.728 | -2.624 | -1.835   | -1.243   | -0.782   | -0.414  | -0.113    | 0.1382  | 0.2273 | 0.3506 | 0.5327 | 0.6906 | 0.8286 | 1.0588 | 1.2429 |
| 375 | -12.64 | -7.457 | -4.868 | -3.314 | -2.278 | -1.539   | -0.984   | -0.552   | -0.207  | 0.0754    | 0.3108  | 0.3943 | 0.51   | 0.6807 | 0.8286 | 0.9581 | 1.1739 | 1.3465 |
| 350 | -11.6  | -6.766 | -4.35  | -2.9   | -1.933 | -1.243   | -0.725   | -0.322   | 0.0001  | 0.2637    | 0.4834  | 0.5614 | 0.6693 | 0.8286 | 0.9667 | 1.0876 | 1.2889 | 1.4501 |
| 325 | -10.56 | -6.076 | -3.832 | -2.486 | -1.588 | -0.947   | -0.466   | -0.092   | 0.2072  | 0.452     | 0.656   | 0.7284 | 0.8286 | 0.9766 | 1.1048 | 1.217  | 1.404  | 1.5536 |
| 300 | -9.528 | -5.385 | -3.314 | -2.071 | -1.243 | -0.651   | -0.207   | 0.1382   | 0.4144  | 0.6403    | 0.8286  | 0.8955 | 0.988  | 1.1246 | 1.2429 | 1.3465 | 1.5191 | 1.6572 |
| 275 | -8.492 | -4.695 | -2.796 | -1.657 | -0.897 | -0.355   | 0.0519   | 0.3683   | 0.6215  | 0.8286    | 1.0013  | 1.0625 | 1.1473 | 1.2725 | 1.381  | 1.4759 | 1.6342 | 1.7608 |
| 250 | -7.457 | -4.005 | -2.278 | -1.243 | -0.552 | -0.059   | 0.3108   | 0.5985   | 0.8286  | 1.0169    | 1.1739  | 1.2296 | 1.3066 | 1.4205 | 1.5191 | 1.6054 | 1.7492 | 1.8643 |
| 225 | -6.421 | -3.314 | -1.761 | -0.828 | -0.207 | 0.2368   | 0.5697   | 0.8286   | 1.0358  | 1.2053    | 1.3465  | 1.3966 | 1.466  | 1.5684 | 1.6572 | 1.7349 | 1.8643 | 1.9679 |
| 200 | -5.385 | -2.624 | -1.243 | -0.414 | 0.1382 | 0.5327   | 0.8286   | 1.0588   | 1.2429  | 1.3936    | 1.5191  | 1.5636 | 1.6253 | 1.7164 | 1.7953 | 1.8643 | 1.9794 | 2.0715 |
| 175 | -4.35  | -1.933 | -0.725 | 0.0001 | 0.4834 | 0.8286   | 1.0876   | 1.2889   | 1.4501  | 1.5819    | 1.6917  | 1.7307 | 1.7847 | 1.8643 | 1.9334 | 1.9938 | 2.0945 | 2.175  |
| 150 | -3.314 |        | -0.207 | 0.4144 |        | 1.1246   |          |          |         | 1.7702    |         | 1.8977 |        |        | 2.0715 | 2.1232 | 2.2095 | 2.2786 |
| 125 | -2.278 | -0.552 |        | 0.8286 |        |          |          |          |         | 1.9585    |         | 2.0648 |        |        |        | 2.2527 | 2.3246 | 2.3822 |
| 100 | -1.243 | 0.1382 |        | 1.2429 |        |          |          |          | 2.0715  |           |         | 2.2318 |        | 2.3082 | 2.3476 | 2.3822 | 2.4397 | 2.4857 |
| 75  | -0.207 | 0.8286 |        | 1.6572 |        |          |          | 2.2095   |         | 2.3351    |         | 2.3989 |        | 2.4561 | 2.4857 | 2.5116 | 2.5548 | 2.5893 |
| 50  | 0.8286 | 1.5191 | 1.8643 | 2.0715 | 2.2095 | 2.3082   | 2.3822   | 2.4397   | 2.4857  | 2.5234    | 2.5548  | 2.5659 | 2.5813 | 2.6041 | 2.6238 | 2.6411 | 2.6698 | 2.6929 |
| 25  | 1.8643 | 2.2095 | 2.3822 | 2.4857 | 2.5548 | 2.6041   | 2.6411   | 2.6698   | 2.6929  | 2.7117    | 2.7274  | 2.733  | 2.7407 | 2.752  | 2.7619 | 2.7705 | 2.7849 | 2.7964 |
| 10  | 2.4857 | 2.6238 | 2.6929 | 2.7343 | 2.7619 | 2.7816   | 2.7964   | 2.8079   | 2.8171  | 2.8247    | 2.831   | 2.8332 | 2.8363 | 2.8408 | 2.8448 | 2.8482 | 2.854  | 2.8586 |
| 5   | 2.6929 | 2.7619 | 2.7964 | 2.8171 | 2.831  | 2.8408   | 2.8482   | 2.854    | 2.8586  | 2.8623    | 2.8655  | 2.8666 | 2.8681 | 2.8704 | 2.8724 | 2.8741 | 2.877  | 2.8793 |
| 1   | 2.8586 | 2.8724 | 2.8793 | 2.8834 | 2.8862 | 2.8882   | 2.8896   | 2.8908   | 2.8917  | 2.8925    | 2.8931  | 2.8933 | 2.8936 | 2.8941 | 2.8945 | 2.8948 | 2.8954 | 2.8959 |
| 0.1 | 2.8959 | 2.8972 | 2.8979 | 2.8983 | 2.8986 | 2.8988   | 2.899    | 2.8991   | 2.8992  | 2.8992    | 2.8993  | 2.8993 | 2.8994 | 2.8994 | 2.8994 | 2.8995 | 2.8995 | 2.8996 |
|     | 10     | 15     | 20     | 25     | 30     | 35       | 40       | 45       | 50      | 55        | 60      |        | 65     | 70     | 75     | 80     | 90     | 100    |
|     |        |        |        |        | Effe   | ctive Re | gD Perce | ntage of | the Reg | ulation R | equirem | ent    |        |        |        |        |        |        |



### Performance Based Regulation – One Page Summary

| LOCALHOUR -      | RESOURCE 🔻 | TYPE 🔻 | SIGNAL ▼ | RAW_MW ▼ | EFF_MW ▼ | BF ▼  | MBF ▼ | PS ▼  | *    |
|------------------|------------|--------|----------|----------|----------|-------|-------|-------|------|
| 10/21/2014 19:00 | D1         | GEN    | REGD     | 150      | 197.1    | 1.567 | 0.477 | 0.838 |      |
| 10/21/2014 19:00 | D2         | GEN    | REGD     | 2        | 2.9      | 1.567 | 0.477 | 0.938 |      |
| 10/21/2014 19:00 | D3         | GEN    | REGD     | 20       | 29.9     | 1.567 | 0.477 | 0.955 |      |
| 10/21/2014 19:00 | D4         | GEN    | REGD     | 1.5      | 2.2      | 1.567 | 0.477 | 0.92  |      |
| 10/21/2014 19:00 | D5         | GEN    | REGD     | 20       | 29.6     | 1.567 | 0.477 | 0.945 |      |
| 10/21/2014 19:00 | D6         | GEN    | REGD     | 32       | 47       | 1.567 | 0.477 | 0.937 |      |
| 10/21/2014 19:00 | D7         | DSR    | REGD     | 1.5      | 2.3      | 1.567 | 0.477 | 0.959 |      |
| 10/21/2014 19:00 | D8         | DSR    | REGD     | 0.1      | 0.1      | 1.567 | 0.477 | 0.782 |      |
| 10/21/2014 19:00 | D9         | DSR    | REGD     | 0.1      | 0.1      | 1.567 | 0.477 | 0.781 |      |
| 10/21/2014 19:00 | D10        | DSR    | REGD     | 0.1      | 0.1      | 1.567 | 0.477 | 0.782 |      |
| 10/21/2014 19:00 | D11        | DSR    | REGD     | 0.1      | 0.1      | 1.567 | 0.477 | 0.781 |      |
| 10/21/2014 19:00 | D12        | DSR    | REGD     | 0.1      | 0.1      | 1.567 | 0.477 | 0.887 |      |
| 10/21/2014 19:00 | D13        | DSR    | REGD     | 8.0      | 8.0      | 1.567 | 0.477 | 0.675 |      |
| 10/21/2014 19:00 | D14        | GEN    | REGD     | 1.7      | 1.9      | 1.559 | 0.477 | 0.72  |      |
| 10/21/2014 19:00 | D15        | DSR    | REGD     | 0.1      | 0.1      | 1.558 | 0.477 | 0.883 |      |
| 10/21/2014 19:00 | D16        | DSR    | REGD     | 0.4      | 0.5      | 1.556 | 0.477 | 0.866 |      |
| 10/21/2014 19:00 | D17        | DSR    | REGD     | 0.2      | 0.3      | 1.555 | 0.477 | 0.865 |      |
| 10/21/2014 19:00 | D18        | DSR    | REGD     | 0.2      | 0.3      | 1.554 | 0.477 | 0.852 |      |
| 10/21/2014 19:00 | D19        | DSR    | REGD     | 0.9      | 1.2      | 1.549 | 0.477 | 0.842 |      |
| 10/21/2014 19:00 | D20        | GEN    | REGD     | 30       | 34.2     | 1.383 | 0.477 | 0.824 |      |
| 10/21/2014 19:00 | D21        | GEN    | REGD     | 30       | 29.9     | 1.219 | 0.477 | 0.819 |      |
| 10/21/2014 19:00 | D22        | GEN    | REGD     | 30       | 25.8     | 1.056 | 0.477 | 0.813 |      |
| 10/21/2014 19:00 | D23        | GEN    | REGD     | 61       | 31.7     | 0.787 | 0.477 | 0.662 | 48   |
| 10/21/2014 19:00 | D24        | GEN    | REGD     | 69       | 21.3     | 0.503 | 0.477 | 0.615 | 34.7 |
| 10/21/2014 19:00 | D25        | GEN    | REGD     | 4        | 1.8      | 0.478 | 0.477 | 0.942 | 1.9  |
| 10/21/2014 19:00 | D26        | DSR    | REGD     | 0.3      | 0.1      | 0.477 | 0.477 | 0.84  | 0.1  |
| 10/21/2014 19:00 | A1         | GEN    | REG      | 90       | 72.8     | 1     | 0.477 | 0.809 |      |
| 10/21/2014 19:00 | A2         | GEN    | REG      | 16       | 14.3     | 1     | 0.477 | 0.891 |      |
| 10/21/2014 19:00 | A3         | GEN    | REG      | 10       | 8.9      | 1     | 0.477 | 0.888 |      |
| 10/21/2014 19:00 | Α4         | GEN    | REG      | 4.3      | 3.8      | 1     | 0.477 | 0.894 |      |
| 10/21/2014 19:00 | A5         | GEN    | REG      | 10       | 6.5      | 1     | 0.477 | 0.65  |      |
| 10/21/2014 19:00 | A6         | GEN    | REG      | 27.4     | 23.7     | 1     | 0.477 | 0.864 |      |
| 10/21/2014 19:00 | Α7         | GEN    | REG      | 69       | 52.4     | 1     | 0.477 | 0.76  |      |
| 10/21/2014 19:00 | A8         | GEN    | REG      | 40       | 33       | 1     | 0.477 | 0.826 |      |
| 10/21/2014 19:00 | A9         | GEN    | REG      | 25       | 22.8     | 1     | 0.477 | 0.911 |      |
| 10/21/2014 19:00 | A10        | DSR    | REG      | 0.1      | 0.1      | 1     | 0.477 | 0.794 |      |
| 10/21/2014 19:00 | A11        | DSR    | REG      | 0.1      | 0.1      | 1     | 0.477 | 0.688 |      |
|                  |            |        |          | 748      | 700      |       |       |       |      |
|                  |            |        |          |          | 55       |       |       |       | 85   |
|                  | -          |        |          |          |          |       |       |       |      |

RegA Raw / Eff MW = 292 / 238 RegD Raw / Eff MW = 456 / 462

- Effect of the Adjusted Total Cost formulation
- Potential operation effect of high RegD percentage over RegA
- > Effect of MBF < 1
- Effect of high Performance Score bunch

www.pjm.com 20 PJM©2015



- Recommend a revision to the Adjusted Total Cost formulation
  - > Incent a better regulation resources performance
  - Allows for a more accurate valuation of RegD
  - > Formulation does not affect pricing but Benefits Factor ranking only
- Recommend a revision of the Benefits Factor Curve
  - Allows for optimal mix of RegD vs. RegA and align with current regulation dispatch practice
- Affected document for revisions if these recommendation are taken
  - No change to Tariff or Operating Agreement
  - Change to manual 11 section 3