
Version 1.0 Curl

Accessing DR Hub using Curl

Contents
About this Document .. 1

Release History ... 1

Securing a Token using Curl .. 2

Perform a REST GET Request using Curl .. 2

Perform a REST POST Request using Curl .. 3

Perform a REST Request using PHP ... 3

About this Document

The purpose of this document is to provide examples of the web service functionality available for

retrieving and action pending Tasks.

The information is provided for learning and demonstration only and does not represent actual tasks or

other factual event or account information.

The below examples are for demonstration only. Additional coding and integration may be required to

me your companies needs.

Curl is viewed as a quick and easy way to make web service calls but it is not without its own set of traps

and challenges. Curl is syntactically particular and small changes can have big impacts on your script.

Once you have established a few good scripts and basic practices for implementing, re-use is strait

forward.

Curl is available for Windows or Linux. Please check with your Tech Support for details.

Release History

Release Date Description

1.0.0 December 19, 2016 Initial Document Created

1.0.1 April 5, 2023 Added format for retrieving a Token using a CERT.

Version 1.0 Curl

Securing a Token using Curl

This request retrieves a token from the PJM authentication server. In the below example the response is

copied to the token variable and then the actual token is parsed form the json response.

With the token stored in the variable, it can then be re-used for subsequent requests. Note the request

for a token is a POST request. The user information is POSTED which yields a json response to include a

new token. If the request fails, the response may include a large HTML response from the authentication

server with no decipherable information.

echo "Retrieve a new Token"

(if needed to create the .pem file from the .p12 file) Open a bash window and run…

openssl pkcs12 -in glenn_test.p12 -out glenn_test.key.pem -nocerts –nodes

Again from the bash prompt.

token=$(curl -v -k --request POST --key glenn_test.key.pem --cert 'glenn_test.crt:cert_password' --

header "X-OpenAM-Username: drhub_username" --header 'X-OpenAM-Password: drhub_password'

'https://ssotrain.pjm.com/access/authenticate/pjmauthcert')

echo "Parse the token into a variable to be used later in the script"

tokenParse=`echo "$token" | python -m json.tool | sed -n -e '/"tokenId":/ s/^.*"\(.*\)".*/\1/p'`

#Echo the token value to the screen

echo $tokenParse

Perform a REST GET Request using Curl

This request retrieves an existing Location using Curl’s GET option. Curl is intuitive enough to know a

GET is being requested, but the keyword helps differentiate the script from a POST. This request does

not save the response but echos it back to the user’s screen. Additional Curl options exist for saving

responses. Use curll –help to retrieve a list.

Note the use of the token variable as it is passed as an authentication Cookie for the request.

You may also be required to include the CERT information as shown in the above example to retrieve a

token.

echo "Get Location"

Version 1.0 Curl

curl -H "Accept: application/xml" -H "Content-Type: application/xml" -H

"Cookie:pjmauthtrain=$tokenParse" -X GET

https://drhubtrain.pjm.com/drhub/rest/secure/download/location/65855

Perform a REST POST Request using Curl

This request creates a new Location using Curl’s POST option. As above the POST is inferred in the

request. Curl is very fussy about the source and target path for requests. Be paths match your

environment and path structure exactly. Check that all files to be uploaded have the appropriate

permissions so that Curl can access them for reading.

The reason we upload the source file data and use a file name on the end of the request is that DR Hub

is expecting the file name as a parameter to the data which is marshalled over HTTP.

echo "Create Location"

curl -v -H "Content-Type: application/xml" -X PUT --data-binary "@c:/cygwin64/drhub/newLocation.xml"

-H "Cookie:pjmauthtrain=$tokenParse"

https://drhubtrain.pjm.com/drhub/rest/secure/upload/location/create/newLocation.xml

Perform a REST Request using PHP

This examples uses the GuzzleHttp utility to perform both the get Token and PUT request via the PHP

libaries. When testing be sure to have the GuzzleHttp client installed and setup according to your

environment.

<?php

use GuzzleHttp\Client;

$client = new Client();

$tokenId = getToken($client);

$xml = '/path/to/your/locations/create/name-of-your-file.xml';

$url =

'https://drhubtrain.pjm.com/drhub/rest/secure/upload/location/create/name-of-

your-file.xml'; // this filename should match filename above

Version 1.0 Curl

$response = $client->request('PUT',

 $url,

 [

 'headers' => [

 'Cookie' => "pjmauthtrain=".$tokenId,

 'Content-Type' => 'application/xml'

],

 'body' => fopen($xml,'r'),

 'debug' => false // set this to true to see output

]

);

if($response->getStatusCode() == 200)

{

 echo $response->getBody();

file_put_contents("/path/to/your/saved/direction/location_created_".date("Y-

m-d-his").".xml",$response->getBody()); // optional to save the xml file

locally

} else {

 echo $response->getStatusCode();

}

function getToken($client)

{

 try {

 $response = $client->request('POST',

 'https://ssotrain.pjm.com/access/authenticate',

 [

 'headers' => [

 'X-OpenAM-Username' => 'your-username',

 'X-OpenAM-Password' => 'your-password',

],

]);

 $body = json_decode($response->getBody());

 $tokenId = $body->tokenId;

 return $tokenId;

 } catch(Exception $e) {

 return $e->getMessage();

 }

}

End of Document

