Long-Term FTR Modeling

Brian Chmielewski
Sr. Analyst, Market Simulation FTRMPS

September 8, 2017

All PJM Risk - Model everything

- Revenue Adequacy concerns for late projects
- Heavy reliance on data external to Markets
- Creation of special LT FTR case very long road

All Member Risk - Model nothing

- Status Quo
- Credit risks for membership
- Lack of transparency of Future Transmission System

Shared Risk - Model likely upgrades and increase credit requirements

- Conservative approach to revenue adequacy
- Increase credit requirements only in significant areas
- Achievable in near-term

Shared risk approach

Utilize credit enhancements based on future expected congestion for 2-3 years out

Post all modeled upgrades on the FTR web page for increased transparency

- Execute before and after PROMOD studies to account for all scheduled upgrades scheduled to be in service one year out
- E.g. 18/19 for the 18/21 Long Term Auction performed in 2017
- For any upgrades impacting congestion LMPs by more than 10%, confirm with Planning those will be in service by June $30^{\text {th }}$
- For those upgrades passing the first two steps, confirm they are in the EMS/Markets model
- Adjust FTR Long Term markets model to account for these upgrades only but, carve out capability created in order to preserve transmission congestion priority rights of ARR holders
- Post modeled upgrades on the FTR website prior to opening of bidding window

Why can't PJM model everything?

- In-service timing is usually uncertain for over 1 year out
- Different levels of detail are either not ready or likely to change between Planning and Markets models
- Risk vs. Reward
- What are we gaining? Price discovery
- What are we risking? Revenue Adequacy

- PROMOD Studies with and without transmission upgrades to identify changes in congestion at the bus level
- Apply those deltas to historical congestion prices and utilize those new values, i.e. "forecasted" values in the FTR Credit calculations
- The end result will require a higher FTR Credit requirement for paths that have little or no future value (congestion) based on PROMOD simulations

Currently being pursued through the
Credit Subcommittee

- Increased transparency of future transmission system
- Better alignment of expected future transmission system and credit requirements
- Conservative approach to preserve revenue adequacy
- Can be implemented!

番 pjim

Appendix

- Annual Allocation and Auction are performed in March/April
- Annual Allocation is entire transmission system capability, minus loop flow
- LT FTRs are carved out of Annual Auction- modeled as injections and withdrawals
- ARRs are not modeled in FTR auctions and FTRs are not modeled in ARR allocations
- All cleared ARRs are presumed to self-schedule and that FTR capability is carved out of the LT Auction, performed in June

Credit Example

- Due to the increased transmission capability and resulting reduction in expected congestion, the revenue offset portion of the FTR credit calculation is decreased
- This will result in a higher credit requirement, unless bids change to reflect the reduced congestion expectations

```
    FTR Credit Req. = FTR Price - Revenue Offset
    Before Upgrade Simulation=100$-75$=25$
After Upgrade Simulation = 100S - 31.25S = 68.75S
```

