PJM Manual 14B:

PJM Region Transmission Planning Process Revision: 41 Effective Date: April 19, 2018

Prepared by Transmission Planning Department PJM © 2018

Table of Contents

Table of Exhibits	7
Approval	8
Current Revision	9
Introduction	10
About PJM Manuals	10
About This Manual	10
Intended Audience	10
References	
Using This Manual What You Will Find In This Manual	
Section 1A: Critical Energy Infrastructure Information (CEII)	13
1A.1 CEII Definition	
1A.2 Introduction	
1A.2.1 General Intent	13
1A.2.2 Examples of CEII	دا 12
1A 2.4 Reservation of Rights to Amend CEII Rules	13 14
1A 3 P.IM CEIL Rules	14
1A.3.1 CATEGORIES OF PJM CEII REQUESTERS PROCEDURES	14
Section 1: Process Overview	17
1 1 Planning Process Work Flow	17
1.2 TEAC and Subregional RTEP Committee and Related Activities	
1.3 Planning Assumptions and Model Development	
1.3.1 Reliability Planning	
1.3.2 Market Efficiency Planning	20
1.3.3 End-Of-Life Facility Planning	21
1.4 RTEP Process Key Components	21
1.5 Planning Criteria	22
1.5.1 Reliability Planning	22
1.5.2 Market Efficiency Planning	23
1.5.3 End-Of-Life Facility Planning	<u>24</u>
Section 2: Regional Transmission Expansion Plan Process	24
2.1 Transmission Planning = Reliability Planning + Market Efficiency+ Public Poli 2.1.1 Multi-Driver Approach	cy 24 24
Revision: 41, Effective Date: 04/19/2018 PJM © 2018	2

2.1.2 Reliability Planning	25
2.1.3 Market Efficiency Planning	28
2.2 The RTEP Process Drivers	29
2.3 RTEP Reliability Planning	32
2.3.1 Establishing a Baseline	32
2.3.2 Baseline Reliability Analysis	32
2.3.3 Near-Term Reliability Review	33
2.3.4 Reference System Power Flow Case	34
2.3.5 Contingency Definitions	35
2.3.6 Baseline Thermal Analysis	35
2.3.7 Baseline Voltage Analysis	35
2.3.8 NERC P3 and P6 "N-1-1" Analysis	36
2.3.9 Load Deliverability Analysis.	38
2.3.10 Generation Deliverability Analysis	39
2.3.11 Light Load Reliability Analysis	40
2.3.12 Spare Equipment Strategy Review	40
2.3.13 Winter Peak Reliability Analysis	40
2.3.14 Baseline Stability Analysis.	41
2.3.15 Maximum Credible Disturbance Review	. 41
2.3.16 Long Term Reliability Review	42
2.3.17 Stakeholder review of and input to Reliability Planning	. 43
2.3.18 Corrective Action Plan	44
2.4 RTEP integrates Baseline Assumptions, Reliability Upgrades and Request	
Evaluations	45
2.5 RTEP Cost Responsibility for Required Enhancements	46
2.6 RTEP Market Efficiency Planning	46
2.6.1 Market Efficiency Analysis and Stakeholder Process	. 47
2.6.2 Determination and evaluation of historical congestion drivers	. 47
2.6.3 Determination of projected congestion drivers and potential remedies	47
2.6.4 Evaluation of cost / benefit of advancing reliability projects	48
2.6.5 Determination and evaluation of cost / benefit of potential RTEP projects	
specifically targeted for economic efficiency	48
2.6.6 Determination of final RTEP market efficiency upgrades	49
2.6.7 Submitting Proposals	50
2.6.8 Ongoing Review of Project Costs	50
2.7 Evaluation of Operational Performance Issues	50
2.7.1 Operational Performance Metrics	51
2.7.2 Probabilistic Risk Assessment of PJM 500/230 kV Transformers	51
2.8 End-Of-Life Facility Planning.	.52

Attachment A: PJM Baseline Reliability Upgrade Cost Allocation

Procedures	.53
A.1 Purpose	53
A.2 Scope	53
A.3 Schedule 12 Cost Allocation Process for Baseline Transmission Reliability	
Upgrades	53
A.3.1 RTEP Baseline Reliability Upgrade Cost Allocation	. 53

Attachment B: Regional Transmission Expansion Plan—Scope and

Procedure	
B.1 Purpose	
B.2 Scope	
B.3 Procedure	59
B.4 Scenario Planning Procedure	63

Attachment C: PJM Deliverability Testing Methods	.65
C.1 Introduction	65
C 2 Deliverability Methodologies	65
C.3 Overview of Deliverability to Load	66
C.4 PJM Load Deliverability Procedure—Capacity Emergency Transfer Objective	
(CETO)	. 68
C.5 PJM Load Deliverability Procedure—Capacity Emergency Transfer Limit (CETL)	. 68
C.5.1 Introduction	68
C.5.2 Study Objectives	. 68
C.5.3 General Procedures and Assumptions	. 69
C.5.3.1 Independent Study Area Generation Capacity Deficiency	. 69
C.5.3.2 Consistency with PJM Emergency Operations Procedures	. 69
C.5.3.3 Study Area Definitions—Zonal and Global	. 69
C.5.4 Base Case Development	73
C.5.4.1 Study Area Capacity Deficiency Assumptions	73
C.5.4.2 Study Area CETL Base Case Modeling Summary	. 74
C.5.4.3 Procedure for Determining Load Deliverability Facility List	74
C.5.4.4 Dispatch for PJM Areas Not in Capacity Emergency	. 75
C.5.4.4.1 Dispatch for non-PJM Areas Not in Capacity Emergency	75
C.5.5 Dispatch for Load Deliverability Study Area	76
C.5.5.1 Procedure to Determine Dispatch for Voltage Analysis	. 76
C.5.5.2 Procedure to Determine Dispatch for The Mean Dispatch Case	. 76
C.5.6 Study Results.	77
C.5.7 CETL Determination	. 78
C.5.8 CETO/CETL as an Input to RPM	. 78
C.6 Deliverability of Generation.	. 79
C.7 Generator Deliverability Procedure	. 79
C.7.1 Introduction	79
C.7.2 Sludy Objectives	. 00
C.7.3 General Procedures and Assumptions	00.
C.8.1 Base Case Development	04 85
C 8 2 Analysis	.03
C.8.3 Linear Extranolation	88
C.8.4 Long-Term Upgrades	. 00
	. 00

Attachment D: PJM Reliability Planning Criteria	89
Attachment D-1: Load Loss Definitions	91
Attachment D-2: PJM Reliability Planning Criteria Methods	92
D-2.1 Light Load Reliability Analysis D-2.2 Light Load Reliability Analysis Procedure	92 92
Attachment D-3: PJM Reliability Planning Criteria Methods D-3.1 Winter Peak Reliability Analysis D-3.2 Winter Peak Reliability Analysis Procedure	96 96 96
Attachment E: Market Efficiency Analysis Economic Benefit / Cos Ratio Threshold Test	st . 100
E.1 Total Annual Enhancement Benefit E.2 Total Annual Enhancement Cost	100 102
Attachment F: Determination of System Operating Limits used for planning the Bulk Electric System	r .103 P
Practices and Procedures	.107
G.1 Stability	107
G.2 Dynamics Procedures	108
G.2.1 Dynamics Reference Cases	108
G.2.2 Dynamics Analysis	108
G.3 System Impact Study and Initial Study Stability Procedures	
G 3.2 System Impact Study Stability Scope and Process	112
G.4 System Stability Studies	114
G.4.1 NERC P3 and P6 "N-1-1" System Stability Studies	115
G.5 Impact Study Procedures Applicable to Wind Turbine Analyses	117
G.5.1 Wind Project Final Impact Study Data	118
G.5.2 Wind Project LVRT Requirements	118
G.5.3 Wind Project Reactive Power Modeling	118
G.6 Stability Analyses of Stability Sensitive Local Areas in PJM	119
G.7 SHULL OFFCUL.	119
G 9 Appendix to Manual 14B Attachment G	120
	120 121

G.9.2 Nuclear Station Testing	122
G.9.3 BG&E Specific Criteria	
G.9.4 ComEd Specific Criteria	
G.9.5 PPL Specific Criteria	
G.9.6 Implementation of the NPIR for Planning Analysis	
G.10 NERC Standard PRC-023 – Transmission Relay Loadability	
G.11 PJM Capacity Import Limit Calculation Procedure	
Attachment H: Power System Modeling Data	129
H.1 Power System Modeling Data	
H.1.1 Load Flow Analysis Models	
H.1.2 Load Flow Modeling Requirements	130
H 1 3 Submittal of Load Flow Data	131
H 1 4 Short Circuit Analysis Models	132
H 1.5 Stability Analysis Models	133
Attachment I: Steady State & Stability Performance Events	Planning 137
Attachment J: Checklist for New Equipment Energization I	Process 142

Table of Exhibits

Exhibit 1: 24-Month Reliability Planning Cycle	.26
Exhibit 2: Base Case Development	28
Exhibit 3: 24-Month Market Efficiency Cycle	.29
Exhibit 4: Table 2 – Light Load Base Case Initial Target Dispatch	.93
Exhibit 5: Table 3 – Winter Peak Base Case Initial Target Dispatch	. 97

Section 1: Process Overview

In this section you will find an overview of PJM's transmission planning process that culminates in the Regional Transmission Expansion Plan (RTEP). This process (referred to in this Manual interchangeably as the RTEP process or more generically as the PJM Region transmission planning process) is one of the primary functions of Regional Transmission Organizations (RTOs.) As such, PJM implements this function in accordance with the Regional Transmission Expansion Planning Protocol set forth in Schedule 6 of the PJM Operating Agreement.

As further described in following portions of this manual, the PJM RTEP process consists of baseline reliability reviews as well as analysis to identify the transmission needs associated with generation interconnection and merchant transmission interconnection. PJM implements the planning of interconnections as part of the broader RTEP process pursuant to the PJM Open Access Transmission Tariff (OATT.) The relationship between Interconnection planning and the RTEP is discussed in later sections of this manual and in related manuals.

1.1 Planning Process Work Flow

The Manual 14 series provides information regarding PJM's Planning Process to complement Schedule 6 of the PJM Operating Agreement and the planning provisions of the PJM Open Access Transmission Tariff (OATT.). These agreements can be found on-line at http://www.pjm.com/media/documents/merged-tariffs/oatt.pdf.

The PJM planning process activities, culminating in PJM's annual Regional Transmission Expansion Plan, constitute PJM's single, Order No. 890 compliant, transmission planning process. All PJM Open Access Transmission Tariff (OATT) facilities are planned through and included in this open, fully participatory, and transparent process.

PJM planning and PJM transmission owners implements a cycle centered around on activities of PJM's Planning, PJM transmission owners and PJM Market Simulation functions and their interactions with members, regulatory bodies, and other interested parties primarily through the PJM Transmission Expansion Advisory Committee (TEAC), the Subregional RTEP Committees, and the PJM Planning Committee (PC) forums. Currently, the planning cycle will refer to an 18month overlapping cycle beginning in September of the prior calendar year and extending to the February of the following calendar year. A new cycle will begin every September, which will overlap the previous cycle (Refer to Exhibit 1). This ongoing process has continued to evolve since 1997, when PJM's Regional Transmission Expansion Planning (RTEP) Protocol (codified in Schedule 6 of PJM's Operating Agreement) was approved by the Federal Energy Regulatory Commission. Since that time, the process has been expanded and enhanced in response to member and regulatory input as documented in the revisions to the OATT, PJM Manual 14 series, and the Operating Agreement Schedule 6. The current PJM Region transmission planning process includes ample opportunity for Stakeholder input through frequent oral and written exchange of information and reviews via the TEAC organizational structure. The process culminates in PJM's presentation of the RTEP for approval by the PJM Board of Managers.

There are four planning paths that ultimately culminate in the PJM RTEP. Facilities in each path allow the opportunity for early, full and transparent participation by interested PJM stakeholders. The four paths are reliability planning, economic planning, interconnection planning, and local planning.

Reliability and economic planning facilities are produced from PJM's planning cycle activities described in this manual, Operating Agreement Schedule 6, and portrayed in Exhibit 1. PJM leads this analysis and development of upgrades related to reliability and market efficiency planning for all facilities 100 kV and above. These facilities are designated as Bulk Electric System (BES) facilities and are subject to the NERC requirements and criteria for such facilities. The PJM analyses ensure compliance with NERC, PJM and regional criteria. In addition, the PJM-led analyses also include analysis and upgrade of transmission facilities with nominal voltages below 100kV to the extent they are under PJM's operational control (see http://www.pjm.com/markets-and-operations/ops-analysis/transmission-facilities.aspx. The TEAC, Subregional RTEP Committees, and stakeholder opportunities to engage the process are described in this manual.

The analysis of OATT transmission facilities below 100kV and not under PJM operational control is led by the Transmission Owner (TO-), and includes PJM TO FERC 715 criteria or and Supplemental Project criteria. This is appropriate since local Transmission Owner operations, maintenance and planning personnel oversee these TO local systems end-of-life plans. These facilities typically provide only local transmission function of interest to the customers in the nearby electrical vicinity. The TO analysis ensures local facilities meet NERC (if applicable) and local reliability criteria. In addition, the local Transmission Owner personnel may also develop recommended modifications to transmission facilities that are not required by PJM reliability, market efficiency or operational performance criteria (the non-FERC 715-based criteria upgrades are called Supplemental RTEP Projects.). The Transmission Owner will initiate all reliability-based and supplemental upgrade requests for facilities not under PJM's control or for facilities under PJM's control but not violating PJM criteria, through a standardized process described herein. - All such upgrades will be vetted through the TEAC or the Subregional RTEP Committees through a three part planning process that includes a minimum of one Assumptions meeting, a minimum of one Needs meeting, and a minimum of one Project Solutions meeting prior to finalization of the Local Plan and inclusion in the RTEP.

In this way, these TO_initiated projects will be subject to <u>the same</u> open, transparent and participatory PJM committee activities as PJM_initiated projects (see discussion of TEAC and Subregional RTEP Committees.)

Interconnection planning encompasses generator and merchant transmission requests for Interconnections and rerates as well as requests for long-term firm transmission service. Studies of these transmission requests and any resulting transmission modifications are posted to PJM's website in the project queue area (<u>http://www.pjm.com/planning/generation-interconnection.aspx</u>). In addition, any necessary facility modifications are brought to the TEAC for presentation and stakeholder participation. Interconnection planning is discussed in more detail in Manual 14A.

1.2 TEAC and Subregional RTEP Committees and Related Activities

The PJM TEAC functions in accordance with its established charter and provisions of Schedule 6 of the Operating Agreement. Additionally, in 2008 PJM began to facilitate more localized planning functions through the Subregional RTEP Committees. The Subregional RTEP Committees, including any local reviews that may be initiated, will follow TEAC procedures and other applicable PJM committee procedures. All PJM stakeholders will be provided with the opportunity for participation in the TEAC and Subregional RTEP Committees and related activities.

The subregional and any related meetings allow more focused and meaningful stakeholder participation and attention to subregional and local transmission issues. RTEP projects are labeled as Regional RTEP Projects and Subregional RTEP Projects, as defined in the Operating Agreement, to make an initial categorization and posting of violations and upgrades that will enable stakeholders to more easily sort through and review issues of interest. Regional RTEP Projects are those transmission expansions or enhancements rated at voltages of 230 kV and above. Subregional RTEP Projects are those rated below 230 kV. This differentiation by voltage between Regional RTEP Projects and Subregional RTEP Projects is made only for administrative convenience.

The Subregional RTEP Committees is are responsible for the initial review of Subregional RTEP Projects. PJM will facilitate meetings as necessary for TEAC and Subregional RTEP Committees' review and evaluation of reliability, and market efficiency reinforcements, and Supplemental Projects. The Subregional RTEP Committee will forward all Subregional RTEP Projects to the TEAC, but not Supplemental Projects. TEAC or the Subregional RTEP Committees, as appropriate, will also have the opportunity to provide meaningful input regarding PJM- or TO-developed assumptions, criteria, and models used to identify all system needs, the study scope, assumptions and procedures at an initial assumptions meeting. This meeting will cover reliability, and market efficiency assumptions, and End-of-Life projects. This review will include a five-year forecast to indicate whether there is a potential future replacement that may be the subject of concern relating to specific equipment models, types, etc. Initially, a minimum of three PJM RTEP subregions will be established: one each for the Mid Atlantic, South, and West subregions of PJM. When a Subregional RTEP Committee meeting is scheduled it is understood that itthis generally will be implemented as a separate meeting for each subregion. In this way, the TEAC and Subregional RTEP Committees provide a transparent and participatory planning process throughout the RTEP development, from early assumptions-setting stages, through discussion of criteria violations, review of recommendations for alternative solutions, and review and comment on the final RTEP facilities Projects and Supplemental Projects.

All RTOPJM stakeholders can participate in any or all subregional activities on a voluntary basis, with one exception. The Transmission Owners that comprise each of the various subregions must participate in the subregional meeting that includes their area._ PJM, with stakeholder input, will initiate additional subregional meetings to review and address stakeholder questions, concerns, and to vet any proposed alternatives to ensure transparency throughout the PJM RTEP process. Separate local meetings or more localized reviews may be held by PJM TOs in the event that the PJM TO decides that it is a more appropriate way to address issues. In addition to their participation in the TEAC and Subregional RTEP Committee meetings, stakeholders can also provide written comments on the development of the RTEP. Written comments can be forwarded to RTEP@pjm.com.

There are various categories of facilities that enter the PJM plan through distinct paths, however, each path is transparent and open to all interested stakeholder participation through TEAC and Subregional RTEP Committee processes. All planning paths to the PJM RTEP; ______ reliability planning, economic planning, interconnection planning, and local Transmission Owner Planning (Supplemental Projects) – ; flow through the TEAC and Subregional RTEP Committee planning process.

PJM Committee review of all RTEP projects, regardless of the path of origin of the project, will occur during the February through August RTEP Stakeholder analysis and review periods (see Exhibit 1.) Stakeholders will be provided all the information necessary for full participation in the discussions and evaluations, including: (1) the criteria, and assumptions, data and

models used as the basis for projects, (2) the procedure to access the study information necessary to <u>replicate the study results</u>, its determinations, prioritization, and to participate in the project's evaluation and discussion, (3) a detailed description of the timing, need and justification of the project with references to established, publicly available criteria, (4) a <u>detailed</u> description of the <u>project</u> cost for each major component of the project and construction responsibility for the project, and (5) a detailed description of the proposed modifications to facilities_r.

In addition, projects that originate through local Transmission Owner planning will be posted on the PJM web site. This site will include all currently planned transmission owner RTEP projects (including both newly planned Supplemental projects from past RTEP cycles that are yet to be placed in-service.) This website will provide tracking information about the status of listed projects and planned in-service dates. It will also include information regarding criteria, assumptions and availability of study cases related to local planning.

1.3 Planning Assumptions and Model Development

1.3.1 Reliability Planning

PJM's planning analyses are based on a consistent set of fundamental assumptions regarding load, generation and transmission built into power flow models. Load assumptions are based on the annual PJM entity load forecast independently developed by PJM (found at http:// www.pjm.com/planning/resource-adequacy-planning/load-forecast-dev-process.aspx.) This forecast includes the basis for all load level assumptions for planning analyses throughout the 15 year planning horizon. Generation and transmission planning assumptions are embodied in the base case power flow models developed annually by PJM and derived from the Eastern Reliability Assessment Group processes and procedures pursuant to NERC standard MOD-032. As necessary, PJM updates those models with the most recent data available for its own regional studies. All PJM base power flow and related information are available pursuant to applicable Critical Energy Infrastructure Information, Non-Disclosure and OATT-related requirements (accessible via http://www.pjm.com/planning/rtep-development/ powerflow-cases.aspx or by contacting the PJM Planning Committee contacts.) Each type of RTEP analysis (e.g., load deliverability, generator deliverability etc.) encompasses its own methodological assumptions as further described throughout the rest of this Manual. Additional details regarding the reliability planning criteria, assumptions, and methods can be found in following sections and this manual's Attachments.

Attachment J contains the checklist for the new equipment energization process to be utilized by Transmission Owners and Designated Entities from inception to energization of upgrade projects.

1.3.2 Market Efficiency Planning

PJM will perform a market efficiency analysis each year, following the completion of the nearterm reliability plan for the region. PJM's market efficiency planning analyses will utilize many of the same starting assumptions applicable to the reliability planning phase of the RTEP development. In addition, key market efficiency input assumptions, used in the projection of future market inefficiencies; include load and energy forecasts for each PJM zone, fuel costs and emissions costs, expected levels of potential new generation and generation retirements and expected levels of demand response. PJM will input its study assumptions into a commercially available market simulation data model that is available to all stakeholders. The

data model contains a detailed representation of the Eastern Interconnection power system generation, transmission and load. In addition, the market efficiency analysis of the cost/

benefit of potential market efficiency upgrades will also include the discount rate and annual revenue requirement rate. The discount rate is used to determine the present value of the enhancements' annual benefits and annual cost. The annual revenue requirement rate is used to determine the enhancements' annual cost. PJM will finalize the market efficiency analysis input assumptions soon after the development of the PJM load forecast that is generally available approximately in late January. Prior to finalizing, PJM will review the proposed assumptions at the PJM Transmission Expansion Advisory Committee. This review will provide the opportunity for stakeholder review of and input to all of the key assumptions that form the basis of the market efficiency analysis. In this way, PJM will facilitate a comprehensive stakeholder review and input regarding RTEP study assumptions. All final assumptions and analysis parameters will be presented to the TEAC for discussion and review and to the PJM Board for consideration.

1.3.3 End-Of-Life Facility Planning:

An increasing number of projects have been driven by aging infrastructure. Dependent upon the Transmission Owner, their end of life facility determination process may be memorialized in its FERC Form 715 or individually by specific Transmission Owner Supplemental Project criteria.

1.4 RTEP Process Key Components

PJM's goal is to ensure electric supply adequacy and to enhance the robustness of energy and capacity markets. Achieving these objectives requires the successful completion of PJM's planning, facility construction and operational and market infrastructure requirements.

Key components of PJM's 15-year transmission planning process discussed in this Manual include:

1. Baseline reliability analyses:

The PJM Transmission System ("PJM System") provides the means for delivering the output of interconnected generators to the load centers in the PJM energy and capacity markets. Baseline reliability analyses ensure the security and adequacy of the Transmission System to serve all existing and projected long term firm transmission use including existing and projected native load growth as well as long term firm transmission service. RTEP baseline analyses include system voltage and thermal analysis, and stability, load deliverability, and generation deliverability testing. These tests variously entail single and multiple contingency testing for violations of established NERC reliability criteria regarding stability, thermal line loadings and voltage limits. Baseline reliability analyses are discussed in more detail in Section 2 and Attachment C.

2. Generation and transmission interconnection analyses:

All entities requesting interconnection of a generating facility (including increases to the capacity of an existing generating unit) or requesting interconnection of a merchant transmission facility within the PJM RTO must do so within PJM's defined interconnection process. In addition to the baseline analyses discussed above, as resources or merchant transmission requests interconnection, deliverability in the local area of the request is restudied and updated. The generation and transmission interconnection process and deliverability testing procedures are discussed in

Attachment C and Manual 14A. The evaluation of generation and merchant transmission interconnection requests is codified in the PJM Open Access Transmission Tariff (available on the PJM Web site at <u>http://www.pjm.com/</u>).

3. Market efficiency analyses:

In addition to reliability based analyses PJM also evaluates the economic merit of proposed transmission enhancements. These analyses focus on the economic impacts of security constraints on production cost, congestion charges to load and other econometric measures of market impacts. PJM's market efficiency analyses are discussed in Section 2 of this Manual and Attachment E. PJM development of economic transmission enhancements is also codified under Schedule 6 of the PJM Operating Agreement.

4. Operational performance issue reviews and accompanying analyses:

Maintaining a safe and reliable Transmission System also requires keeping the transmission system equipment in safe, reliable operating condition as well as addressing actual operational needs. On an ongoing basis, PJM operating and planning personnel assess the PJM transmission development needs based on recent actual operations. This may lead to special studies or programs to address actual system conditions that may not be evident through projections and system modeling.

To ensure that system facilities are maintained and operated to acceptable reliability performance levels, PJM has implemented an Aging Infrastructure Initiative to evaluate appropriate spare transformer levels and optimum equipment replacement or upgrade requirements. This initiative, based on a Probability Risk Assessment (PRA) process, is intended to result in a proactive, PJM-wide approach to assess the risk of facility failures and to mitigate operational and market impacts. Section 2 of this manual provides further discussion of the PRA process.

5. End-Of-Life Facility Review and Accompanying Analysis

Maintaining a properly functioning and cost effective Transmission System also requires a transparent and replicable analytical process for determining that a facility is no longer viable to be maintained through good utility operational and maintenance practices. By identifying facilities approaching their End-Of-Life (EOL) in a consistent and transparent manner, PJM Transmission Owners will ensure the transmission grid is positioned to be resilient to an ever-changing risk profile, optimized for the useful life of the grid, and to ensure cost effective projects while reducing end user interruptions.

6. The final RTEP Plan:

Based on all of the requirements for firm transmission service on the PJM System, PJM annually develops a Regional Transmission Expansion Plan to meet those requirements on a reliable, economic system development and environmentally acceptable basis. Furthermore, by virtue of its regional scope, the RTEP process assures coordination of expansion plans across multiple transmission owners' systems, permitting the identification of the most effective and efficient expansion plan for the <u>local area and</u>

the region. The RTEP plan developed through this process is reviewed by PJM's independent Board of Managers who has the final authority for plan's approval and implementation [with the exception of Supplemental Projects which the PJM board does not approve]. The following Section 2 describes the PJM RTEP Process analysis.

1.5 Planning Criteria

1.5.1 Reliability Planning

Stakeholders have the opportunity at a national level through the participatory standards development process of the North American Electric Reliability Corporation (NERC) to influence the industry planning criteria that form the basis of PJM's planning process (found at http:// www.nerc.com/Pages/default.aspx.) NERC regional criteria development, applicable to PJM, is also open to stakeholder input through the open and participatory process of ReliabilityFirst Corporation (found at https://www.rfirst.org/standards/Pages/StandardsDocuments.aspx.)

Additionally, regional and local criteria that go beyond and complement the NERC obligations can be created and incorporated into PJM planning through participation in PJM's Planning Committee and other related stakeholder processes (please refer to http://pjm.com/committeesand-groups/committees.aspx.) In this manner, PJM, as the independent planning authority, avails stakeholders full opportunity to participate in the planning process from assumptions setting to the final plan. The PJM annual regional plan is based on the effective criteria in place at the time of the analyses, including applicable standards and criteria of the NERC and the applicable regional reliability council, the various Nuclear Plant Licensees' Final Safety Analysis Report grid requirements and the PJM and local Reliability Planning Criteria (Attachment D.) Section 2 details the specific criteria applicable to each transmission planning process study phase. Criteria are comparably applicable to all similarly situated Native Load Customers and other Transmission Customers.

1.5.2 Market Efficiency Planning

Market efficiency planning is an evaluation process that results in facilities planned to achieve economic efficiencies rather than an analysis that produces violations measured against criteria. This process compares alternative plans' cost effectiveness in improving transmission efficiency and produces RTEP recommendations from this process. The metrics of economic inefficiency include historic and projected congestion. The measures of historic congestion are gross congestion, unhedgeable congestion, and pro-ration of auction revenue rights. The measure of projected congestion is based on a market analysis of future system conditions performed with a commercially available security constrained, economic dispatch market analysis tool. This market analysis results in future projections of the congestion and its binding constraint drivers. These congestion measures are posted and available to stakeholders by binding constraint and form the basis for PJM and stakeholder development of remedies. Transmission plans from the reliability analysis or a new plan presented that economically relieves historical or projected congestion are candidates for market efficiency solutions. The successful candidates will be those facilities that pass PJM's threshold test and bright line economic efficiency test. This test specifies that a proposed solution's savings must exceed its projected revenue requirements, on a 15 year present worth basis, by at least 25% (the threshold cost/benefit test). Each of this process' elements, its underlying assumptions and its methods is described in more detail in the accompanying sections of this manual 14B and in Attachment E.

¹ The Reliability *First* Regional Reliability Corporation (RRC) for the PJM Mid-Atlantic and Revision: 41. Effective Date: 04/19/2018 PJM © 2018

1.5.3 End-Of-Life Facility Planning

End of life decision making is a PJM Transmission Owner driven process memorialized either through the FERC Form 715 or individual Transmission Owner criteria. Regardless, the End of Life planning process will mirror the process set forth in PJM Transmission Owner OATT Attachment M-3, as more fully described in section 2.8.

Section 2: Regional Transmission Expansion Plan Process

In this section you will find an overview of the PJM Region transmission planning process covering the following areas:

- Components of PJM's 15-Year planning
- The need and drivers for a regional transmission expansion plan
- Reliability planning overview
- Specific components of reliability planning and the Stakeholder process
- Interconnection request drivers of RTEP
- Cost responsibility for reliability related upgrades
- Market efficiency planning review
- Specific components of market efficiency planning and the Stakeholder process.
- Operational performance driven planning
- Specific components of operational performance driven planning

2.1 Transmission Planning = Reliability Planning + Market Efficiency+ Public Policy_+ <u>End-Of-Life</u>

Effective with the 2006 RTEP, PJM, after stakeholder review and input, expanded its RTEP Process to extend the horizon for consideration of expansion or enhancement projects to fifteen years. This enables planning to anticipate longer lead-time transmission needs on a timely basis.

Fundamentally, the Baseline reliability analysis underlies all planning analyses and recommendations. On this foundation, PJM's annual 15-year planning review now yields a regional plan that encompasses the following:

- 1. Baseline reliability upgrades, discussed in this Section 2;
- 2. Generation and transmission interconnection upgrades, discussed in Attachment B of this manual and Attachment B of Manual 14A.
- 3. Market efficiency driven upgrades, discussed in this Section 2.
- 4. Operational performance issue driven upgrades, discussed in this Section 2.
- 5. Public Policy Requirements based elements via State Agreement Approach
- 6. End of Life Local Area Planning discussed in this section 2.

2.8 End-Of-Life Facility Planning

2.8.1 General

The EOL process must fit within the PJM RTEP, both the regional and local planning schedules.

After EOL projects have been finalized, PJM, the TO's and the stakeholders shall coordinate regional and local planning for baseline projects to evaluate whether any finalized

EOL/Supplemental project may contribute to solving a subsequently identified reliability violation in a least cost manner, and

similarly, if an EOL reinforcement is identified that will eliminate the need for a previously, or subsequently, identified baseline violation, PJM, the TO's and stakeholders will work to find the least cost solution(s).

2.8.2 Assumptions Meeting

TOs shall provide an overview of their asset management program as they relate to EOL projects. The TOS will include a 5 year look ahead which will indicate whether there is the potential future replacements of specific equipment or group of equipment, or any group of assets which may be the subject of concerns relating to specific equipment manufacturers, models, types, etc.

The TOs will provide (and PJM will post) all TO planning criteria, EOL models, criteria, and assumptions 20 calendar days in advance of a scheduled SRRTEP or TEAC meeting. The TOs shall provide sufficient information for stakeholders to be able to understand how assets will be prioritized for replacement, how the replacement versus maintenance decision is made, how assets rank relative to other assets on the system and their system average values. The level of detail will be sufficient to enable stakeholders to replicate the TO decision-making process for EOL facilities. Dependent on the TO's process and to the extent available:

- a. Criteria must be quantifiable and include details about associated criteria thresholds. Each TO proposing EOL driven projects must have and share an established, companyapproved, public set of quantifiable criteria that can be replicated by stakeholders.
- b. Provide asset specific scoring criteria (to facilitate prioritization during needs meeting(s))
- c. For developed criteria thresholds used to justify the replacement of an asset, the TO will provide system level averages specific to that type/class of asset to support their replacement decision. These system level averages will include but not be limited to any data inputs used to rank and to prioritize an individual asset's replacement against another asset of same type/class located on the TO's system.

Stakeholders can provide written comments regarding the criteria, assumptions, and models posted for use in the EOL process within 10 days of the assumptions meeting to be included in the TO review and consideration of all comments received for the assumptions meeting. The TOs may provide written responses within 10 days of stakeholder comments, such responses may include a response that there will be no response in regards to the comment(s) offered. PJM shall note that no written responses were provided if the TOs choose not to provide a written response.

PJM shall schedule and facilitate all SRRTEP/TEAC meetings.

To the extent possible, a uniform template shall be used by all TOs to convey the information above.

PJM shall facilitate the SRRTEP/TEAC meetings in a timely fashion to support the RTEP planning process.

2.8.3 Needs Meeting

PJM will schedule a minimum of one SRRTEP/TEAC committee Needs Meeting no fewer than 25 days after the assumptions meeting to review the identified violations and resulting system needs, if any, that may drive the need for an EOL project.

In order to allow stakeholders to provide meaningful input, the Needs Meeting must occur prior to a TO finalizing its annual transmission construction budget.

TO shall post identified criteria violations and needs no fewer than 10 days in advance of the Needs Meeting. Dependent on the TO's process, to the extent available:

- a. Criteria assessments must include at a minimum: asset scoring data inputs, analysis, and final results. All TO facilities need to continue to be part of the overall system asset averages.
- b. Drivers contributing to EOL determination (including performance, condition and risk) should be included. TOs will provide quantifiable values pertaining to what is driving facility's need to be replaced. These values must include system asset averages. As applicable, TOs shall provide documentation developed of condition assessments (e.g. photographs, field assessment reports, etc.).
- c. On an annual basis, the TOs must provide a complete list of all assets (CB, Transformer, Line, Station, etc.), and their relative ranking from highest priority to lowest priority, and the associated input data supporting their ranked priorities, in order to discuss prioritization rather than just dealing with individual projects.
- d. TOs provide 5 year annual forecast of upcoming end of life projects based on currently known information.
- e. TOs must also identify the specific company that owns the asset and if the asset is currently a transmission or distribution asset, as well as what entity will be owning, operating and maintaining the replacement facility.
- g. When EOL transmission projects are replacing distribution assets, the TO also provides drivers to support a transmission improvement over a distribution improvement, including the supporting evidence that demonstrates the transmission alternative is lower in cost and/or the distribution alternative would not meet the needs. Finally, for any EOL project that is replacing a distribution facility, the TO must demonstrate that the distribution replacement need is imminent.

Stakeholders can provide written comments no later than 10 days following the Needs Meeting for the TOs to review and consider so that the TOs may respond or provide feedback as appropriate. TOs may provide written responses, including all additional information requested, prior to Solutions Meeting(s), such responses may include a response that there will be no response in regards to the comment(s) offered. PJM shall note that no written responses were provided if the TOs do not so provide. However, proposed projects will not be brought to a Solutions Meeting until the TO has responded.

Nothing precludes any TO from having additional stakeholder meetings or communications regarding EOL projects.

2.8.4 Solutions Meeting(s)

PJM-facilitates TEAC and Subregional Meetings on EOL facilities.

No fewer than 25 days after the Needs Meeting but after the TOs have responded to all written comments from Needs Meeting, each TEAC or Subregional RTEP Committee shall schedule and facilitate a minimum of one TEAC or Subregional RTEP Committee meeting to review potential solutions for the identified criteria violations (Solutions Meeting).

TOs shall share and PJM shall post their potential solutions, as well as any alternatives identified by the TOs or stakeholders, at least 10 days in advance of the Solutions Meeting.

Dependent on the TO's process, to the extent available, only EOL solutions that include the following information should be brought forward for consideration:

- a. Asset specific EOL scoring data inputs, analysis, and final results;
- b. Asset specific EOL priority ranking relative to entire system under study; and,
- c. Asset specific EOL Quantifiable values pertaining to what is driving the replacement selection of the facility.

Stakeholders may provide comments on all proposed solutions (TO's solutions and any alternatives proposed by the TO or stakeholders) for TO consideration either prior to or within 10 days following the Solutions Meeting.

The TO shall review and consider comments that are received within 10 days of the Solutions Meeting and may respond or provide feedback in writing no later than 20 days after the Solutions Meeting, such responses may include a response that there will be no response in regards to the comment(s) offered. PJM shall note that no written responses were provided if the TOs do not so provide.

Alternative Project Solutions Meeting:

Only applies to those projects where alternatives have been identified.

PJM-facilitated TEAC and Subregional Meetings on EOL facilities.

No more than 10 days after the initial Solutions Meeting, any stakeholder shall share and PJM shall post alternative solutions to the TO potential solutions.

No more than 20 days after the alternative solutions are posted, the TEAC or Subregional RTEP Committee shall schedule and facilitate another Solutions Meeting which would include the Alternative Project Solutions for review and discussion.

Project Finalization:

PJM-facilitated TEAC and Subregional Meetings on EOL Facilities.

No fewer than 20 days after the Alternative Solutions Meeting, the TEAC or Subregional RTEP Committee shall schedule another Solutions Meeting to review and discuss the TO's final decision and for the TO to respond to questions/comments.

The TOs shall share and PJM will post their proposed final solution no fewer than 10 days before the final Solutions Meeting. TOs shall provide justification and documentation for their selected solution.

Stakeholders may provide written comments or feedback no later than 10 days prior to the Local Plan being submitted for integration into the RTEP.

The TOs may respond to comments on their EOL projects being submitted into the Local Plan for inclusion in the RTEP. Such responses may include a response that there will be no response in regards to the comment(s) offered. PJM shall note that no written responses were provided if the TOs do not so provide.

2.8.5 Finalization of Projects for Local Plan

Each TO will submit to PJM EOL Projects that were finalized through the TEAC or Subregional RTEP committees from January through May for inclusion in the finalized PJM RTEP base case and Local Plan for that planning year.

Projects for the PJM RTEP and the Local Plan will not be final "finalized" until the conclusion of Dispute Resolution (if applicable).

4820-9715-6461, v. 1