

Dynamic Line Rating Installation on Three PPL Circuits

DLR Project Initiation

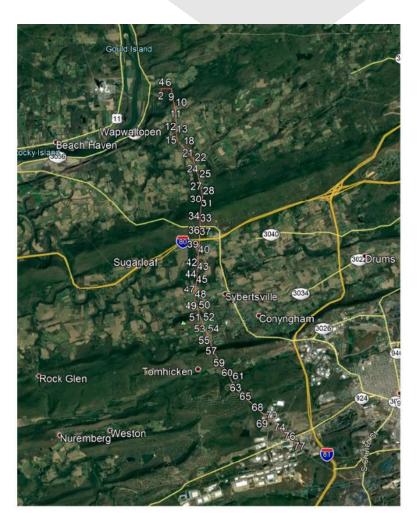
PPL requested RTR manage the installation of the Ampacimon devices on the Juniata-Cumberland and Susquehanna-Harwood 1&2 230kV lines.

- Asset Owner
- Project Owner
- IT and PJM Integration
- NERC-CIP Compliance

- DLR System/Sensor Provider
- Line Capacity Modeling
- DLR Configuration
- IT Integration with PPL

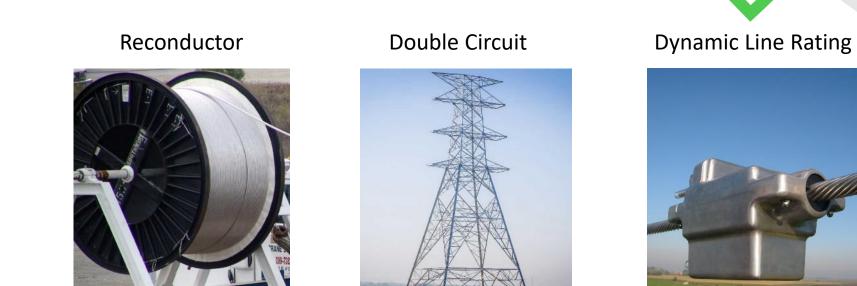
- Determination of Installation Methods
 - Heli Live Line + Ground Crew (for select spans)
- Create and submit tickets to TCC
 - Both Live Line and Outage
- Line Crossings
- Environmental Permitting

- Regional Operator
- Accept 1-Day ahead DLR ratings


Background

High congestion costs projected in 2025

Harwood to Susquehanna | 230 kV | ACSS | 2040A Static Rating


Juniata to Cumberland | 230 kV | ACSR | 1240A Static Rating

2020/21 RTEP Market Efficiency Window Eligible Energy Market Congestion Drivers* (Posted 03-05-2021)					ME Base Case (Annual Congestion \$million)			ME Base Case (Hours Binding)	
FG#	Constraint	FROM AREA	TO AREA	S	2025 imulated Year	Si	2028 mulated Year	2025 Simulated Year	2028 Simulated Year
ME-1	Kammer North to Natrium 138 kV	AEP	AEP	\$	2.02	\$	6.56	69	167
ME-3	Junction to French's Mill 138 kV	APS	APS	\$	9.18	\$	11.97	276	301
ME-4	Yukon to AA2-161 Tap 138 kV	APS	APS	\$	4.36	\$	5.16	1742	1958
ME-5	Charlottesville to Proffit Rd Del Pt 230 kV	DOM	DOM	\$	3.76	\$	4.96	121	124
ME-6	Plymouth Meeting to Whitpain 230 kV	PECO	PECO	\$	3.33	\$	4.09	111	101
ME-7	Cumberland to Juniata 230 kV***	PLGRP	PLGRP	\$	9.00	\$	6.61	213	179
ME-8	Harwood to Susquehanna 230 kV***	PLGRP	PLGRP	\$	14.49	\$	8.69	830	501

Solutions Considered

Time to Implement	2 – 3 Years	3 – 5 Years	Months	
Downtime	Extended Outages	Extended Outages	No Outages Required	
Cost	\$0.5 M per mile	\$2 - 3 M per mile	< \$1 M	
Est Capacity Benefit	+ 34%	+ 106%	+10 - 30%	

What is DLR?

System of line sensors installed to measure conductor and real-time environmental data in order to determine the true capacity and forecasted capacity

Static Line Ratings

<u>Assumes</u>

- Wind speed
- Ambient Temp
- Solar Radiation
- 2 Seasons (Planning)

Conservatively Calculates Ratings

No way to measure field conditions, ensure safe operations, or line health

Dynamic Line Ratings

<u>Measures</u>

- Wind Speed
- Ambient Temp
- Conductor Temp
- Conductor Sag

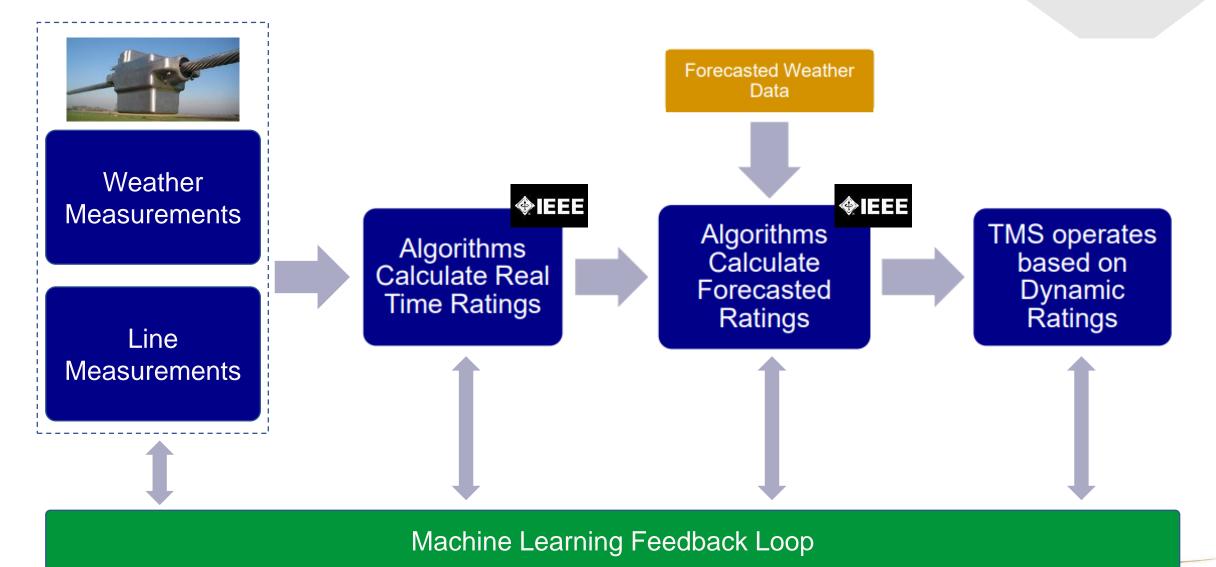
Accurate Real-Time and Forecasted Ratings

Measures Conductor Health

Perpendicular wind is the key factor to increasing capacity

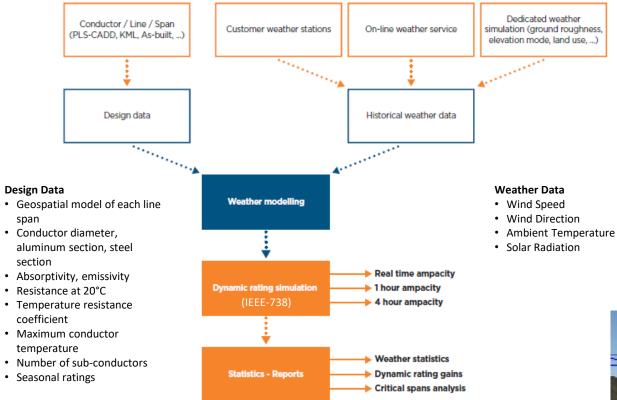
DLR sensors must accurately measure the actual wind speed that each critical span is experiencing

Wind estimates based on weather station data alone have proven to be inaccurate


	U.S. Department of Energy April 2014			
Operating Conditions	Change in Conditions	Impact on Capacity		
Ambient temperature	2 °C decrease	+ 2%		
	10 °C decrease	+ 11%		
Solar radiation	Cloud shadowing	+/- a few percent		
	Total eclipse	+ 18%		
Wind	3 ft./s increase, 45° angle	+ 35%		
	3 ft./s increase, 90° angle	+ 44%		

Source: Navigant Consulting, Inc. (Navigant) analysis; data from (7)

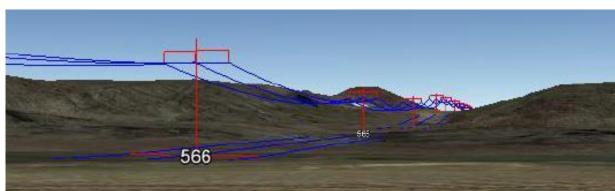
Table 1. Impacts of Changing Operating Conditions on Transmission Line Capacity


Dynamic Line Ratings Process

Smart solutions for a dynamic grid

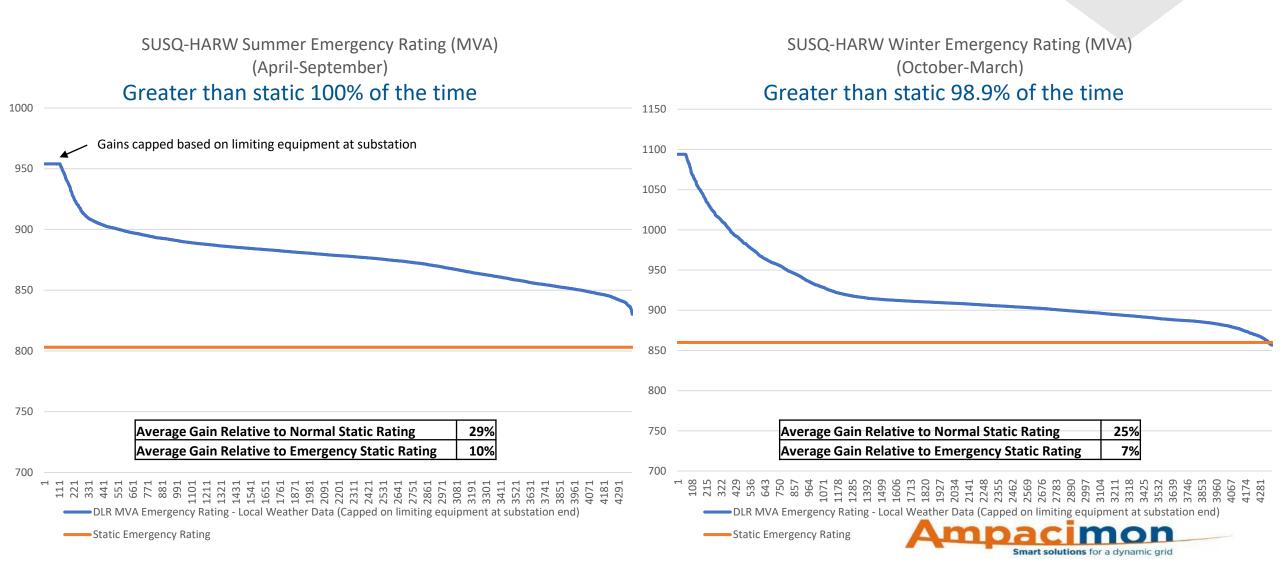
Planning for DLR

Ampacimon DLR Simulations

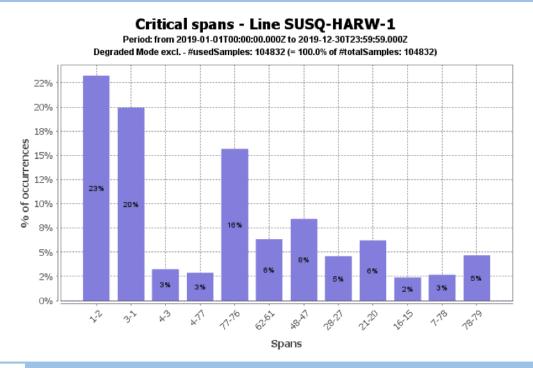

ADR VIEW IN A NUTSHELL

Input data:

- · Historic weather data covering surveyed area
- Line design data and existing ratings
- Conductor features
- Span design data

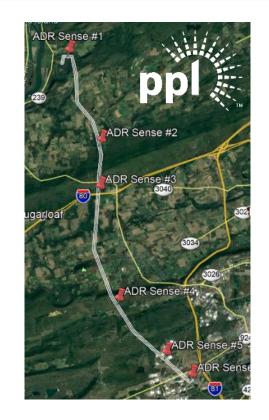

Deliverables:

- ADR View report containing statistics, histograms,
- Time-stamped data in .csv format
- Presentation of results by an Ampacimon expert (face-to-face or conference call)


DLR Simulation Results

Steady-state DLR at emergency rating temperature

Target Span Identification


Required Span Selection Rules

- Orientation between spans changes more than 15°
- Distance is greater than 10 km
- Conductor or number of sub-conductor change
- Span safety concerns

2

• Utility span data identifies high risk span(s)

3 Final Span Selection

Preparing for Installation

Susquehanna – Harwood | 2 Circuits | 12 Sensors Juniata - Cumberland | 1 Circuit | 6 Sensors

- Assembled Crewing Required
- Conducted Crew Training on Sensor Mounting Procedure
- Practiced Mounting Procedures
- Shepherded outage tickets through the PL ticket process
- Energized Sensors Prior to Install to Ensure Functionality and Connectivity
- Physical Install Challenges:
 - Heavy Snowfall and Wind
 - Existing Environment Permits in the Area
 - Needed ground installation for some spans due to adverse weather conditions -> Took advantage of existing outage window for ground installation

Sensor Deployment

Susquehanna – Harwood | 2 Circuits | 12 Sensors Juniata - Cumberland | 1 Circuit | 6 Sensors

- Installed December 2020
- One phase per identified span
- Sensor mounted 5 10% of the total span length from either tower
- Live Line Installation Via Helicopter
 - Select spans installed from ground
- Mounting procedure is 5 10 minutes per sensor

Upcoming Work for PPL

- Definition of formal ratings procedure being developed by PPL in partnership with PJM
- Integration of ratings into PJM 1-day ahead operations and market to clear congestion violations
- Finalize IT System with NERC-CIP Compliance

Ryan Robinson

Owner RTR Energy Solutions <u>RRobinson@rtrenergysolutions.com</u> Cell: 724-550-5010

Horst Lehmann Senior Engineer HJLehmann@pplweb.com Work: 610-774-3168

Joey Alexander Director, Business Development Ampacimon Joey.Alexander@Ampacimon.com Cell: 678-231-9473

Bill Skumanich Program Manager RTR Energy Solutions BillS@rtrenergysolutions.com Cell: 484-627-4405

Joey Alexander | Director, Business Development | Ampacimon, Inc 678 231 9473 | Joey.Alexander@Ampacimon.com | Atlanta, GA