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1 Capacity Valuation Analysis 

1.1 Introduction to the Wind Capacity Valuation 

The reliability of a power system is governed by having sufficient generation capacity to 

meet the load at all times.  There are several type of randomly occurring events, such as 

generator forced outages, unexpected de-ratings, etc., which must be taken into 

consideration during the planning stage to ensure sufficient generation capacity is available.  

Since the rated MW of installed generation may not be available at all times, due to the 

factors described above, the effective capacity value of generation is normally lower than 

100% of its rated capacity.  This effect becomes more pronounced for variable and 

intermittent resources, such as wind and solar PV.  As an example, a 100 MW gas turbine will 

typically have a capacity value of approximately 95 MW, while a 100 MW wind plant may 

only have a capacity value of approximately 15 MW.  It is therefore important to characterize 

the capacity value of such resources so that grid planners can ensure sufficient reserve 

margin or generation capacity is available at all times under a projected load growth 

scenario.  

This report presents the analysis on the capacity value of wind and solar resources in 

different scenarios considered in the study.  The analysis is conducted using GE Multi-Area 

Reliability Simulation (GE MARS) Software, and the capacity value is measured in terms of 

“Effective Load Carrying Capability.” 

 

1.2 PJM Rules on Capacity Value of Intermittent Energy 

Resources 

PJM Manual 21 defines the current procedures for estimating the capacity value of 

intermittent resources, such as wind and solar PV generators.  The manual defines capacity 

value of the intermittent resource (in percentage terms) as the average capacity factor that 

the resources have exhibited in the last three years during the summer period.  The summer 

period is between the hour beginning at 2 PM and the hour ending at 6 PM, local time, during 

the months of June, July, and August.  The capacity value in MWs can be obtained by 

multiplying the average capacity factor with the installed MW capacity of the intermittent 

resource.  PJM Manual 21 also indicates the currently effective class average capacity 

factors as 13% for Wind and 38% for Solar PV. 

Table 1-1 presents the average capacity factor of central PV and onshore wind resources 

during the summer period in 2004-2006 in the 2% BAU scenario.  It should be noted that this 

scenario consists of only central PV (installed capacity of 72 MW) and onshore wind (installed 

capacity of 5,122 MW).  The capacity factor of central PV is between 59% and 60% and that 
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of onshore wind is approximately between 22 and 25%.  The table also shows the average of 

the capacity factor of these resources in these three years, which is 60% for central PV and 

23% for onshore wind, based on the modeled data. The modeled data for wind is based on 

the power curve of a 2.5 MW turbine with a 100-meter tower height.  These wind turbines 

perform much better at higher and lower wind speeds.  The modeled data for Solar PV gives 

93-95 % rated capacity output at the point of interconnection to the grid, while in reality the 

Solar PV output maybe limited to 50-80% accounting for cell, module and interconnection 

losses.  These factors may account for the higher capacity value observed in the modeled 

data as compared to the PJM data.         

Table 1-2 repeats the same exercise for the 14% RPS scenario.  The average capacity factor 

in the years 2004 to 2006 shows that the central PV has a higher value than distributed PV.  

It also shows that offshore wind has a higher average capacity factor than onshore wind.  

Both of these are well-known facts and supported by the data in these tables.  The 

comparison across the years indicates that the annual weather differences affect the 

capacity factors, which in turn affects the capacity value. 

 

Table 1-1: Average Summer Capacity Factor of Onshore Wind and Central PV, 2004 to 2006 (2% BAU) 

Column1 Residential 
PV 

Commercial 
PV 

Central 
PV 

Onshore 
Wind 

Offshore 
Wind 

2004 - - 59.0% 24.8% - 

2005 - - 61.0% 21.8% - 

2006 - - 59.7% 22.9% - 

Average - - 59.9% 23.2% - 

 

Table 1-2: Average Summer Capacity Factor of Onshore Wind and Central PV, 2004 to 2006 (14% RPS) 

Column1 Residential 
PV 

Commercial 
PV 

Central 
PV 

Onshore 
Wind 

Offshore 
Wind 

2004 46.8% 44.7% 61.7% 27.2% 32.4% 

2005 49.4% 47.3% 63.8% 19.9% 27.5% 

2006 47.5% 45.4% 62.0% 24.5% 36.9% 

Average 47.9% 45.8% 62.5% 23.9% 32.3% 

 

As depicted in Figure 1-1, Year 2005 experiences a lower summer capacity factor for 

onshore wind compared to Year 2006 or Year 2004. The box inside each chart encapsulates 

the summer-period and clearly shows that Year 2005 has a lower available energy during 

this period.  Appendix A provides a summary of the average capacity factors for each of the 

resources in each scenario.  
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The average capacity factor of wind and solar resources during the peak summer hours is a 

reasonable proxy to estimate capacity values since most of the capacity adequacy-related 

reliability risk in PJM is concentrated in the afternoon hours of a summer day.  However, 

including all the afternoon hours in the capacity factor computation, regardless of the actual 

reliability risk during that hour, may result in over/under estimation of the capacity value.  

The analyses in this report are based on the ELCC of wind/solar resources, a method that 

provides an estimation of the capacity value of a resource by focusing primarily on the 

resource output during the hours that carry more capacity adequacy-related reliability risk.  

 

  

 

     

    Average Capacity Factor 

     

Figure 1-1: Average Capacity Factor of Onshore Wind Resources from 2004 to 2006 

 

1.3 GE Multi-Area Reliability Simulation (GE MARS) Model  

A Loss of Load Expectation (LOLE) reliability evaluation was performed for each of the cases.  

GE Concorda Suite’s Multi-Area Reliability Simulation (GE MARS) software was used to 

calculate the daily LOLE, in days per year, for each scenario.  In addition to the daily LOLE, GE 

MARS also calculated hourly LOLE, in hours per year, and Expected Unserved Energy (EUE), in 

MWh per year.  

The LOLE is determined as the number of days on which loss of load is expected to occur.  

Since typical generation outages are equally likely at any time of the day, this index is 

historically calculated at the time of the system daily peak load.  However, wind generation 
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varies throughout the day.  In recent study work, GE Energy Consulting has expanded the GE 

MARS program to determine the daily LOLE while looking at every hour of the day.  In this 

way, any off-peak loss of load outages caused by significant drops in the wind generation 

will be fully accounted for. 

The following reliability indices are available on both an isolated (zero ties between areas) 

and interconnected (using the input tie ratings between areas) basis: 

• Daily LOLE (days/year) 

• Hourly LOLE (hours/year) 

• Loss of Energy Expectation (LOEE) (MWh/year) 

• Frequency of loss of load events (events/year) 

• Duration of outage (hours/event) 

• Need for initiating emergency operating procedures (days/year) 

 

1.3.1 Modeling Assumptions 

The approach is based on a sequential Monte Carlo simulation, which provides for a detailed 

representation of the hourly loads, generating units, and interfaces between the 

interconnected areas.  In the sequential Monte Carlo simulation, chronological system 

histories are developed by combining randomly generated operating histories of the 

generating units with the inter-area transfer limits and the hourly chronological loads.  

Consequently, the system can be modeled in great detail with accurate recognition of 

random events, such as equipment failures, as well as deterministic rules and policies, which 

govern system operation, without the simplifying or idealizing assumptions often required in 

analytical methods.  GE MARS is based on a sequential Monte Carlo simulation, and it uses 

state transition rates rather than state probabilities, to describe the random forced outages 

of the thermal units.  State probabilities give the probability of a unit being in a given 

capacity state at any particular time, and can be used if one assumes that the unit's 

capacity state for a given hour is independent of its state at any other hour.  Sequential 

Monte Carlo simulation recognizes the fact that a unit's capacity state in a given hour is 

dependent on its state in previous hours and influences its state in future hours.  It thus 

requires the additional information that is contained in the transition rate data. 

For this analysis, the PJM system was isolated from the rest of the system, and no assistance 

from the outside was available to PJM.  PJM area loads were scaled to obtain a starting risk 

of 0.1 days/year. With assistance from outside resources, the starting risk would decrease 

and a different load scaling factor would need to be used to obtain LOLE of 0.1 days/year. 

Nonetheless, the capacity value obtained under these two system conditions would be the 



PJM Renewable Integration Study  Capacity Valuation Analysis 

GE Energy Consulting 15 Task 3A Part F 

same. It was agreed upon by the study team to model the PJM system with no outside 

assistance. Unit characteristics and maintenance schedules were copied from the GE MAPS 

input assumptions.  Units were modeled as two state units, either fully available or 

unavailable, based on their state transition rates.  Since state transition rates cannot be 

calculated from forced outage rates alone, the number of transitions between the two states 

was taken from the 2007-2011 class averages in the NERC Generating Availability Report, 

issued in September 2012. 

The PJM demand response program was modeled as an operating procedure, since, as 

mentioned above, GE MARS can provide statistics on the use of operating procedures.  The 

program was modeled with a benefit of approximately 15.7 GW. 

The values used for load forecast uncertainty were taken from the data that PJM provides to 

the Northeast Power Coordinating Council for their reliability analysis. 

 

1.3.2 Load Forecast Uncertainty 

Figure 1-2 shows the probability distribution of the load forecast (weighted by area load) that 

was used by the Northeast Power Coordinating Council (NPCC) for the PJM region in the 

2012 NERC reliability analysis.  The forecast uncertainty is expressed as multipliers for the 

mean, as well as one, two, and three standard deviations above and below the mean.  In 

Figure 1-2, the expected value (average value weighted by probability) is shown as 

approximately 94%, which is less than the intuitive value of 100%.  This is consistent with the 

planning methodology used by PJM internally as part of their capacity analysis. 

The data is shown only for the month of July, a peak load month for PJM.  This distribution is 

symmetric around its mean, with an average (expected) value of 0.94 p.u. (per unit).  This 

means, on the average, modeled peak load will be 6% lower than the nominal forecasted 

peak.  Since the system peak load was adjusted to the PJM design criteria of 0.1 days/year 

LOLE, this will not significantly impact the capacity values determined. 
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Figure 1-2: Probability Distribution of Load Forecast 

 

1.3.3 Load Shape 

In this draft report, the analysis is based on the load shapes from years 2004, 2005, and 

2006. In order to get stable estimates on capacity value of a resource many years of load 

and synchronized resource data is required.  A single year load shape and same year 

resource shape may give highly inflated or deflated values for capacity value (depending on 

the weather profile and other factors that influence the load profile). 

The load shape for each of the years was scaled to meet the projected annual energy in the 

study year 2026.  As an example, Figure 1-3 shows the peak load by month and hour of day 

for the year 2006.  The adjusted 2006 shape has a peak load of 200,288 MW.  This occurs on 

the 26th of July.  For comparison, 2004 and 2005 load shapes are also shown in Figure 1-4.  

The peak days are noted for each of the shapes.  The emphasis on peak load days, as will 

become evident in the later sections, is because the reserve margin or loss of load 

probability is determined to a large extent by the peak load days.  The year 2006 load shape 

shows the highest peak load (200 GW), while the energy is the same in all three years. 

 

 

Figure 1-3: 2006 (Scaled to 2026 Energy) Peak Load Variation by Month and Hour of Day 
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Figure 1-4: Load Duration Curves for 2004, 2005, and 2006 

 

 

Figure 1-5: Zoomed-in View of the Load Duration Curves for 2004, 2005, and 2006 

   

1.4 LOLE of Base System 

As mentioned in Section 1.3, GE MARS can report information on Loss of Load Expectation 

(LOLE) in days/year, hours/year or MWh/year.  LOLE (days/year) is the most frequently used 

metric by utilities, and PJM also uses this metric in their reliability analysis.  Figure 1-6 shows 

LOLE of the base system (no wind/solar), using the 2006 load shape, on a logarithm axis.  The 

base system has a high reliability of 0.012 days/year at the forecasted 2026 peak load 

(200,200 MW) and the projected thermal generation mix.  The plot shows reliability levels at 

different system load peaks.  The LOLE increases as the peak load is scaled up.  LOLE 

increases to 0.15 days/year at 212,000 MW of peak load (6% higher than the current 

forecasted peak).  
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Figure 1-6: LOLE (days/year) for the Base System (2006 Load Shape) 

 

Figure 1-7 shows the relation between LOLE (days/year) and the system peak load for the 

three years.  This figure highlights the peak load in each of the three years that is required to 

meet PJM’s design criteria of 0.1 LOLE days/year.  For example, the 2005 load shape needs 

to be scaled-up such that the peak load increases from 182,086 MW to 206,879 MW in order 

to have a LOLE of 0.1 days/year.  The load shapes in each of the three years is scaled-up to 

the corresponding values shown in the chart below in GE MARS analysis.  

 

 

 

 

 

Figure 1-7: LOLE (days/year) for Different Load Shape Years 

 

1.4.1 Capacity Value based on Effective Load Carrying Capability 

Effective load carrying capability of a resource is defined as the increase in peak load that 

will give the same system reliability as the original system without the resource.  This 
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methodology of measuring capacity value is applicable even when the system is saturated 

(i.e. conditions when system LOLE with the new resource is extremely low).  Figure 1-8 

illustrates the process of determining ELCC of a resource.  Assume that the base case LOLE is 

0.1 days/year and it decreases to 0.001 days/year when a new resource (such as wind or 

solar PV) is added.  The system peak load is then increased such that the system returns to 

the original LOLE of 0.1 days/year.  In this case, the peak load needed to be increased by 

30,000 MW.  Thus, the ELCC of the resource is equal to serving 30,000 MW of additional load.  

Assuming the installed capacity of the resource was 50,000 MW, ELCC is simply equal to the 

ratio of these two quantities, 30,000 / 50,000 = 60%.  

 

 

Figure 1-8: Addition of Onshore Wind in 14% RPS Scenario 

 

ELCC methodology can establish the capacity value of a resource even when the installed 

capacity is extremely high, resulting in almost zero LOLE of the system.  Conventional 

methods for estimating the capacity value of the resource under these conditions would fail.   

For this reason, all results in this study are based on the ELCC methodology.  

 

1.5 Proposed Methodology to Estimate Capacity Value in 

Absence of Multiple Years of Load and Resource Data 

This section highlights the requirement to have many years of load and resource data in 

order to obtain a stable capacity value of a resource.  IEA Wind Task 25 recommends that at 

least eight years of synchronized load and wind data may be required to obtain stable 

capacity values [1].  In this study, we are limited to 3 years of load and resource data.  The 

following sections explain the different methods that were tried in the study to calculate the 
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capacity value of a resource under the constraint of having limited datasets.  The final 

proposed methodology is able to produce stable capacity values by inducing artificial 

variability in the dataset.  The 14% RPS scenario is used as a test system to report the results 

and findings in this section.  

Figure 1-9 shows the installed capacity (in megawatts) and ELCC of the wind/solar resources 

in the 14% RPS scenario, based on the 2006 load and resource shape.  Distributed PV 

(residential and commercial) shows an ELCC of 62%, lower than the ELCC of central PV 

(which is 75%).  This result is expected because of the tracking system on central PV plants 

that results in a higher capacity factor and therefore higher capacity value (or ELCC).  

Offshore Wind shows a lower ELCC (35%) as compared to the onshore wind (44%).  This 

result is counter-intuitive at first glance because offshore wind normally has a higher 

capacity factor than onshore wind and therefore should have a higher capacity value.  This 

observation is explained in the next section.    

 

 

 

 

Figure 1-9: Wind and Solar ELCC and Installed Capacity in the 14% RPS Scenario Based On 2006 Load & 

Resource Shape 

 

1.5.1 Higher ELCC of Onshore Wind than Off-shore Wind 

Figure 1-10 shows three wind sites in the RPS-14% case: onshore wind plant in Illinois (150 

MW), another onshore wind plant in Virginia (38 MW), and an offshore wind plant in Virginia 

(20 MW).  The instantaneous capacity factor of these plants is plotted on an annual duration 

curve.  The graph shows that the Virginia offshore plant has a higher capacity factor than 

the Virginia onshore plant for many hours of the year.  The average capacity factor for the 

year (shown in the chart) is also higher for Virginia offshore plant.  This is consistent with 

known facts that an offshore wind plant at a location has a higher capacity factor than the 

onshore wind facility in the same geographical location. 
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However, Illinois onshore wind plant has a higher capacity factor than the Virginia onshore 

as well as offshore for almost all hours of the year.  This indicates that weather conditions in 

Illinois are more favorable for wind power than in Virginia to such an extent that an onshore 

wind plant in Illinois has a better capacity factor than an off-shore wind plant in Virginia.  It is 

this effect that makes the ELCC of onshore wind higher than that of the offshore wind in this 

scenario.  

 

 

 

 

 

Figure 1-10: Onshore and Offshore Wind Capacity Factors in Illinois and Virginia 

 

1.5.2 Year-to-year Variation in ELCC  

Figure 1-11 shows the ELCC of different resources in 14% RPS scenario in different years.  

Each of the years was modeled with the provided load shape (scaled to 2026 energy) and a 

provided wind/solar profile.  Year 2006 shows a higher ELCC for almost all resources.  One 

observation that stands out is the large variation in ELCC for onshore wind.  Year 2005 shows 

an abnormally lower ELCC for onshore wind; around five times lower than Year 2006.  The 

reason behind this, as explained below, is the low capacity factor for onshore wind during 

high load periods in 2005.  
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Figure 1-11: ELCC of Wind and Solar Resources across Different Years in 14% RPS Scenario 

 

Figure 1-12 shows the average net load factor for a particular hour in a particular month.  A 

higher net load factor implies that the wind resource was not strong enough to reduce the 

load and vice versa.  In other words, a higher net load factor would imply lower capacity or 

ELCC for the wind resource.  A comparison across the three plots shows that average net 

load factor is the highest in 2005 during the peak summer period (2-6 pm in the months of 

Jun-Aug), which explains the low ELCC for onshore wind in this year (Figure 1-11). 

 

 

Figure 1-12: Net Load Factor with Onshore Wind in 14% RPS Scenario for Different Years 

 

The results indicate that year-to-year differences in wind/solar shape, as well as differences 

in the load shapes can significantly alter the capacity value of the wind/solar resources. For 
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this study, only three years of synchronized wind, solar, and load data are available.  In order 

to account for these year-to-year differences and large variability, the following three 

methods are examined.  

Method 1 Average of the three-year ELCC values: This methodology proposes to use the 

average of the ELCC values that a resource exhibits in the three years (2004 to 2006).  Figure 

1-13  shows the year-to-year variation in the ELCC of onshore wind: from 7.6% to 43.9%. The 

average of these three years approximates the ELCC at 24%.  However, chances are that 

this can still be an inflated or deflated value due to the small sample size considered.  The 

advantage of this method is that it preserves the synchronization between load and 

resource shape.  

 

 

Figure 1-13: Variation of Onshore Wind ELCC in Different Years 

 

Method 2 Convolving a single year load shape with a resource shape from every year: This 

methodology increases the number of combinations of load and resource shapes.  Figure 

1-14 shows the capacity value for each combination of convolving a single year load shape 

with onshore wind shape from each of the three years (2004, 2005, and 2006).  Again, there 

is a big variation in the capacity value from one combination to another.  The average of 

these nine combinations gives a capacity value of 16.7% for onshore wind.  This 

methodology however tends to lose the synchronization between load and seasonal (year-

to-year) weather characteristics.  
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Figure 1-14: Variation of Onshore Wind Capacity Value with Different Combinations of Load & Shape Years 

 

Method 3 Introducing artificial variability in the resource shape: This is simulated by using a 

random draw for the current day resource profile from a given number of days around the 

present day, such as ± 7 days, for a total of 15 days (7 days before the simulation day, 7 days 

after the simulation day, and the simulation day).  Once the draw determines a particular 

day, the profile for all the hours of the current day is used from the chosen day.  This 

methodology tends to preserve the synchronization between load and weather better than 

Method 2 since the weather occurring on days within that window is likely to be similar.  The 

results are shown in Figure 1-15. For comparison purposes, sensitivities with ±14 days and ± 

30 days are also shown.  The observed year-to-year variation is smaller, and the average 

ELCC across the years (with any window length) is between 16.8% and 17.4%.  In 

comparison, Method 1 (equivalent to have a 0 day window) gives a higher average ELCC of 

24%. 

 

 

Figure 1-15: Onshore Wind ELCC after Introducing Artificial Variability in Wind Shape 
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Figure 1-16 compares the average ELCC across the different methods discussed in the 

above sections.  Method 2 and Method 3 give similar average ELCC.  Method 1 gives a higher 

ELCC due to the use of a smaller sample size.  Method 2 convolves each year load against 

each year wind shape and hence tends to lose the year-to-year synchronization between 

load and wind.  Method 3 introduces sufficient variability and smoothens out the year-to-

year differences in weather patterns, while also preserving to a certain extent the relation 

between load and weather patterns. This methodology was only evaluated for the 14% on-

shore wind resource. Based on these results, the project team decided to use Method 3 for 

estimating the average capacity value of every resource type in each scenario.  All the 

analysis beyond this section and the final results for each of the scenarios are based on this 

methodology.     

 

 

Figure 1-16: Comparison of Onshore Wind ELCC Value with the Three Methods 

 

1.6 ELCC of 2% BAU Scenario 

Figure 1-17 shows the ELCC and the installed capacity of the resources (central PV and 

onshore wind) in the 2% BAU scenario using Method 3.  Central PV (72 MW installed capacity) 

has an ELCC of 72%.  Similarly, 5,122 MW of onshore wind has an ELCC of 20%.  

 

Method 1: Same year load and wind shape 

 

Method 2: Each year load against each year wind shape 

 

Method 3: Same year load and adjusted wind shape (+/-7days) 
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Figure 1-17: ELCC of Different Resources in 2% BAU Scenarios Using Method 3 

 

1.7 ELCC of 14% RPS Scenario 

Figure 1-18 shows the average ELCC of wind and solar resources in the RPS 14% scenario 

using Method 3.  This method uses load shape of same year against the wind/solar shape of 

the same year with the adjustment that the current day wind/solar profile can be drawn 

from ± 7-day period.  Compared to Figure 1-9, it can be observed that the average ELCC of 

all the resources decreases when artificial variability is introduced using Method 3.  This is 

summarized in Table 1-3.  The biggest decrease is seen in the value of onshore wind (from 

44% to 17%). The reported capacity values are similar to the values observed in the Western 

Wind Integration Study [2].    

 

 

Figure 1-18: ELCC of Different Resources in 14% RPS Scenario Using Method 3 
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Table 1-3: Comparison of Results Using Method 3 and 2006 Load & 2006 Resource Shape (14% RPS) 

 2006 
Load/Resource 

Shape 
Method 3 

Residential PV 62% 54% 
Commercial PV 62% 53% 
Central PV 65% 66% 
Off-shore Wind 35% 27% 
Onshore Wind 44% 17% 
All Wind and Solar 47% 26% 

 

1.8 ELCC of 20% Scenarios 

Table 1-4 shows the installed capacity of wind/solar resources in the 20% scenarios.  The 

ELCC of the different resources is shown in Figure 1-19. 

 

Table 1-4: Installed Capacity of Wind and Solar Resources in 20% Scenarios 

 

 

The ELCC value of distributed PV is between 55% and 58%, while that of central PV is 

between 63 and 65% in each of the sub-scenarios.  This is expected because of the higher 

capacity factor of a single-axis tracking system on central PV plants.  The ELCC of central PV 

decreases in the “High Solar” sub-scenario because of saturation effects. 

Offshore wind has an ELCC between 25% and 27%.  The low ELCC in the “High Off-shore” 

sub-scenario is due to saturation effects.  The ELCC of Onshore wind is between 16% and 

18%.  
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Figure 1-19: ELCC of Different Resources in 20% Scenarios 

 

1.9 ELCC of 30% Scenarios 

Table 1-5 shows the installed capacity of wind/solar resources in the 30% scenarios.  The 

ELCC of the different resources is shown in Figure 1-20. 

 

Table 1-5: Installed Capacity of Wind and Solar Resources in 30% Scenarios 

 

 

The ELCC of the resources in the different sub-scenarios is similar to the 20% cases.  The 

ELCC of some resources is lower because of saturation.  As an example, the offshore wind 

ELCC drops from 25% to 21% in the “High Off-shore” sub-scenario, as the installed capacity 

is increased from 22,581 MW to 33,489 MW.  Each additional MW of offshore wind has a 

lower load carrying capability, implying diminishing returns in the capacity value of the 

resource.   
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Figure 1-20: ELCC of Wind and Solar Resources in 30% Scenarios 

 

1.10 Capacity Valuation Study Conclusions 

This section summarizes the ELCC of the wind and solar resources in each of the scenarios.  

Figure 1-21 presents ELCC of different wind/solar resources in all scenarios. 
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Figure 1-21: ELCC of Different Wind/Solar Resources in All Scenarios 

 

Major findings and lessons learned are summarized below: 

• ELCC overcomes the limitations of measuring the capacity value of a resource under 

saturation, i.e., under conditions when the installed capacity of a resource is high 

enough to drive the system LOLE close to zero days/year. 

• Modified ELCC methodology (referred to as Method 3) is recommended in this study.  

This methodology helps estimate stable capacity values of a resource (and reduce 

the variation from one year to another) in absence of many years of load and 

resource data. The comparison is shown in Figure 1-16. This method should be used 

for some years until actual wind and solar data is available. 

• The capacity factor of a resource under peak load conditions drives the ELCC value of 

the resource. The initial increase in ELCC from 2% BAU scenario to higher penetration 

scenarios is because of the inclusion of best sites, which have higher capacity factors.  

• ELCC of some resources decreases as the installed capacity increases. As an 

example, the ELCC value of Central PV decreases from 75% in BAU to 62% in “High 

Solar” scenario. This occurs because at higher penetration levels the resource may 

saturate the system and hence the incremental value of serving an additional MW of 

load will decrease. ELCC of some resources, such as Off-shore Wind, increases in the 

high penetration scenario. This occurs due to inclusion of sites that have higher 

capacity value (or higher capacity factor during the peak load periods).  

Table 1-6 compares the range of ELCC values to those determined using the PJM Manual 21 

methodology.  These values can be compared since they were based on the same hourly 

generation profiles.  ELCC values vary as the resource penetration levels change and 

therefore a range is provided for each resource type. The ELCC values for each resource in 

other scenarios are shown in Figure 1-21.  The comparison to PJM methodology can be 

made based on the results provided in Section 1.11. The modeling assumptions are listed in 

Section 1.3.1. As a reference, in the “New England Wind Integration Study,” the average 

capacity value of on-shore wind in the “20% Best Sites Onshore Scenario” was 20%; while 
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the average capacity value of off-shore wind in the “20% Best Sites Offshore Scenario” was 

32%. Please note that “20% Best Sites Onshore Scenario” had 8% off-shore wind by installed 

capacity, and the “20% Best Sites Offshore Scenario” had 58% off-shore wind by installed 

capacity.  

 

Table 1-6: Range of Effective Load Carrying Capability (ELCC) for Wind and Solar Resources in 20% and 

30% Scenarios 

Resource ELCC (%) 

PJM Manual 21 
(Summer Peak 
Hour Average 

Capacity Factor) 

Residential PV 57% - 58% 51% 
Commercial PV 55% - 56% 49% 

Central PV 62% - 66% 62% - 63% 
Off-shore Wind 21% - 29% 31% - 34% 
Onshore Wind 14% - 18% 24% - 26% 

 

These values are larger than the current class averages of 13% for wind and 38% for solar 

which were based on actual historical values.  This is because the profiles were developed at 

optimum sites using the most current power conversion technologies.  It was felt that these 

would provide a better estimate of the likely capacity values of the renewable plants in the 

future.  Individual plants will continue to have their capacity values based on their actual 

performance and it is expected that the plants with newer technology will have higher 

values than existing ones. 

 

1.11 Average Capacity Factors of Wind and Solar during Summer 

Peak Period 

The following tables show the average capacity factor of wind and solar resources (as 

described in Section 10.3) in the peak summer period of 2004 to 2006.  PJM Manual 21 uses 

the average capacity factors during the summer peak period of the last three years as the 

capacity credit value of that intermittent energy resource.  
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Table 1-7: Average Capacity Factor of Wind & Solar Resources in the Peak Summer Period of 2004 – 2006 
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It should be pointed out that the wind profiles used in this study assumed advanced turbine 

design expected to be available in the future, and therefore, the values reported here would 

be slightly higher than what has been historically observed in PJM. 
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