

Phase 1 Analysis Education

Fuel Security Senior Task Force April 5, 2019

www.pjm.com PJM©2019

Context for Fuel Security Study

Approach & Assumptions

Results & Conclusions

www.pjm.com 2 PJM©2019

A Common Understanding of Resilience

FERC's Proposed Definition: The ability to withstand and reduce the magnitude and/or duration of disruptive events, which includes the capability to anticipate, absorb, adapt to, and/or rapidly recover from such an event.

PJM's Working Definition: The ability to withstand or quickly recover from events that pose operational risks.

Prepare + Operate + Recover

Reliability: Delivering electricity consistently and uninterrupted

Resilience: Grid survivability during extreme events, even if that means outages

- Define fuel security
 considering risks in fuel
 delivery to critical generators
- Reaffirm the value of markets to achieving a costeffective, fuel-secure fleet of resources
- 3. Identify fuel security risks with a primary focus on resilience
- 4. Establish criteria to value fuel security in PJM markets

- Phase 1: Analysis
 Identify potential system
 vulnerabilities and develop
 criteria to address them
- Phase 2: Modeling
 Model incorporation of
 vulnerabilities into PJM's markets
 or operations construct
- Phase 3: Ongoing Coordination
 Address specific security
 concerns identified by federal and
 state agencies

May–November 2018
Phase 1 Analysis

2019/2020

Phase 2: Completion of key work activities #1-4 and expected deliverable #1 by end of 3Q19

May 2018–December 2019
Phase 3 ongoing coordination

Context for Fuel Security Study

Approach & Assumptions

Results & Conclusions

www.pjm.com 5 PJM©2019

Understanding the Study

Approach Overview

Study Cases

Deterministic Analysis

Outcomes

Evaluation of current capabilities of resources to mitigate fuel delivery infrastructure risk

Inform development of "fuel secure" definition

Locational/regional fuel secure MW methodology to mitigate risks, if needed

Dispatch simulation for study case duration

Detailed transmission analysis for selected peak hours

hours

External Coordination & Outreach Update

Outreach	Information Collected	Study Impact		
Stakeholder Feedback	Written comments submitted directly to PJM and additional comments offered during stakeholder meetings	Development of approach and assumptions		
PJM Generation Owner Surveys	Unit-specific information and statistics	Baseline data and unit-specific study inputs		
Direct Generation Owner Conversations	Detailed information about oil refueling operations	On-site oil inventories and oil refueling assumptions		
Natural Gas Pipelines & Industry Groups	Operating information and reliability details	Study scenario development and natural gas supply assumptions/disruptions		
Renewable Industry Groups	Operating information and disruption details	Study scenario development and dispatch		
DR Representative & Industry Groups	Operational information and expected customer response	Baseline data and unit-specific study inputs		
Coal Industry Groups	Supply chain and transportation logistics information	Study scenario development and refueling assumptions		
Nuclear Industry Groups	Operational information and logistics	Baseline data and unit-specific study inputs		
Regulators	Discussions held with NERC, ReliabilityFirst	Feedback on study assumptions and overall approach		
Independent Market Monitor (IMM)	Discussion on study assumptions and overall approach	Review of forward-looking economic profit and loss analysis as part of escalated retirement scenarios		
Other RTO/ISOs	Discussions held with neighboring RTO/ISOs regarding similar initiatives to analyze fuel security	Detailed review of study assumptions and approach		
Department of Energy	Information on physical/cyber threat actors and capabilities to impact gas pipelines. PJM will work with DOE to determine level of information sharing with PJM stakeholders (and define risk scenarios).	Phase 3 Input: Disruption events for extreme cyber and physical threats PJM will work with gas pipelines to assess impacts.		

Key Model Assumption Ranges

Assumptions

Si		Weather Scenario					
2	023/2024				14 days		
		Lo	ad				
Peak Load	Typical: 50/50	Typical: 50/50 – 1 in 2 years; (134,976 MW peak)			Extreme: 95/5 – 1 in 20 years; (147,721 MW peak)		
Load Profile	Typical: 2011/2	Typical: 2011/2012 winter			Extreme: 2017/2018 winter		
Dispatch							
Dispatch	Typical: Econo	Typical: Economic			Extreme: Economic; optional maximum emergency if extreme cases present operational issues		
Retirements							
announced by Oct. 1, 2018, and new 32,216 MW by			ration retirements, with 16,788 Maneet the installed (15.8%)	MW of	Escalated 2: Generation retirements of 15,618 MW by 2023 with no capacity replacement		
Escalated 1 Replacement Capacity Approach							

Escalated 1 Replacement Capacity Approach

- Replacement resources reflective of PJM interconnection queue and commercial probability
- Replacement combined cycle natural gas resources modeled as firm supply and transport
- Replacement combustion turbine natural gas resources modeled as dual-fuel with interruptible gas

Natural Gas

Non-Firm Gas Availability	Typical and Extreme: 62.5% and 0%				
Pipeline Disruption	Medium Impact: Days 1–5: 50%–100% disruption; days 6-14: 100% output (0% derate)	High Impact: Days 1–5: 100% disruption; days 6–14: 20% derate			

Assumptions (cont.)

			Fuel Oil				
Initial Oil Inventory Level		85%					
Oil Refueling (>100 MW site)	2 7 FeV (4 Line 1900) 1 10 Line	te: 40 trucks daily refueling rate, at maximum tank capacity		Limited: 10 trucks daily refueling rate, capped at maximum tank capacity			
Oil Refueling (<100 MW site)	DOMESTIC AND STREET AND STREET	e: 10 trucks daily refuel t maximum tank capac	100 minutes (10 minutes)	Limited: 0 trucks daily refueling rate, capped at maximum tank capacity			
		Expected Fo	orced Outage R	ates			
5-Year Average: Historic 5-year average, discounting gas and oil fuel supply outages			Modeled: Regression model of expected outage rates, discounting gas and oil fuel supply outages				
		Transmi	ssion Modeling				
Announced Retirements: Transmission constraints that are greater than or equal to 230 kV			Escalated Retirements: Individual transmission constraints were not modeled; transfers into eastern PJM were limited based on CETO with a 15% transfer margin adder				
Scheduled Interchange		Total interchange wit	with neighboring systems limited to +/-2,700 MW				
Demand Response 7,092 MW modeled			locationally based on MW cleared by zone and nodal modeling				
Renewable Modeling 2017/2018 cold snap profile							
Distributed Energy Resources and Explicitly accounted Energy Efficiency			d for in the load forecast				
Fuel Prices 2023/2024 f			s prices adjusted by day-to-day fluctuations in price (volatility)				

Winter Load Assumptions

www.pjm.com PJM©2019

Winter Load Forecast

Typical Winter Load (50/50)

- Peak = 134,976 MW
 Winter 2023/24 forecast
- Average 50/50 winter hourly load shape from 2011/12

Extreme Winter Load (95/5)

Peak = 147,721 MW
 Median of three historical cold snaps in last 45 years

1989 peak 95th percentile

1994 peak 99th percentile

2017/18 peak 82nd percentile

2017/18 winter hourly load shape

Winter Load in 14-Day Periods

Portfolio Assumptions

www.pjm.com PJM©2019

Portfolios Analyzed

Methodology, Escalated Retirement 1

Retirement

2021 Market Efficiency Planning Model

Net Energy Revenue

2021/2022 Capacity Auction

Capacity Revenue

Avoidable Cost Rate

(Fixed costs)

Forecasted
Profit & Loss

Replacement

for 2023
Delivery Year

Facility Service
Agreement Units
Commercial
Probability

15.8% IRM

Escalated Retirement 1 Portfolio

Methodology, Escalated Retirement 2

Retirement

2021 Market Efficiency Planning Model

Net Energy Revenue

2021/2022 Capacity Auction

Capacity Revenue

Avoidable Cost Rate

(Fixed costs)

Forecasted Profit & Loss

15.8% IRM

Escalated Retirement 2 Portfolio

Operational Assumptions

www.pjm.com PJM©2019

Natural Gas Generator Fuel Delivery Characteristics

Taking into account the existing and planned generation in interconnection queue with interconnection service agreements and known gas delivery characteristics: approximately 87,000 MW

www.pjm.com 22 PJM©2019

Fuel Trends for Recently Commercial and Queue Natural Gas Generators since 2017

Modeled Natural Gas Supply Attributes

Non-Firm Natural Gas Availability

Pipeline Disruptions: Impact & Duration

		Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8	Day 9	Day 10	Day 11	Day 12	Day 13	Day 14
Extreme Winter	Medium IMPACT		50% o apaci								m cap ⁄ailab	acity le			
Typical and E	High	1	00% re	firm c educti		ity			2		irm ca uction	apacit n**	у		

^{*} Firm capacity reduction level depends on pipeline design redundancy.

www.pjm.com 26 PJM©2019

^{** 20%} of capacity remains unavailable due to assumed PHMSA (Pipeline Hazardous Material and Safety Administration) requirements.

Pipeline Disruptions: Impacted Generation

Pipeline Disruption	Gas-Only G	eneration	(MW)	Dual-Fuel Generation (MW)			Total (MW)
	Non-Firm	Firm	Total	Non-Firm	Firm	Total	(,
Looped 1	2,690	3,094	5,784	7,828	103	7,931	13,715
Looped 2		3,015	4,483	2,720	1,380	4,100	8,583
Replacement Generation		+ 435	+ 435	+ 225			+ 660
(Escalated 1 Portfolio)	1,468	3,450	4,918	1,468	3,450	4,325	9,243
Single 1		1,821	3,004	470	803		4,277
Replacement Generation		+ 774	+ 774		+ 774		+ 774
(Escalated 1 Portfolio)	1,183	2,595	3,778	1,183	2,595	1,273	5,051
Single 2	330	750	1,080	1,872	1,769	3,641	4,721

www.pjm.com 27 PJM©2019

Generator connected to a single pipeline segment

Generator connected to a **looped** pipeline segment

Onsite Fuel Replenishment

Refueling BTUs Delivered

Onsite BTU Inventory

Generation BTUs Consumed

MWs Generated

Study refueling based on transportation method and maximum on-site inventory

• **Transportation** assumed limiting factor rather than fuel.

Starting Coal Inventory – unit-specific seasonal inventory target

Starting Oil Inventory – 85 percent of max tank capacity

Oil refueling sensitivities run modeling a range of 10 to 40 truck deliveries per day for sites > 100 MW and 0 to 10 trucks per day for sites < 100 MW to determine the magnitude of impact refueling has.

On-Site Oil Inventories

www.pjm.com 30 PJM©2019

On-Site Coal Inventories

PJM eDART Generation Survey Data

Demand Response

Estimated Capacity Performance
Demand Response (CP DR)= 7,092 MW
for 2023/24

CP DR amount cleared in the 2021/22 Base Residual Auction

Fixed Resource Requirement (FRR)

- CP DR is reduced by three-year average 32 percent replacement rate.
- CP DR will be used for both Base Case and Extreme Weather Case.
- DR will be modeled in the simulation prior to a load shed event consistent with existing procedures.

Forced Outage Rates

Typi	cal	Ext	reme
	-		

Coal	8.45	11.77
Gas Combined Cycle*	5.68	16.91
Gas CT*	5.73	9.13
Gas Steam*	10.14	15.24
Hydro	13.06	11.76
Nuclear	1.38	2.38
Oil CT*	15.24	11.95
Oil Steam*	13.70	12.14
Biomass/Landfill Gas/Wood	10.83	18.28

ASSUMPTIONS

Expected Forced Outages

Five-Year Average:

Historic five-year average, discounting gas and oil fuel supply outages

Modeled: Regression model of expected outage rates, discounting gas and oil fuel supply outages

^{*} Calculations exclude forced outages with "Fuel Supply" NERC GADS cause code

Forced Outage Rate Regression Model Methodology

Category	Key Variables	Correlation
Unit Characteristic	Age	√
Weather	Wind Adj. Temp.	
vveatner	Persistent Cold Weather	✓
Utilization	Run hours	_
Utilization	Basepoint Volatility	✓

- Goal % generator forced outage rate
- Using Jan. 2014 through 2018 data

Estimated Forced Outages Rates vs. Actual Forced Outage Rates

Transmission Modeling in Escalated Retirement Scenarios

www.pjm.com 36 PJM©2019

Scenarios Analyzed

Context for Fuel Security Study

Approach & Assumptions

Results & Conclusions

www.pjm.com 38 PJM©2019

Announced Retirements Analysis Results

www.pjm.com PJM©2019

Emergency Procedures Summary Announced Retirement Models

Announced Retirements Scenario Model: Example

System Overview

140,000

Announced Retirements Scenario Example A

forecasts of actual prices.

Load:ExtremeRefueling:LimitedDisruption:Looped 2 HighNon-Firm Avail:0%Retirement:AnnouncedDispatch:Economic

Oil Inventory | Sites Out of Oil

Announced Retirements Scenario Example B

Hourly Zonal Average LMP [\$]

*141 Total Sites

Day of Event

*141 Total Sites

Oil Inventory | Dispatch Comparison

Day of Event

Escalated Retirements Analysis Results

www.pjm.com PJM©2019

Emergency Procedures Summary

Escalated Retirement Models

Emergency Procedures Summary Escalated Retirement Models

www.pjm.com 48 PJM©2019

Emergency Procedures Summary Escalated Retirement Models

Moderate Refueling

Limited Refueling

Emergency Procedures Summary Escalated Retirement Models

Escalated Retirements 1 Scenario Example C

Price (\$)

Load: Typical
Refueling: Limited
Disruption: Looped 2 High

Non-Firm Avail: 0%

Retirement: Escalated 1 (32 GW)

Dispatch: Economic

Escalated Retirements 1 Scenario Example D

Retirement: Escalated 1 (32 GW)

Dispatch: Economic

Escalated Retirements 1 Scenario Example E

Load: Extreme
Refueling: Limited
Disruption: Looped 2 High
Non-Firm Avail: 0%

Patierment: Exceleted 1 (22 CW)

Retirement: Escalated 1 (32 GW) **Dispatch:** Economic

Hours of Manual Load Shed Locational and Multiple Area

Extreme (95/5) Load

Moderate Refueling

Limited Refueling

GWh of Manual Load Shed Locational and Multiple Area

Extreme (95/5) Load

Moderate Refueling

Limited Refueling

Escalated Retirements 1 Scenario Example E

Manual Load Shed (MW, Thousands)

Conclusions

There is NO immediate threat to the reliability of the PJM RTO.

- PJM is reliable in the announced retirements and escalated retirements cases under all typical winter load scenarios.
- PJM is reliable in the announced retirements cases under all extreme winter load scenarios.

- Scenarios to identify points at which an assumption or combination of assumptions begin to impact the ability to reliably serve customers.
- The stressed scenarios resulted in a loss of load under extreme but plausible conditions.

Contributing factors:

- The level of retirements and replacements
- The level of non-firm gas availability
- The ability to replenish oil supplies
- The location, magnitude and duration of pipeline disruption
- Pipeline configuration

Appendix

www.pjm.com PJM©2019

PJM Areas and Transmission Zones

Emergency Procedures

Normal Operations	No Emergency Procedures Normal economic dispatch
Demand Response Deployed	Pre-Emergency Action Demand response deployment
Reserve Shortage	Emergency Warning An operational reserve shortage is triggered when 10-minute Synchronized Reserves are less than the largest generator in PJM. Depending on system conditions, a reserve shortage will trigger additional emergency procedures such as voltage reduction warnings and manual load shed warnings.
Voltage Reduction	Emergency Action Voltage reduction action enables load reductions by reducing voltages at the distribution level. PJM estimates a 1-2% load reduction resulting from a 5% load reduction in transmission zones capable of performing a voltage reduction.
Load Shed	Emergency Action Manual load shed action enables zonal or system-wide load shed. This is the last step of all emergency procedure actions.