

AEP Needs Identification and Project Selection Overview

Presentation to PJM Transmission Replacement Processes Senior Task Force

June 20, 2016 Audubon, PA

Prepared by Ryan Dolan, PE

Presented by **Kamran Ali, PE,** Director, East Transmission Planning **Jeffrey A. Fleeman, PE,** Director, Advanced Trans. Studies & Technologies *American Electric Power*

Introduction to AEP Transmission

□ AEP is among the largest electric utilities in the United States

- More than 5 million customers
- 200,000 + sq. mi service territory
- 32 GW of generating capacity
- Over 40,000 miles of electric transmission lines
- More than 3500 substations
- 215,000 miles of electric distribution lines

Largest owner of electric transmission in the United States

- Own, operate or are developing facilities in 4 RTO s
- Operate through several transmission companies
- Significant transmission provider, supplying:
 - ~10% of demand in Eastern Interconnection
 - ~11% of demand in ERCOT (Texas)
- HVDC, every AC kV class including 2100-mi 765 kV
- 13 states (AR, IN, KS, KY, LA, MI, MO, OH, OK, TN, TX, VA, WV)
- <u>110+ year history</u> of low-cost, reliable transmission
- At the forefront of transmission technology development

Transmission Project Drivers

TO Project Development

Externally Driven TO Projects

- Satisfy customer requirements
- Interconnect new generators
- Meet regulatory requirements
- Comply with NERC/industry standards
- Fulfill relocation & contract commitments

Internally Identified TO Projects

- Address safety and ratings risks
- Improve local reliability performance
- Modernize obsolete or degraded facilities
- Monitor and mitigate system/asset risks
 - SCADA, PMUs and operator awareness
 - Asset health monitoring and analytics
 - Data and telecommunications improvements
 - Improve grid resilience/mitigate risks
 - Natural events, severe weather, GMD, etc.
 - Human threats physical/cyber, EMP, etc.

Internally Identified Needs

What's Discretionary?

- Customer or generator connections? NO
- Meeting regulatory or NERC requirements? NO
- □ Fulfilling relocation & contract commitments? NO
- Addressing safety and other public risks? NO
- Improving local reliability performance? NO
- Modernizing obsolete or degraded facilities ? NO
- Proactive programs for system/asset awareness? NO
 - Must support decisions in vastly more complex operations
 - Optimize maintenance & prioritize replacement of assets
 - Strategic, organized mitigation vs. chaotic, unplanned reaction
- Improve resilience/mitigate natural & human threats? NO
 - Customer experience and public expectations demand it
 - Prioritized resiliency framework to address impacts/risks

AEP Approach

- Integrate needs into multi-value planned projects
- □ These are *fundamental* to a TO's obligation to serve

Needs Assessment – Asset Renewal

Develop Mitigating Solutions

Examples

Condition Assessment

Physical Characteristics

- Common characteristics
 - Age of asset
 - Age or obsolescence of subcomponents
 - Material content/specs
 - Design features (at manufacture)
 - AEP specs, Industry standards
 - Known defects or obsolescence
 - Insulation coordination, phase clearances
- Asset specific characteristics
 - T-Line specific characteristics
 - Ground Resistance
 - Structure type, height, etc.
 - Shielding features, etc.
 - Substation specific characteristics
 - Bus configuration & switching
 - Structures, control house, flood levels
 - SCADA need criticality

Condition Assessment

- General
 - Visual inspection results
 - Test results
 - Abnormal conditions (operational impact)
- Line-specific
 - Open conditions reported
 - Number High Risk Conditions
 - Number Medium Risk Conditions
 - Number Low Risk Conditions
- Substation-specific
 - Asset Health Data (includes risk analysis)
 - Transformers
 - Circuit Breakers
 - Batteries
 - Relay obsolescence & mis-operation risk
 - Historical performance (excl. XFMR, CB)
 - Balance of plant condition

Apply Weighted Scoring to Features & Conditions

Performance Metrics & Root Cause

IMPACT ON SYSTEM METRIC (Example)

- Performance: Calculate 3-yr Transmission Metrics
 - System Metrics: T-SAIDI, T-SAIFI, T-MAIFI, T-SAIFI-Sustained
 - Customer Metrics: IEEE SAIDI, SAIFI, CAIDI
 - Assemble historical **System Load Peaks**
 - Identify System Level customers served

Outage Root Cause Review

Review all outages to determine root cause

Score and Prioritize

- Tally outage durations and frequencies
- Score assets for frequency & duration
 - Applied specifically to lines
 - Applied indirectly (by class) for substation
 - Based on its corresponding cause code
 - 2X weighting for outage frequency > 50%
 - 1X weighting got outage duration >50%
- Apply threshold score for all lines
- Filter and prioritize needs

Prioritization Process

Prioritization Process – Rank Each Asset's Contribution to:

- **System Performance** Metrics
- Customer Impact Metrics
- Load Served v. historical system peak load
- □ Number of Customers served v. total customers
- Assign weighting factors and sum all scores for each asset
- Prioritize assets (e.g., among lines) from highest to lowest

Asset Health Center (AHC) - Overview

Purpose of the Asset Health Center (AHC)

- Prevent failures (substation focused to date)
- Optimize maintenance effectiveness
- Support asset renewal prioritization
- AEP's aging assets need increasing attention
 - 33% of transformers > 50yrs; 18% > 60yrs old
 - 33% of T-Line > 70yrs; 49% > 50yrs, 72% > 40 yrs old
 - Aging assets drive increasing outages, cost
- AHC: Timely & Transformational technology
 - Automates condition analysis to support action plans
 - Determine health index, remaining life, prioritize risk
- Implementation
 - Identified major substation asset condition baseline
 - Completed platform 12/2015
 - Includes transformers, breakers, select batteries
 - Monitors standard on new EHV equipment
 - Retrofit monitors being rolled out in stages
 - Evaluates & documents replacement need priority

Multi-Dimensional Solutions

- □ Amos Kanawha River 138 kV line
- □ 42-mile corridor, built in 1928
- □ 85 yrs service, significant load growth
- Identified as constraint when Kanawha River generation retired in 2012
- □ What is the most cost-effective solution?

- □ One-dimensional mitigations may include a new parallel 138 kV line requiring fewer outages, and simpler construction or the introduction of a new 345 kV source near Kanawha River
- □ Multi-dimensional mitigation seeks the most cost effective solution to not only address the identified probabilistic transmission constraint, but also the realistic condition of the asset
- □ AEP proposed to rebuild the line based on its prioritization methodology

Moorepark – Schoolcraft 69kV

Ranking Value: 19.95	(#1)
3 Yr-SAIDI: 26.75	

TOR ID	Circuit	Voltage	Length	ОРСО	State	Shielding Length	Shielding (%)	Ground Resistance	Structure Height
1802	Moorepark - Schoolcraft	69000	13.11	IMCO	Michigan	13.04	99.617%	No Data	61.7

Severity	Component	Condition	Condition Count
A2	Crossarm	Split	1
A2	Ground Lead Wire	Broken	2
A2	Ground Lead Wire	Stolen	1
A2	Insulator	Broken	1
A2	Insulator	Burnt	4
A2	Insulator - HP	Broken	1
A2	Insulator - HP	Burnt	4
A2	Knee / Vee Brace	Insect Damage	2
A2	Pole	Burnt	1
A2	Pole	Leaning Transverse	1
A3	Ground Lead Wire	Broken	3
A3	Ground Lead Wire	Stolen	2
A3	Guy Wire	Broken	1
A3	Insulator	Broken	1
A3	Insulator	Chipped	1
A3	Insulator - HP	Broken	2
A3	Insulator - HP	Burnt	1

Length	Year	Str Count	Material
0.13	2009	2	Wood
0.15	1997	5	Wood
0.18	1990	2	Wood
0.21	1969	5	Wood
0.44	1956	6	Wood
1.42	1951	26	Wood
4.57	1972	62	Wood
5.99	1951	102	Wood
0.02	1995	1	Wood

College Corner – Delaware 138kV

Length	Year	Str Count	Material
0.01	1970	1	Lattice
0.05	1952	1	Lattice
0.09	1941	1	Steel
0.11	1941	1	Steel
0.12	1941	1	Wood
0.20	1973	1	Lattice
0.65	1941	4	Lattice
54.31	1941	307	Lattice

Severity	Component	Condition	Conditio Count
A1	Conductor	Broken Strands	1
A1	Conductor	Damaged	1
A1	Shield Wire	Broken Strands	1
A2	Body	Vines	1
A2	Conductor	Broken Strands	2
A2	Conductor	Failed	8
A2	Conductor Hdw	Broken	52
A2	Conductor Hdw	Broken Strands	1
A2	Conductor Hdw	Loose	12
A2	Conductor Hdw	Missing Bolt	19
A2	Conductor Hdw	Missing Cotter Key	8
A2	Conductor Hdw	Rust Heavy	2
A2	Conductor Hdw	Worn	4
A2	Crossing Marker	Missing	5
A2	Insulator	Broken	1
A2	Insulator	Burnt	5
A2	Insulator	Chipped	1
A2	Insulator	Loose	1
A2	Insulator	Rust Heavy	10
A2	Insulator Assembly Hdw	Rust Heavy	5
A2	Insulator Assembly Hdw	Worn	2
A2	Knee / Vee Brace	Broken	1
A2	Leg	Vines	21
A2	Shield Wire Hdw	Loose	4
A3	Conductor Hdw	Broken	1
A3	Shield Wire Hdw	Broken	5
A3	Shield Wire Hdw	Loose	3

TOR ID	Circuit	Voltage	Length	ΟΡϹΟ	State	Shielding Length	Shielding (%)	Ground Resistance	Structure Height
604	College Corner - Delaware	138000	56.27	ІМСО	Indiana	56.35	99.858%	No Data	55

Ranking Value: 9.93 (#17) 3 Yr-SAIDI: 0.0

Length	STANDARD	Structure Count
0.45		4
48.16	8-A	268
2.14	8-B	12
3.46	8-C	21
0.87	8-D	8
0.09	R6S1	1
0.02	Switch	3
0.20	T3E1	1

East Lima – (Ford) - Rockhill 138kV

Ranking Value: 0.0 3 Yr-SAIDI: 0.0

East Lima – Rockhill, East Lima – Ford – Rockhill 138kV N-1 Loss of SW Lima – West Lima 138kV

Marcellus-Valley 34.5 kV Ckt

- Age and condition
 - Average age ~ 1975
 - ACSR conductor core nearly gone
- SAIDI
 - 4.53 (3-year average)
- Recoverability
 - ~13 MVA load served radially
 - 34.5 kV is not recoverable
- Low Voltages
 - At Nicholsville and Marcellus stations
 - < 0.92 PU under N-1 conditions</p>
 - Loss of Valley 138/69-34.5 kV XFMR

- Proposed Solution Overview
 - Establish new Stinger 138/12 kV station
 - Replace Nicholsville & Marcellus 34.5 stations
 - Establish Brody station to replace Midwest REA's Marcellus 34.5/12 kV station
 - Extend 138 kV line to Brody & Stinger stations