

PJM Market Efficiency Long Term Window Overview

September 2, 2016

PJM©2016 www.pjm.com

Agenda

- Overall Objectives
- PJM Market Efficiency Roadmap
- PJM Market Efficiency Objectives & Model
- Market Efficiency Cycle
- Market Efficiency Work Flow
- Market Efficiency Process
- Future Discussion Topics
- Appendix Numerical Example & References

Overall Objective

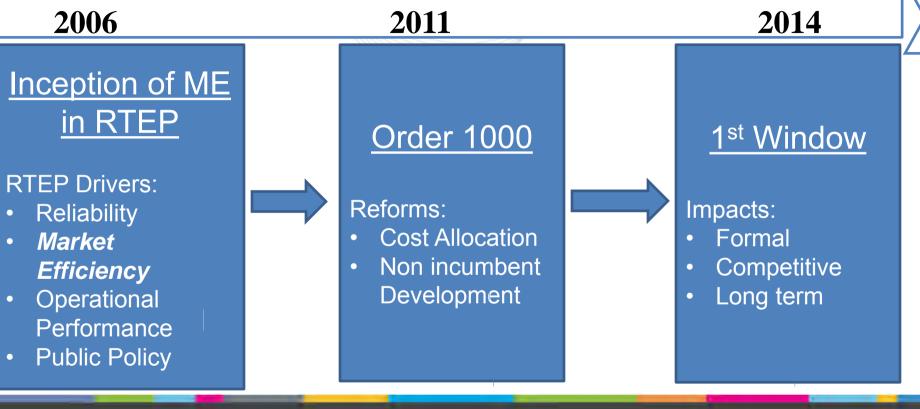
P.IM©2016

www.pjm.com

- .∄ ∕pjm
 - Discuss PJM's Market Efficiency Construct
 - Concepts
 - General Process for the long term window

Discuss future education topics

.⊅ pjm

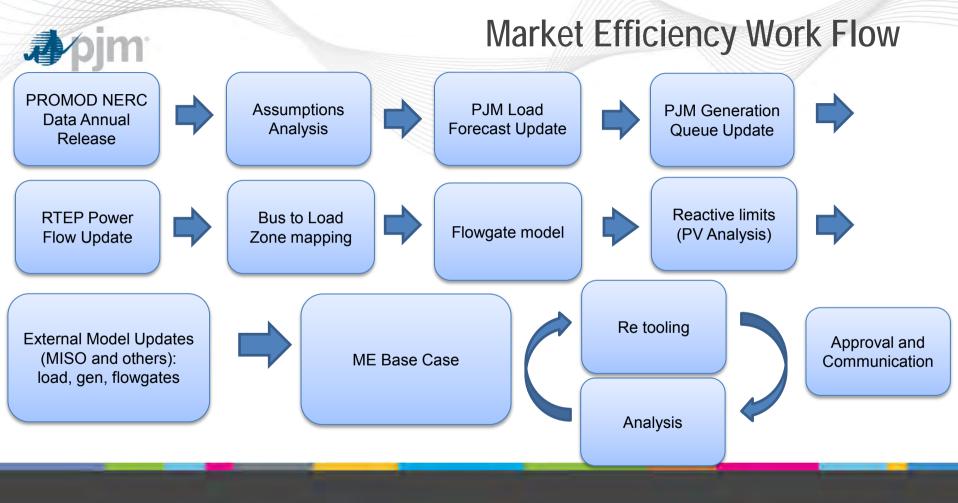

Market Efficiency Goals and Model

PJM©2016 www.pjm.com

- Goals
 - Assess future energy and capacity market congestion
 - Solicit and approve projects to relieve congestion
 - Strategic multi driver project development
 - Address both reliability and congestion
 - Accelerate beneficial reliability projects
- PJM Model
 - Sponsorship model

Market Efficiency Road Map

Market Efficiency Cycle Timeline


Year 0									Year 1													
n Fe	b Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
			Dava		oumoti	ons (Y1	VEL															
			Deve	iop As	sumpu	0115 (11	, (5)															
			1			Mark	et Effic	iency /	Analysis	(Y1, Y5)									-		
						(Acc	eleratio	ns and	Modific	ations)										12	-month	cycle
					-				Identi	fy and ev		Colutio	un Onti		alarati		Alladi	Feations				
					-				Identi	iy and e	aluate	Solutio	on Optio	ons (A	cieratio	ons and	a woon	lications	2			
										Fi	nal Re	view wi	th TEA	C and	approva	l by Bo	ard					
	1.1								MARY										1	_		
			Deve	lop As	sumpti	ons (Y1	, Y5, Y	8, 111	, Y15)						-							
						Mark	et Effic	iency (Criteria /	Analysis	(Y1, Y	15, Y8,	Y11, Y	15)								
			-		1															-		-
	_						-		Mark	et Efficie	ncy Ar	nalysis	(Y1, Y8	5, Y8, '	Y11, Y1	5)	-			2	4-mont	h cycle
							-		1				Ident	ify pro	posed s	olution	s			1		
														1.1.1								
_	-								_						Upda	ite sigr	ificant	assum	otions	(Y0, Y	4, Y7, '	Y10, Y14
	Ana	lysis of	market	t soluti	ions an	d supp	ort of be	enefits	of reliab	ility solu	tions (Y0 Y4	YT Y	10 Y1	4)					-	-	-
				- oolaa	ionio un	a capp		Sillonico		inty oold												
	_						-	- 1	ndepen	dent Cor	sultan	t review	rs of bu	ildabili	ty	1	÷.					
-	_						-		-	djustme	nts to	solution	ontion	ne hv F	Mon	analysi						
									-	ujustine		3010100	i optioi	13 Uy I	UNI UNI	anarys	1			-		
											-				Deve	lop As	sumpti	ons (Y1	Y5)			
										Market	 Efficie	ency Ar	alveis	N1 Y	5)					1	2-mont	h cycle
												ons and									2 mont	il oyolo
												_					-			_		
							Ident	ify and	evaluat	e Solutio	n Opti	ons (Ad	cleration	ons an	d Modifi	cations	5)					
														Fin	al Revie	w with	TEAC	and app	proval b	v Boar	d	

- 12 month
 - Acceleration
 - 24 month Cycle
 - Input assumptions
 - Base case development
 - Develop target congestion
 - Proposal submission
 - Evaluation
 - Approval



Market Efficiency Statistics

Cycle	Proposed Projects	Analyzed Projects	Approved Projects
Prior to 14/15	25 projects (2010, 2011) 17 projects (2012) 17 projects (2013)	25+ projects (with combinations)17 projects(2012)17 projects (2013)	2010, 2011 – 1 project approved 2012 - No project approved 2013 – 1 project approved
2014/15 Window	93 projects	110+ projects (with combinations) 2400+ PROMOD runs, 50,000+ runtime hrs.	14 projects

Market Efficiency Analytical Software

Market Efficiency Inputs – Overview Base Case Inputs

PROMOD SCE	D Simulation		Interregional Inputs		Reporting Inputs
Generation Expansion Plan (ISA/FSA)	Demand Response Forecast		MISO and NY Updates: GenExp, load forecast, wind		RTO Weighted Average Cost of Capital
Intermittent resource hourly shapes	apes(As-Is, RTEP)orecast: bal, Oil-H,Topology Mapping: Bus- Area, BusLoad-Demand, Gen-Bus (As-Is, RTEP)Forecast: , RGGI), bx nnual)Reactive Interface PV AnalysisIst: Annual Energy,Monitored lines and contingencies, interfaces		profiles, major upgrades, flowgates, transactions with SPP/MRO, imports Canada		RTO Fixed Carrying Charge Rate
Fuel Price Forecast: Natural Gas,Coal, Oil-H, Oil-L					ARR Source Sink Paths and Cleared MW
Emissions Price Forecast: CO2 (National, RGGI), SO2, Nox (seasonal,annual)			Pool Interaction Modeling: M2M flowgates, pseudo-ties, DC schedules, hurdle rates,		Project Cost and ISD
Demand Forecast: Annual Peak Load and Energy, Hourly shapes			import/export limits, inactive pools		

Market Efficiency – PJM Inputs

- Generation Modeling
- Load Forecast
- Fuel
- Emissions
- Transmission Topology
- Thermal and Reactive Flowgates

Market Efficiency Inputs – PJM Generation Modeling

- Forecasted generation includes
 - In-service generation
 - Active queue generation with Interconnection Service (ISA) and Facility Service (FSA) agreements
 - Expected future deactivations
- Modeled inputs:
 - Operational: summer/winter capacity, heat rate, min runtime/downtime, must run status, emission rates
 - Cost: startup cost, variable O&M, curtailment price

Market Efficiency Inputs – PJM Load Forecast

- PJM Load Forecast Report
 - Peak Load and Annual Energy adjusted by Energy Efficiency cleared in RPM Auction
 - Load forecast mapped to PROMOD Areas
- ABB synthetic demand shapes
 - Based on the average of several years of load shapes
 - Hourly load shapes merged to match PJM load zones
- Demand Response
 - Modeled as discrete units
 - Amount based on the level cleared in the RPM BRA auction

Market Efficiency Inputs – PJM Fuel Forecast

- Forecast prices developed by the ABB fuels group
 - Gas and Oil
 - Prices derived from NYMEX and the EIA Annual Energy Forecast.
 - ABB's coal forecasting model:
 - Mining costs, emission price forecasts, transportation routes and pricing, coal quality
- PJM checks
 - Fuel to Unit mapping
 - Primary and Start-up fuel mapping

Market Efficiency Inputs - Emissions Forecast

- Emissions prices developed by ABB
 - Three major effluents modeled: SO2, NOx, and CO2.
 - Effluents (by trading program) assigned to generators based on location and release rates
 - Sources:
 - EPA CEMS data.
 - ABB's proprietary Emission Forecast Model (EFM).
- PJM checks
 - Consistency with expected emissions legislation affecting PJM Generators
 - Mapping of generating units to emissions price
 - Validate installation of emissions reduction equipment and removal rates for generating units (if necessary)

øpjm

Market Efficiency Inputs - Transmission Topology

- Same topology used for all study years
- RTEP system topology
 - All approved baseline upgrades
 - All FSA network and direct interconnection upgrades
- External world topology
 - Derived from Eastern Interconnection Reliability Assessment Group (ERAG) Multi-Regional Modeling Working Group (MMWG) Series

P.IM©2016

Market Efficiency Inputs - Flowgates

• Thermal Flowgates

- Historical market constraints
- NERC Book of Flow-gates
- Removed constraints with very low likelihood of binding in any future year simulation
- Added constraints with increasing likelihood of binding

Transmission Ratings Modeling

- Summer 95 degree day-time rating for Normal and Long-term Emergency
- Winter 32 degree day-time rating for Normal and Long-term Emergency

Reactive Limits

- PV Analysis to develop summer and winter MW transfer limits for commercially significant interfaces in PJM
- Modeled interfaces: AEP-DOM, AP South, BCPEP, Black Oak Bedington, 5004/5005, Central Interface, Cleveland, COMED, Eastern Interface, Western Interface

Market Efficiency Process – Congestion Drivers

 PROMOD simulations will be analyzed for congestion drivers

• PJM solicits projects for congestion drivers

Market Efficiency Process – Proposal Analysis

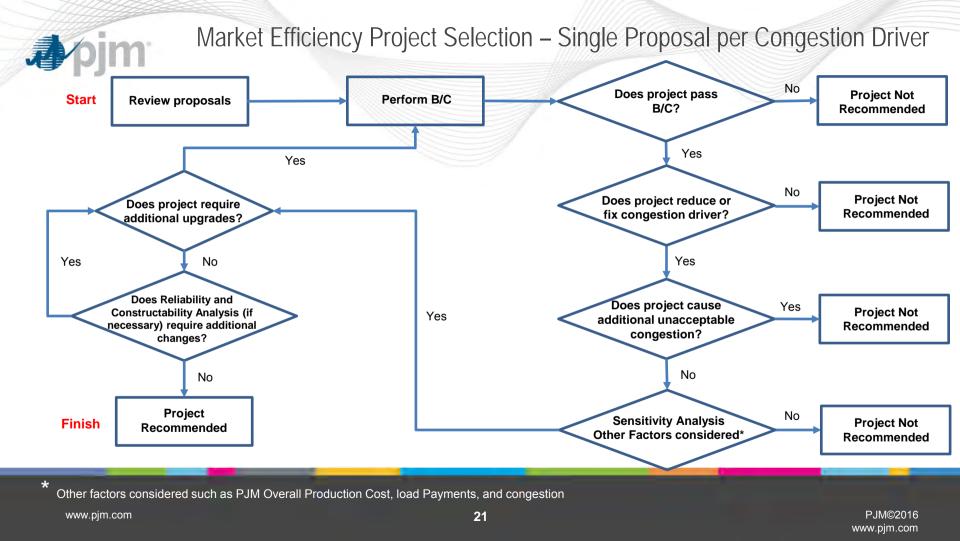
• Each valid proposal is tested for Benefits/Cost >1.25

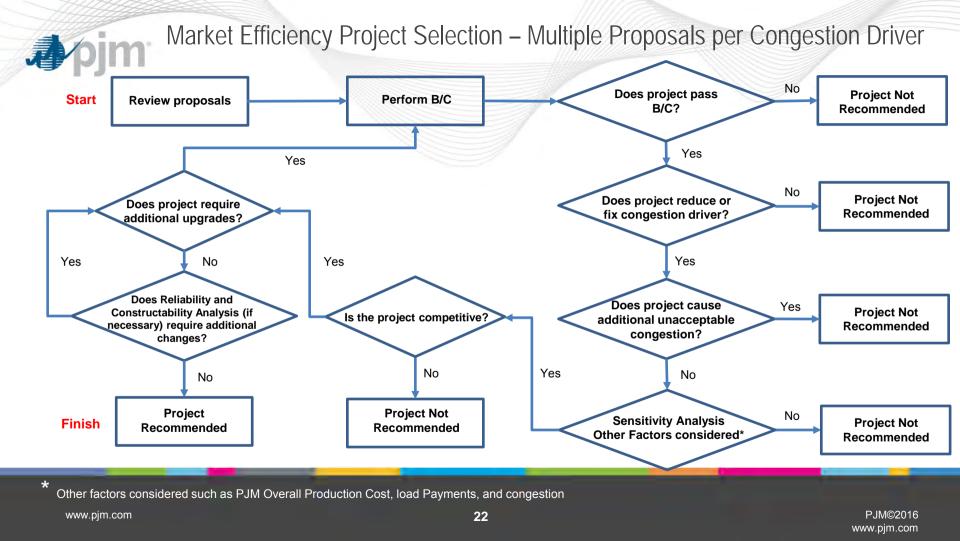
- Total Benefits = Energy Benefits + RPM Benefits
- Energy Benefits
 - Regional Projects: 50% Change in Production Costs + 50% Change in Net Load Payments*
 - Lower Voltage Projects: 100% change in net load payments*
- Reliability Pricing Model (RPM) Benefits
 - RPM Regional: 50% Change in Total System Capacity Cost + 50% Change in Load Capacity Payments
 - RPM for Lower Voltage Projects: 100% Change in Load Capacity Payments

• Candidates passing B/C tests:

- Congestion driver reductions
- Other factors: overall PJM congestion changes, PJM Load Payments, PJM Production Costs
- Perform Sensitivities
 - Gas Sensitivity
 - Load Sensitivity
 - Other sensitivities as needed (Examples: gen exp, renewable penetration, carbon tax, imports/exports, etc.)

P.IM©2016


www.pjm.com


* Only zones with decrease in net load payments

Market Efficiency Process – Other Analyses

PJM©2016 www.pjm.com

- Reliability Analysis
 - Additional reliability upgrades
- Independent Cost Analysis
 - Projects exceeding \$50M Independent cost analysis
- Constructability Analysis
 - Verification of proposed schedule duration
 - Other risks to both cost and schedule
- Project Combinations
 - Combination of components of multiple projects
 - Incremental or multiple projects

Market Efficiency Process – Approval & Communication

Selected projects require PJM board approval

Approved projects are communicated at TEAC meetings

Letter from PJM notifying construction responsibility

P.IM©2016

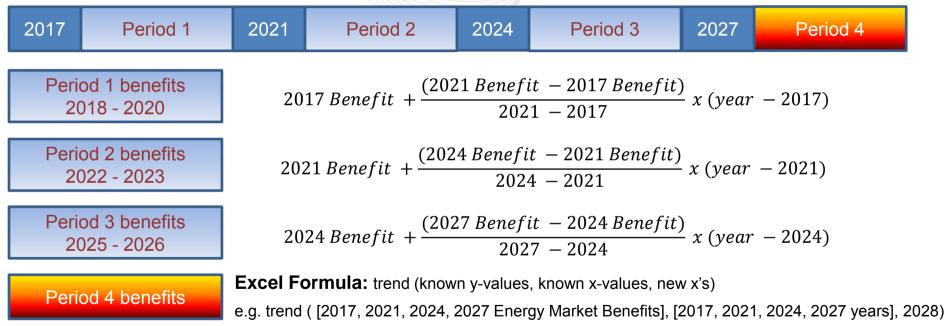
Hypothetical Scenarios

• Project Selections

• Guidelines

bim

1


Appendix 1 - Example B/C Ratio Calculation

PJM©2016

Project Benefits for Non-Simulated Years

Regional Transmission Expansion Plan Model year: 2021 Promod IV Simulation Years: 2017, 2021, 2024 & 2027 Project In-service Year: 2021

PJM©2016 www.pjm.com

pim

Determining Revenue Requirement

P.IM©2016

www.pjm.com

Project Voltage: 500 kV or 230 kV Project Cost: \$110 Million Dollars Project Benefit Period: 15 yrs

PJM Fixed Carrying Charge Rate = 15.3% **PJM Discount Rate =** 7.4%

Project Annual Revenue Requirement = Project Cost x Fixed Carrying Charge Rate = \$110 Million x 15.3% = \$16.83 Million Annually

Excel Formula: pv (*rate*, *# periods*, *payment per period*)

Net Present Value of Project Costs = pv(7.4%, 15, -16.83) = \$149 Million

1

Selecting Zones Based on Net Load Payment

The Project is not in-service until 2021. Therefore the benefits are evaluated between 2021 and 2035, the first 15 years of in-service life.

Zones 1, 2 and 4 all have Net Load Payment benefits with an NPV > 0 for the 15 year analysis period. These zones will be included in the total system benefit.

The Net Present Value of Net Load Payment Benefits in Zone 3 do not exceed zero for the 15 year analysis period. This zone will be excluded from the total system benefit calculation.

Low Voltage Project Net Load Payment Benefit Zone 1 + Zone 2 + Zone 4 = \$223.85 Million

Regional Project Net Load Payment Benefit 50% (Zone 1 + Zone 2 + Zone 4) = \$111.92 Million

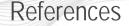
	Year	Zone 1	Zone 2	Zone 3	Zone 4	
	2017	\$8.00	\$3.00	\$0.50	\$5.00	
	2018	\$9.00	\$2.50	\$0.40	\$5.30	
	2019	\$10.00	\$2.00	\$0.30	\$5.50	
	2020	\$11.00	\$1.50	\$0.20	\$5.80	
ISD	2021	\$12.00	\$1.00	\$0.10	\$6.00	
1	2022	\$12.30	\$1.30	(\$0.30)	\$6.70	
	2023	\$12.70	\$1.70	(\$0.60)	\$7.30	
	2024	\$13.00	\$2.00	(\$1.00)	\$8.00	
	2025	\$14.00	\$2.20	(\$1.70)	\$7.70	
	2026	\$15.00	\$2.30	(\$2.30)	\$7.30	
	2027	\$16.00	\$2.50	(\$3.00)	\$7.00	
	2028	\$16.60	\$2.00	(\$2.80)	\$7.90	
	2029	\$17.40	\$1.90	(\$3.20)	\$8.20	
	2030	\$18.20	\$1.90	(\$3.50)	\$8.40	
	2031	\$18.90	\$1.90	(\$3.80)	\$8.70	
	2032	\$19.68	\$1.84	(\$4.19)	\$8.90	
	2033	\$20.45	\$1.81	(\$4.53)	\$9.15	
	2034	\$21.21	\$1.78	(\$4.87)	\$9.40	
	<u>2035</u>	<u>\$21.97</u>	<u>\$1.75</u>	<u>(\$5.22)</u>	<u>\$9.64</u>	
	NPV					
(Millions)	\$138.97	\$16.17	(\$19.77)	\$68.71	-

System Adjusted Production Cost Benefits

The Project is not in-service until 2021. Therefore the benefits are evaluated between 2021 and 2035

- NPV Adjusted Production Cost Benefit = NPV(7.4%, Adjusted Production Cost Savings)
- Regional Adjusted Production Cost Benefits = 50% x \$121.2 Million

		Net Adjusted	I
		Production Co	
	Year	Benefit	51
	2017	\$8.00	
	2018	\$8.50	
	2019	\$9.00	
	2020	\$9.50	
ISD	2021	\$10.00	
	2022	\$10.70	
	2023	\$11.30	
	2024	\$12.00	
	2025	\$12.70	
	2026	\$13.30	
	2027	\$14.00	
	2028	\$14.50	
	2029	\$15.10	
	2030	\$15.70	
	2031	\$16.30	
	2032	\$16.88	
	2033	\$17.48	
	2034	\$18.08	
	<u>2035</u>	<u>\$18.68</u>	
	NPV	_	-
(N	/lillions)	\$121.2	


Does Project Pass Criteria

- Total Energy Market Benefits = Load Payment Benefit x 50% + Production Cost Benefit x 50%
- Total Benefits = \$112 Million + \$60.6 Million = \$172.51 Million
- Does the Project Pass: Benefits / Costs = \$172.51 / \$149 = 1.15 > PROJECT FAILS
- Low Voltage Method
 - Total Benefits = 100% Load Payment Benefit = \$223.85 Million
 - Does the Project Pass: Benefits / Costs = \$223.85 / \$149 = 1.49 > PROJECT PASSES

Appendix 2 – Operating Agreement & Manual References

P.IM©2016

- Scope, PJM requirements & Member requirements
- <u>http://www.pjm.com/about-pjm/member-services.aspx</u>
- PJM Manual 14B, Section 2.6: <u>http://www.pjm.com/~/media/documents/manuals/m14b.ashx</u>
- PJM Operating Agreement, Schedule 6, Section 1.5.7: <u>http://www.pjm.com/media/documents/merged-tariffs/oa.pdf</u>
- PJM Market Efficiency Practices http://www.pjm.com/~/media/planning/rtep-dev/market-efficiency/pjm-market-efficiency-modeling-practices.ashx