2.3 Fuel Cost Guidelines

Any Unit Owner must submit a fuel cost policy to the PJM MMU pursuant to the Cost and Methodology Approval Process.

2.3.1 Modifications to Fuel Cost Policies

A request to change the method of calculation of Basic Fossil or Nuclear Fuel Cost shall be submitted to the PJM MMU for evaluation pursuant to the Cost and Methodology Approval Process in advance of the proposed change (this is referred to below as “the proposal”.)

Any Unit Owner and the PJM MMU shall discuss the proposal and the PJM Member will provide documentation supporting its request to the PJM MMU. The PJM MMU shall provide an initial response to the PJM Member in writing within 30 days of the member’s submission of the request to the PJM MMU, indicating its agreement with the request or areas of concern pursuant to the Cost and Methodology Approval Process. The changed method of calculation may be implemented immediately upon final approval pursuant to the Cost and Methodology Approval Process.

If any action by a governmental or regulatory agency external to a Unit Owner that results in a need for the Unit Owner to change its method of fuel cost calculation, the affected PJM Member may immediately submit a request to the PJM MMU for evaluation, pursuant to the Cost and Methodology Approval Process to change the method of calculation in advance of the proposed change.

2.3.2 Fuel Cost Calculation

The method of calculation of fuel cost may be updated no more frequently than once every 12 months, on a rolling basis.

Each company must review and document their fuel costs at minimum once per month (12 times per year). Additionally, each review must occur within forty (40) days of the preceding review. The results of this review will be used to determine whether a fuel cost update is necessary. The documentation of fuel costs must be filed via CODA.

The method of calculation of fuel cost may include the use of actual fuel prices paid, e.g. the contract price paid for fuel, or the spot price for fuel. The contract price for fuel must include the locational cost of fuel for the generating unit. The source used for spot price for fuel must be publicly available and reflect the locational cost of fuel for the generating unit. The locational cost of fuel shall include specification of any additional incremental costs of delivery for the generating unit.

Each PJM Member Company will be responsible for establishing its own method of calculating delivered fossil fuel cost, limited to inventoried cost, replacement cost or a combination thereof, that reflect the way fuel is purchased or scheduled for purchase.

The method of calculation only may be changed by receipt of final approval pursuant to the Cost and Methodology Approval Process in advance of the proposed change.
Fossil fuel cost adjustments compensating for previous estimate inaccuracies should not be considered when determining the basic fossil cost component of Total Fuel Related Cost. Units that co-fire more than one fuel shall weight average the cost of the fuel on a per mmBtu basis. Units that fire solid waste, bio-mass, or landfill gas shall include the cost of such fuel when calculating the average even when the cost of such fuel is negative. However, cost offers for units that fire solid waste, biomass, or landfill gas shall not be less than zero.

Cost offers for all units shall not be less than zero.
How to Use this Manual

To use this Manual, read sections one and two then go to the chapter for unit type for possible additional information.

Section 3: Nuclear Unit Cost Guidelines

Section 4: Fossil Steam Unit Cost Development

Section 5: Combined Cycle (CC) Cost Development

Section 6: Combustion Turbine (CT) and Diesel Engine Costs

Section 7: Hydro

Section 8: Demand Side Response (DSR)

Section 9: Wind Units

Attachment A: Applicable FERC System of Accounts
This section contains information for the development of Hydro or Hydro Pumped Storage cost offers.

Hydro Units – Generating unit in which the energy of flowing water drives the turbine generator to produce electricity. This classification includes pumped and run-of-river hydro.

Pumped Hydro Unit – Hydroelectric power generation that stores energy in the form of water by pumping from a lower elevation source to a higher elevation reservoir, then allowing the upper reservoir to drain turning the turbines to produce power.

7.1 Pumping Efficiency (Pumped Hydro Only)

Pumping Efficiency is the Pumped Hydro Unit’s version of a heat rate. It measures the ratio of generation produced to the amount of generation used as fuel.

Pumping Efficiency (PE) is calculated by dividing the MWh of generation produced while operating in generation mode by the MWh required to pump the water needed to produce the generation MWh.

\[
Pumping\ Efficiency = \frac{\text{MWh Generation Produced}}{\text{MWh Generation Pumped as Fuel}}
\]

For example, it requires 1,000 ft³ to produce one MWh of generation as water flows from the pond to the sink and it requires two MWh of pumping load to pump 1,000 ft³ of water from the sink to the pond. The resultant efficiency is:

\[
Pumping\ Efficiency = \frac{3.5 \text{ MWh (Generated)}}{5 \text{ MWh (Pumped)}} = 0.70
\]

In order to account for environmental and physical factors associated with the characteristics of the pond and pumping operations that limit the accuracy of calculating short term pumping efficiency, a seven day rolling total of pumping and generation MWh are utilized for pumping efficiency calculations.

PE can be calculated by one of three methods. An owner must make the choice of method by December 31 prior to the year of operation and cannot change to another method for a period of one calendar year.

- Option 1: Twelve month calendar actual Pumping Efficiency.
 - The previous 12-month calendar year average Pumping Efficiency based on actual pumping operations.
7.2 Performance Factors

Note: The information in Section 2.2 contains basic Performance Factor information relevant for all unit types. The following additional information only pertains to hydro units.

7.3 Fuel Cost

The fuel costs for a Run-of-River Hydro Unit are equal to zero.

For a Pumped Hydro Unit To be consistent with other PJM units within this manual, the term fuel cost is used to account for the energy necessary to pump from the lower reservoir to the upper reservoir.

Note: The information in Section 2.3 contains basic Fuel Cost information relevant for all unit types. The following additional information only pertains to pumped hydro units.

If, a Unit Owner wishes to change its method of calculation of pumped storage TFRC, the PJM Member shall notify the PJM MMU in writing by December 31 prior to the year of operation, to be evaluated pursuant to the Cost and Methodology Approval Process before the beginning of the cycle in which the new method is to become effective. The new cycle starts on February 1st and continues for a period of one year.

Basic Pumped Storage Fuel Cost – Pumped storage fuel cost shall be calculated on a seven (7) day rolling basis by multiplying the real time bus LMP at the plant node by the actual power consumed when pumping divided by the pumping efficiency. The pumping efficiency is determined annually based on actual pumping operations or by Original Equipment Manufacturer (OEM) curves if annual data is not available due to the immaturity of the unit. The following equations govern pumping storage fuel cost:

\[
Pumping \, Power \, Cost \, (\$/\text{MWh}) = Real \, Time \, LMP \, (\$/\text{MWh}) \times Pumping \, Power \, (\text{MWh})
\]

\[
Pumped \, Storage \, Fuel \, Cost \, (\$/\text{MWh}) = \frac{Pumping \, Power \, Cost \, (\$/\text{MWh})}{Pumping \, Efficiency}
\]
7.3.1 Total Energy Input Related Costs for Pumped Storage Hydro Plant Generation

Total energy input-related costs for all pumped storage hydro units shall be defined as follows:

Pumped Storage Hydro Total Energy Input Related Cost
= Basic Pumped Storage Energy Input Cost + Maintenance Cost

7.4 Start Cost

See 7.7 Condensing Start Costs.

7.5 No Load

Hydro Units have do not have No Load costs.

7.6 Maintenance

Note: The information in Section 2.6 contains basic Maintenance Cost information relevant for all unit types. The following additional information only pertains to hydro units.

This account shall include the cost of labor, materials used and expenses incurred in the maintenance of plant, includible in Account 332, Reservoirs, Dams, and Waterways. (See operating expense instruction 2.) However, the cost of labor materials used and expenses incurred in the maintenance of fish and wildlife, and recreation facilities, the book cost of which is includible in Account 332, Reservoirs, Dams, and Waterways, shall be charged to Account 545, Maintenance of Miscellaneous Hydraulic Plant.

7.7 Synchronized Reserve: Hydro Unit Costs to Condense

Note: The information in Section 2.7 contains basic Synchronized Reserve Cost information relevant for all unit types. The following additional information only pertains to hydro units if applicable.

Some Hydro units have the ability to purge the turbines of water and run backwards effectively creating a capacitor. This method of operation of the machine is referred to as operating the Hydro unit in synchronous condensing mode.

Total synchronous condensing costs for Hydro units shall include the following components:
Hydro Costs to Condense ($/MWh) =
Condensing Start Costs + \left(\frac{VOM}{\text{Synchronized Reserve MW}} \right) + \text{Margin}

Condensing Start costs if applicable, start costs shall be applied when a unit moves from cold to condensing operations and when a unit moves from condensing operations to energy generation, but shall not be applied when a unit moves from energy generation to condensing operations.

In addition (+) identified **variable Operating and Maintenance** cost in $/Hr. divided by the Synchronized MW provided. These costs shall be totaled over the Maintenance Period and divided by total MWh generated over the maintenance period. These variable Operating and Maintenance costs shall include:

- Maintenance of Electric Plant as derived from FERC Account 544
- Maintenance of Reservoirs as derived from FERC Account 543

In addition (+) **margin** up to $7.50 per MW of Synchronized Reserve service provided.

Total hydro condensing offers must be expressed in dollars per hour per MW of Synchronized Reserve ($/MWh) and must specify the total MW of Synchronized Reserve offered.

7.8 Regulation Cost

Note: The information in Section 2.8 contains basic Regulation Cost information relevant for all unit types.
Section 9: Wind Units

This section contains information for the development of Wind unit cost offers.

Wind Units – Generating unit in which the energy of blowing wind drives the turbine generator to produce electricity.

9.1 Heat Rates

Wind units do not burn fuel so heat rates are not applicable.

9.2 Performance Factors

Note: The information in Section 2.2 contains basic Performance Factor information relevant for all unit types. The following additional information only pertains to Wind units.

Wind units do not burn fuel so Performance Factors are equal to 1.0.

9.3 Fuel Cost

Note: The information in Section 2.3 contains basic Fuel Cost information relevant for all unit types. The following additional information only pertains to wind units.

Wind units fuel costs are equal to zero. “Fuel Cost Policy” will be provided to the MMU annually. The fuel cost policy should include how the generator intends to account for Renewable Energy Credits (RECs) and Production Tax Credits (PTCs), if they want to include those costs in their offer.

9.4 Start Cost

Note: The information in Section 2.3 contains basic Start Cost information relevant for all unit types. The following additional information only pertains to wind units.

Start cost for a wind unit is station service cost. Wind units Start Fuel and Total Fuel related Costs are equal to zero.

9.5 No Load

Wind Units do not have No Load costs.

9.6 Maintenance
Note: The information in Section 2.6 contains basic Maintenance Cost information relevant for all unit types. The following additional information only pertains to wind units.

Maintenance Cost includes short run wear and tear on the unit (including preventative and scheduled maintenance. This does not including capital cost). The rolling twelve month historic maintenance cost shall be divided by unit’s generated MWh for the same period.

9.7 Synchronized Reserve: Wind Unit Costs to Condense

Note: The information in Section 2.7 contains basic Synchronized Reserve Cost information relevant for all unit types. The following additional information only pertains to wind units if applicable.

Some Wind units have the ability to disconnect the generator from the rotor via a clutch and run in synchronous condensing mode.

Total synchronous condensing costs for Wind units shall include the following components:

Wind Costs to Condense ($/MWh) =
Condensing Start Costs + \left(\frac{\text{VOM}}{\text{Synchronized Reserve MW}} \right) + \text{Margin}

Condensing Start costs if applicable, start costs shall be applied when a unit moves from cold to condensing operations and when a unit moves from condensing operations to energy generation, but shall not be applied when a unit moves from energy generation to condensing operations.

In addition (+) identified variable Operating and Maintenance cost in $/Hr. divided by the Synchronized MW provided. These costs shall be totaled over the Maintenance Period and divided by total MWh generated over the maintenance period.

In addition (+) margin up to $7.50 per MW of Synchronized Reserve service provided.

Total wind condensing offers must be expressed in dollars per hour per MW of Synchronized Reserve ($/MWh) and must specify the total MW of Synchronized Reserve offered.

9.8 Regulation Cost

Note: The information in Section 2.8 contains basic Regulation Cost information relevant for all unit types.