Market Efficiency
Economic component of PJM RTEP Process

- Determine which reliability upgrades, if any, have an economic benefit if accelerated or modified.
- Identify new transmission upgrades that may result in economic benefits.
- Identify economic benefits associated with “hybrid” transmission upgrades. Such hybrid upgrades resolve reliability issues but are intentionally designed in a more robust manner to provide economic benefits in addition to resolving those reliability issues.
Market Efficiency Process

- Develop input assumptions and model
- Setup case
- Benchmark as-is congestion results to actual congestion
- Determine congestion for all study years
 - Post congestion results
- Determine solution options
 - Accept member proposals
- Evaluate solution options
 - Perform benefit/cost test
 - Review results with members
- Recommend project(s)
 - Final review with stakeholders and approval from PJM board
<table>
<thead>
<tr>
<th>Year 0</th>
<th>Year 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>Jan</td>
</tr>
<tr>
<td>Feb</td>
<td>Feb</td>
</tr>
<tr>
<td>Mar</td>
<td>Mar</td>
</tr>
<tr>
<td>Apr</td>
<td>Apr</td>
</tr>
<tr>
<td>May</td>
<td>May</td>
</tr>
<tr>
<td>Jun</td>
<td>Jun</td>
</tr>
<tr>
<td>Jul</td>
<td>Jul</td>
</tr>
<tr>
<td>Aug</td>
<td>Aug</td>
</tr>
<tr>
<td>Sep</td>
<td>Sep</td>
</tr>
<tr>
<td>Oct</td>
<td>Oct</td>
</tr>
<tr>
<td>Nov</td>
<td>Nov</td>
</tr>
<tr>
<td>Dec</td>
<td>Dec</td>
</tr>
</tbody>
</table>

Market Efficiency 24 Month and 12 month Proposed Cycles

Develop Assumptions (Y1, Y5)

Market Efficiency Analysis (Y1, Y5) (Accelerations and Modifications)

Identify and evaluate Solution Options (Accelerations and Modifications)

Final Review with TEAC and approval by Board

Develop Assumptions (Y5, Y8, Y11, Y15)

Market Efficiency Criteria Analysis (Y5, Y8, Y11, Y15)

Market Efficiency Analysis (Y5, Y8, Y11, Y15)

Identify proposed solutions

Update significant assumptions (Y4, Y7, Y10, Y14)

Analysis of market solutions and support of benefits of reliability solutions (Y4, Y7, Y10, Y14)

Independent Consultant reviews of buildability

Adjustments to solution options by PJM on analysis

Develop Assumptions (Y1, Y5)

Market Efficiency Analysis (Y1, Y5) (Accelerations and Modifications)

Identify and evaluate Solution Options (Accelerations and Modifications)

Final Review with TEAC and approval by Board
12-Month Cycle

• **Process and Results**
 • 6 month window for analysis of Market Efficiency needs after development of input assumptions
 • Year 1-5 acceleration and modifications
 • Dedicated to accelerations and modifications to RTEP approved projects only
 • Final review with TEAC and board approval at end of each year
24-Month Cycle

- Process and Results
 - 6 month window for analysis of Market Efficiency needs after development of input assumptions
 - Year 5-15 new enhancements
 - 4 month proposal window
 - 8 months of analysis on proposed solutions and adjustments to solution options
 - Updates to input assumptions
 - Independent consultant review of ability to build
 - Review appropriate reliability projects for economic benefits
 - Solutions approved at end of 24-month cycle would need to be in service in 3 ½ years or longer
 - Projects identified for year 5 may be delayed to year 6 if necessary
 - Final review with TEAC and Board approval at end of 24-month cycle
Market Efficiency Tools

- **Powerbase**: Database used to maintain energy market data and transmission representation
- **PROMOD**: Simulation engine which performs hourly unit commitment and dispatch
- **PAT**: Analysis tool that supports PROMOD
Market Efficiency Data inputs

<table>
<thead>
<tr>
<th>Input</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel prices</td>
<td>Ventyx, Stakeholders, PJM Chief Economist</td>
</tr>
<tr>
<td>Emission Prices</td>
<td>Ventyx, Stakeholders, PJM Chief Economist</td>
</tr>
<tr>
<td>Annual PJM Peak Load and Energy</td>
<td>PJM Load Forecast Report</td>
</tr>
<tr>
<td>Model -Topology</td>
<td>PJM Actual and planned RTEP</td>
</tr>
<tr>
<td>Demand Response</td>
<td>RPM</td>
</tr>
<tr>
<td>Generation</td>
<td>Existing and Future planned in-service</td>
</tr>
<tr>
<td>Carry Charge</td>
<td>Transmission Owners</td>
</tr>
<tr>
<td>Discount Rate</td>
<td>Transmission Owners</td>
</tr>
</tbody>
</table>
Case setup – major components

• Internal reactive interfaces ratings
 ➢ Perform PV analysis and historical benchmark

• Thermal ratings
 ➢ Model summer and winter ratings

• External flow contributions on PJM system
 ➢ Activate appropriate areas
 ➢ Scale external areas if necessary
 ➢ Benchmark to historical
Cost/Benefit Analysis

• Present value of annual project benefit for first 15 years of project life compared to present value of annual project cost for first 15 years of project life

• Project is considered economic and included in RTEP if B/C ratio exceeds 1.25:1
Total Annual Enhancement Project Benefit = Energy Market Benefit + Reliability Pricing Model Benefit

- Energy Market Benefit = 70%*(Change total production cost) + 30%*(Change in load energy payment)

- Reliability Pricing model Benefit = 70%*(Change total system capacity cost) + 30%*(Change in load capacity payment)

*Load energy payment reduced for cleared transmission or capacity rights
**For lower voltage facilities only include zones with a decrease in load energy or capacity payment
Market Efficiency Cost Allocation
Market Efficiency Cost allocation divided into two categories.

– Regional Facilities and Necessary Lower Voltage Facilities
 • 500 KV and above
 • Below 500 KV facilities that are necessary as a result of higher voltage regional facility
 • Allocation Method same as Reliability Facilities
 – Load Ratio Share

– Lower Voltage Facilities
 • Below 500 KV that are not necessary as a result of higher voltage regional facility
 – Allocation method determined from zones who benefit from project through decreases in net load payments
Market Efficiency Lower Voltage Facility Cost Allocation example

Project Upgrade Cost = $5 Million

<table>
<thead>
<tr>
<th>Zone</th>
<th>Net Load Payment Before Upgrade ($millions)</th>
<th>Net Load Payment After Upgrade ($millions)</th>
<th>Delta in Net Load Payment ($ millions)</th>
<th>% of Net Load Payment Reduction</th>
<th>Cost ($millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone 1</td>
<td>10</td>
<td>8</td>
<td>-2</td>
<td>11.76%</td>
<td>$0.59</td>
</tr>
<tr>
<td>Zone 2</td>
<td>12</td>
<td>4</td>
<td>-8</td>
<td>47.06%</td>
<td>$2.35</td>
</tr>
<tr>
<td>Zone 3</td>
<td>14</td>
<td>16</td>
<td>2</td>
<td>0%</td>
<td>$0</td>
</tr>
<tr>
<td>Zone 4</td>
<td>5</td>
<td>8</td>
<td>3</td>
<td>0%</td>
<td>$0</td>
</tr>
<tr>
<td>Zone 5</td>
<td>13</td>
<td>12</td>
<td>-1</td>
<td>5.88%</td>
<td>$0.29</td>
</tr>
<tr>
<td>Zone 6</td>
<td>8</td>
<td>14</td>
<td>6</td>
<td>0 %</td>
<td>$0</td>
</tr>
<tr>
<td>Zone 7</td>
<td>11</td>
<td>10</td>
<td>-1</td>
<td>5.88%</td>
<td>$0.29</td>
</tr>
<tr>
<td>Zone 8</td>
<td>14</td>
<td>9</td>
<td>-5</td>
<td>29.41%</td>
<td>$1.47</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Total</td>
<td>Total</td>
<td>100%</td>
<td>$5.00</td>
</tr>
</tbody>
</table>

Net Load Payment equals Gross Load Payment minus FTR Credits derived from the Net Present Value for 15 years of project
Miscellaneous Studies

- Interregional analysis
- Regulatory requests
- Internal studies
- Expansion studies