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Performance 

A model approach to quantify the 
effects of metering accuracy and 
density in a model on State 
Estimation. 
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Model Development 

Shaun Murphy : MATLAB Programming 
John Baranowski : Model Behavior 

Ryan Nice : Meter Behavior and Analysis 
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Methodology: Overview 

• To quantify the effects of metering/telemetry accuracy on 
State Estimation for PJM and members, a model of SE was built.  

• MATLAB model of IEEE 300 bus test case assumed functionally 
equivalent to a portion of PJM’s Spectrum model of PJM 
territory. 

• Introduced various degrees of and kinds of telemetry inaccuracy 
to test for differences in State Estimation behavior.  

• Approximately 5000 State Estimator runs/solutions for each error 
model, with telemetry errors randomized each run.   
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Methodology: IEEE 300 Bus Test Case  
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Methodology: IEEE 300 Bus Test Case 

• To cover the amount of available telemetry and usable telemetry 
typical for the PJM EMS, analyzed system at different 
percentages of measurement quality in the model: 
– From 100% good measurements to 10% good measurements 
– Used measurement high or low weighting to simulate good or 

bad/missing measurements respectively.  
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Methodology: Input Meter Accuracy 

• Analyzed system at five different meter accuracy ranges: 
– ± 1%, high accuracy metering 
– ± 2%, general PJM requirement 
– ± 3% 
– ± 4%, accuracy of protection duty equipment 
– ± 5% 
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Methodology: Input Meter Accuracy 

• Analyzed each meter accuracy range with four different error 
distributions: 
– Uniform  
– Bell Curve 
– Linear Low Bias 
– Linear High Bias 
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Methodology: Runs and Data Capture 

• Focused on MW (from branch) flows as the primary 
measurement trended.  

• Each of the 5000 runs has every measurement randomized 
within the specific accuracy range and distribution type.  

• The results for each bus flow over the 5000 runs noted for max, 
min, avg. and std. deviation. Those results were trended to look 
for patterns. 
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Methodology: Limitations, Approximations and Assumptions 

Caveat Emptor:  
• In reality, enterprise grade AIX Siemens Spectrum 

hardware/firmware/software versus MATLAB on standard 
computing device. 

• In reality 15437 bus model, versus 300 bus model. 
• No statistical differentiation or special consideration for higher or 

lower voltage levels.  
• MVAR or other measurements could pose other or more 

complex problems. 
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Methodology: Limitations, Approximations and Assumptions 

• In reality meters will often be biased high or low and tend to stay 
that way in most conditions, versus randomized accuracy across 
all measurements within the accuracy range and distribution.  

• In reality the same meters read ever-changing analog values 
which are consumed by SE each run, versus the same true flow 
values estimated 5000 different meter error models. In other 
words, the metrics describe 5000 different combinations of 
all metering behavior within the accuracy range and 
distribution fed into the same model at the same moment in 
time.  
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Methodology: Limitations, Approximations and Assumptions 

• In reality PJM uses measurement weighting on a scale, and 
does not have telemetry for all possible measurements, versus 
using a full weighting or nearly zero weighting to mimic both 
good/bad telemetry and also available/not-available telemetry.  
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Methodology: Limitations, Approximations and Assumptions 

• In reality, the weighting of individual measurements will be done 
with human intelligence that would tend to minimize bad or risky 
measurements and maximize good or trusted measurements, 
versus the weighting and accuracy being assigned with no 
correlation. 
– A second model was developed where measurements assigned 

“good” weighting also were assigned a smaller error range, to 
simulate that heavier weighted measurements would tend to be 
better measurements.  
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Methodology: Limitations, Approximations and Assumptions 

www.pjm.com 

• In the model, the “good” 
telemetry is randomly 
distributed, where real 
telemetry is intelligently 
distributed for best 
observability.  

• Difficult to compare the ratio 
of good/bad data in the model 
to SE.  
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Methodology: Limitations, Approximations and Assumptions 

Therefore, conclusions drawn from this model cannot be directly 
applied to the actual metering, telemetry and SE infrastructure of 
PJM. However, the general principles and trends can be usefully 
applied when supported by existing engineering understanding, 
relevant experience, and other related evidence.  
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Results and Conclusions (1st model) 
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Results and Conclusions (1st model) 

Conclusion: 
• As range of meter error 

increases, the average 
difference between a true MW 
flow and the max SE solved 
MW flow increases. 

www.pjm.com 

0

10

20

30

40

50

60

0% 1% 2% 3% 4% 5% 6%

M
W

 

Measurement Error 

Avg. of all Branches, Diff b/t Branch No Error MW and SE Branch MW Max of 
5000 Runs 

(at 20/80 Good/Bad) 

Uniform

Bell Curve

Right

Left



PJM©2015 17 

Results and Conclusions (1st model) 
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Results and Conclusions (1st model) 

Conclusion: 
• Similarly, as meter error 

range increases, the SE 
solved value also spreads 
and disperses further.  
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Results and Conclusions (2nd model) 

• A second model was developed and run that had three additional 
features: 
– SE iteration counts and non-convergence counts were captured.  
– Measurements weighted heavier tend to have better accuracy, 

and measurements weighted lighter tend to have lower accuracy, 
to account for the human intelligence of weighting good and 
trusted measurements higher and suspect or less important 
measurements lower.  

– Metrics focused on a single line, Line 394 at 1210.0 MW, instead 
of the entire model. 
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Results and Conclusions (2nd model) 
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Results and Conclusions (2nd model) 
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Results and Conclusions (2nd model) 

Conclusion: 
• There is a tipping point at 

30% good measurements,  
where lower SE works less 
hard (maybe b/c it is easier to 
solve with so many free 
variables), and above SE 
works less hard (maybe b/c of 
more good data and less 
computational load).  
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Results and Conclusions (2nd model) 

Conclusion: 
• In either case, SE 

computational and 
convergence performance is 
not significantly altered.  
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Results and Conclusions (2nd model) 
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Results and Conclusions (2nd model) 

Conclusion: 
• Standard deviation of line flow 

decreases significantly with 
more measurements, 
especially for lower accuracy 
metering.  

• 20% more metering approx. 
equivalent to 2% instead of 
4% meter error.  
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A note on the density of metering at PJM. 

www.pjm.com 

• Out of ~15400 Internal Busses, about 2%, or 300 busses, are 
unobservable by PJM due to lack of telemetry. This number may 
be higher including busses where pseudo-loads are in use.   

• PJM estimates that out of all possible model measurements, 
about 16% have telemetered values. This number may be 
affected by redundant points and non-critical measurements, but 
still suggests PJM cannot do with less telemetry.  
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Results and Conclusions (2nd model) 
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Results and Conclusions (2nd model) 

Conclusion: 
• Similar to 1st model, uniform 

distributions cancel out high 
and low measurements, but 
left or right is probably more 
realistic since meter bias isn’t 
randomized every scan, so 
results show how much a line 
will constantly be off due to 
meter inaccuracy.  
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Overall Conclusions 

• Metering accuracy ranging between 1% and 5% has moderate 
impact on SE solution accuracy, viewed over a model or single 
piece of equipment. 

• Metering inaccuracy that is biased high or low consistently 
unevenly will lead to likewise consistently high or low SE 
solutions (settlements problem).  

• More metering and telemetry to some degree mitigates the 
effects of less accurate metering. 

• Metering accuracy has only modest effect on other SE 
performance (iteration and non-convergence count).   
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