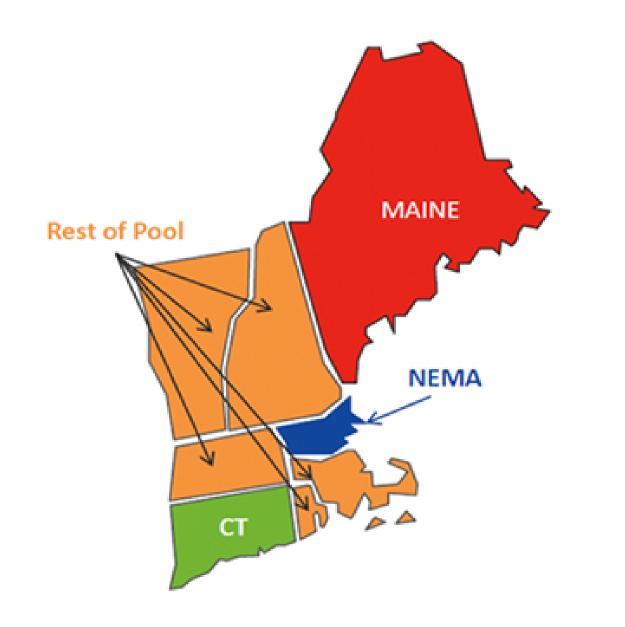
Comparison of Performance-Based Capacity Models in ISO-NE and PJM

Michael Borgatti, Director, RTO Services

Gabel Associates, Inc.


Michael.Borgatti@gabelassociates.com

732.296.0770

Goals for discussion

- Provide a general overview of ISO-NE's Forward Capacity Market Design
- Compare and contrast Pay-for-Performance and Capacity Performance designs
- Attempt to quantify impact of design differences on market participants including value of risk and revenue drivers
- Begin dialogue about pros and cons of each design

Forward Capacity Market Overview

- Descending Clock Auction design
- Forward Capacity Auction offer prices decrease during progressive rounds
- Market Clearing Engine produces a single clearing price for each Capacity Zone
- Existing resources take on a Capacity Supply Obligation for a one-year Capacity Commitment Period, three years in the future
- New resources offer either a one or seven year fixed price capacity commitment

Forward Capacity Market: Qualifying Capacity

- ISO-NE does not use EFORd ICAP only construct
- Supply resources offer and clear their **Qualified Capacity**
 - Existing Thermal: Seasonal Claimed Capability during five previous summer and winter periods for traditional existing generation resources
 - Intermittent: Average net output during peak hours for last five years
 - Demand Resources based on M&V plan
- Unlike PJM, forced outages do not automatically reduce forward capacity position
- A significant decrease in qualified capacity i.e. more than 20% or 40 MWs – can be repaired through a **Restoration Plan**
- Smaller forced outages minimized though five year averaging

Forward Capacity Market: De-list bids

- **Delist Bids** allow existing resources to "opt-out" for a single Capacity Commitment Period (or longer)
- Dynamic Delist Bid: Permits resources to opt out when prices fall below the Dynamic Delist Bid Threshold recommended by ISO-NE Market Monitor
 - Similar to PJM's Net CONE Market Seller Offer Cap
 - Includes penalty risk premium calculated by Market Monitor
- Static Delist Bid: Based on IMM approved cost justification where if prices are below that level the unit will not be committed
 - Similar to PJM's Avoidable Cost Rate (ACR) Offer Cap

Performance capacity designs are a response to systemic performance failures in both markets

• ISO-NE

- Gas interruptions caused substantial loss of generation
- September 10, 2010 ISO violated NERC Reliability Standard due to loss of largest contingency
- January 28, 2013 "near miss" where loss of 1-2 additional gas fired units could have caused severe reliability concerns

• PJM

- Polar Vortex in January 2014 resulted in substantial reliability concerns
- High uplift cost to load
- Concern over lack of firm fuel and dual fuel for gas-fired generation

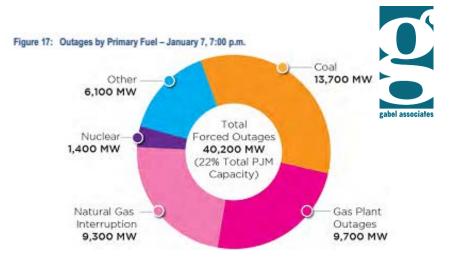
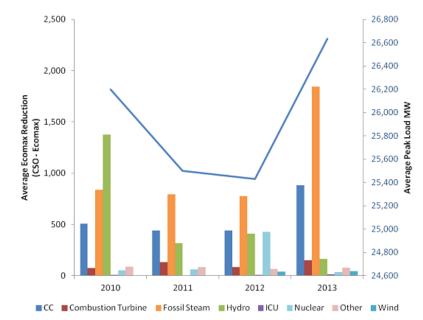



Figure 5: MW of Reduction in Ecomax by Technology Type During Peaks

Five central concepts of Pay-for-Performance & Capacity Performance

- Universal concepts affirmed by Federal Energy Regulatory Commission ("FERC")
 - Substantial penalties for non-performance during a very small number of emergencies
 - Penalties can eliminate capacity revenues or become charge to supplier for significant under-performance
 - Few excuses for non-performance
 - Option for premium capacity payment based on risk + CAPEX
 - "Losers" pay "winners" penalties allocated to over-performing resources
- Key differences between the two markets means that Capacity Performance is <u>not</u> "closely patterned" on Pay-for-Performance
- Novel design with a significantly different risk and reward profile

Pay-for-Performance: Two settlement construct

- Settlement 1: Base Payment equals each resource's Capacity Supply Obligation * FCA clearing price
- Settlement 2: Performance Payment = actual performance during each five minute interval of reserve scarcity
- Monthly Capacity Payments equal the sum of the two settlements

- Penalty
 - Performance Payment Rate (PPR)
 * Balancing Ratio (BR) * Capacity
 Supply Obligation (CSO)
- Credit
 - PPR * Actual energy or reserves provided during each interval (A)
- Capacity Performance Score
 - A-(BR*CSO)
- Performance Payment
 - [A-(BR*CSO)]*PPR

ISO-NE two settlement example 1: Neutral

Pay-for-Performance Two Settlement Examples: Neutral							
Market	ISC	D-NE (ROP)					
Capacity Supply Obligation (CSO)	MWs		1,000				
DY 2019/2020 Auction Clearing Price (ACP)	\$/MW-day	\$	231.13				
Balancing Ratio (BR)	\$		85%				
Actual Performance (A)	MWh		850				
Performance Payment Rate (PPR)	\$/MWh	\$	2,000				
Capacity Performance Score (A-(BR*CSO))	Hour		-				
Base Payment (CSO*ACP)	\$/Month	\$	7,030,100				
Performance Payment ([A-(BR*CSO)]*PPR)	\$/Month	\$	-				
Final Capacity Payment (Base Payment + Performance Payment)	\$/Month	\$	7,030,100				

ISO-NE two settlement example 2: Short

Pay-for-Performance Two Settlement Examples: Under-Performance							
Market	IS	O-NE (ROP)					
Capacity Supply Obligation (CSO)	MWs		1,000				
DY 2019/2020 Auction Clearing Price (ACP)	\$/MW-day	\$	231.13				
Balancing Ratio (BR)	\$		85%				
Actual Performance (A)	MWh		-				
Performance Payment Rate (PPR)	\$/MWh	\$	2,000				
Capacity Performance Score (A-(BR*CSO))	Hour		(850)				
Base Payment (CSO*ACP)	\$/Month	\$	7,030,100				
Performance Payment ([A-(BR*CSO)]*PPR)	\$/Month	\$	(1,700,000)				
Final Capacity Payment (Base Payment + Performance Payment)	\$/Month	\$	5,330,100				

ISO-NE two settlement example 3: Long

Pay-for-Performance Two Settlement Examples: Over-Performance						
Market	ISC	ISO-NE (ROP)				
Capacity Supply Obligation (CSO)	MWs		1,000			
DY 2019/2020 Auction Clearing Price (ACP)	\$/MW-day	\$	231.13			
Balancing Ratio (BR)	\$		85%			
Actual Performance (A)	MWh		1,000			
Performance Payment Rate (PPR)	\$/MWh	\$	2,000			
Capacity Performance Score (A-(BR*CSO))	Hour		150			
Base Payment (CSO*ACP)	\$/Month	\$	7,030,100			
Performance Payment ([A-(BR*CSO)]*PPR)	\$/Month	\$	300,000			
Final Capacity Payment (Base Payment + Performance Payment)	\$/Month	\$	7,330,100			

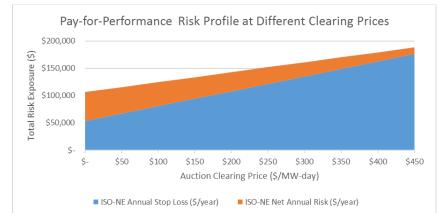
Capacity Performance: Three settlement construct

- Settlement 1: Capacity Payment for Cleared UCAP * Auction Clearing Price
- Settlement 2: Capacity Payment adjusted by total Non-Performance Charges and/or Bonus Payments
- Settlement 3: Shortfall in prompt forward Delivery Year from increased EFORd penalized by either Daily Deficiency Charge or Non-Performance Charge

- Non-Performance Penalty
 - Non-Performance Charge * Balancing Ratio (BR) * Cleared UCAP – excused non-performance
- Bonus Payment
 - Pro-rata share of pooled Non-Performance Charges
- Prompt forward settlement
 - UCAP shortfall * > 1.2 * Daily Capacity Revenues or Non-Performance Charges
- Results in penalty exposure for both performance <u>and</u> availability

gabel associates

Hourly penalty rate comparison


- Both markets penalize resources when delivered energy and reserves are below committed capacity * Balancing Ratio
- ISO-NE: Single pool-wide Performance Payment Rate:
 - 2018-2021: \$2,000 per MWh
 - 2021-2024: \$3,500 per MWh
 - 2024 onward: \$5,455 per MWh
- PJM: Multiple Non-Performance Charge Rates:
 - Net CONE <u>modeled LDA</u> in ICAP Terms * (365 days/30 hours)

Modeled LDA	•	enalty Rate 019/2020	YOY Change
DPL SOUTH	\$ 2,943.34	\$ 2,980.31	\$ 36.97
PS, PSEG NORTH	\$ 3,395.38	\$ 3,446.56	\$ 51.18
EMAAC	\$ 3,245.22	\$ 3,223.07	\$ (22.14)
BGE	\$ 2,684.34	\$ 2,450.29	\$ (234.05)
PEPCO	\$ 2,857.00	\$ 2,775.37	\$ (81.64)
SWMAAC	\$ 2,770.72	\$ 2,612.79	\$ (157.92)
PPL	\$ 3,244.97	\$ 3,156.12	\$ (88.85)
MAAC	\$ 3,095.44	\$ 2,977.55	\$ (117.90)
ATSI, ATSI CLEVELAND	\$ 3,096.05	\$ 3,000.64	\$ (95.41)
COMED	\$ 3,649.36	\$ 3,732.33	\$ 82.98
RTO	\$ 3,424.75	\$ 3,401.17	\$ (23.58)

Stop-loss limit comparison

- ISO-NE and PJM use stop loss provisions to cap penalty exposure
- ISO-NE: Monthly and Annual stop loss limits:
 - Monthly: Three months revenues using FCA starting price (> of Gross CONE or 1.6 * Net CONE)
 - Annual stop-loss: 100% of FCM revenues plus three months' revenue * difference between the FCA starting price and clearing price
- PJM: Annual stop-loss only
 - Net CONE <u>modeled LDA</u> in ICAP * 1.5 * 365 days
- Net Risk = Annual stop-loss minus capacity revenues
- Capacity Performance risk profile increases as prices fall

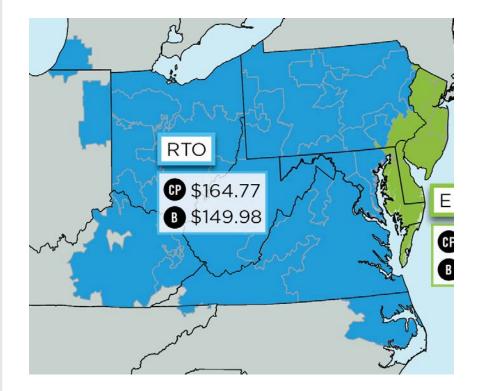
Comparison of ISO-NE and PJM Capacity Markets 2018/2019 Auction Results								
IS	O-NE (ROP)		PJM (RTO)					
\$	364.27	\$	281.49					
\$	2,000.00	\$	3,424.75					
\$	314.01	\$	167.44					
\$	114,612.00	\$	61,115.60					
\$	139,143.00	\$	154,113.69					
\$	(24,531.00)	\$	(92,998.09)					
	IS \$ \$ \$ \$	ISO-NE (ROP) \$ 364.27 \$ 2,000.00 \$ 314.01 \$ 114,612.00 \$ 139,143.00	ISO-NE (ROP) \$ 364.27 \$ \$ 2,000.00 \$ \$ 314.01 \$ \$ 114,612.00 \$					

Hours to Loss of Total Capacity Revenues	57.3	17.8
Hours to Annual Stop Loss	69.6	45.0

Comparison of ISO-NE and PJM Capacity Markets 2019/2020 Auction Results								
Market ISO-NE (ROP) PJM (RT								
Net CONE (\$/MW-Day)	\$	355.40	\$	279.55				
Hourly Penalty Rate (\$/MWh)	\$	2,000.00	\$	3,401.19				
DY 2019/2020 Clearing Price (\$/MW-Day)	\$	231.13	\$	100.00				
Annual Capacity Revenues (\$/MW-yr)	\$	84,361.20	\$	36,500.00				
Annual Penalty Exposure (\$/MW-yr)	\$	115,158.90	\$	153,053.63				
Net Total Exposure (Revenue minus Annual Stop-Loss) (\$/MW-yr)	\$	(30,797.70)	\$	(116,553.63)				

Hours to Loss of Total Capacity Revenues	42.2	10.7
Hours to Annual Stop Loss	57.6	45.0

Risk profile comparison



- We have attempted to develop an "apples to apples" comparison of risk profiles under both market designs
- Analysis uses clearing prices from the past two auctions results in ISO-NE and PJM
- Convert \$/kW-Month (ISO-NE) to \$/MW-day (PJM)
- Net total exposure attempts to show risk as a function of revenue
- Net risk exposure is substantially higher under Capacity Performance

PJM's penalty and stop loss calculation produce significantly different risk profiles for resources within the same cleared LDA

Modeled LDA	Annual Capacity Revenues		Penalty Rate		-				•		•		Annual Stop Loss		et Penalty Exposure	Hours to loss of Capacity Revenues
BGE	\$ 60,141.05	\$	2,684.34	\$	120,795.39	\$	(60,654.34)	22.4								
PEPCO	\$ 60,141.05	\$	2,857.00	\$	128,565.08	\$	(68,424.03)	21.1								
SWMAAC	\$ 60,141.05	\$	2,770.72	\$	124,682.18	\$	(64,541.13)	21.7								
PPL	\$ 60,141.05	\$	3,244.97	\$	146,023.58	\$	(85,882.53)	18.5								
MAAC	\$ 60,141.05	\$	3,095.44	\$	139,294.95	\$	(79,153.90)	19.4								
ATSI, ATSI CLEVELAND	\$ 60,141.05	\$	3,096.05	\$	139,322.18	\$	(79,181.13)	19.4								
RTO	\$ 60,141.05	\$	3,424.75	\$	154,113.69	\$	(93,972.64)	17.6								

Comparison "Bonus Payment" structure between both market constructs

- Both ISO-NE and PJM allocate penalties collected from under-performing assets to over-performing assets
- Two purposes
 - Incent resources to improve their performance
 - Allow resources to recover from penalties through strong performance during future events
- Pay-for Performance includes a mechanism where any underfunding of bonus payments is "made-whole" through a charge to all capacity resources
 - PJM does not include such a mechanism
 - Any discount rate further increases capacity resources' risk profiles because it takes "longer" to recover from a forced outage
- How do we estimate pay-out ratio in light of uncertainty surrounding excuses from performance?

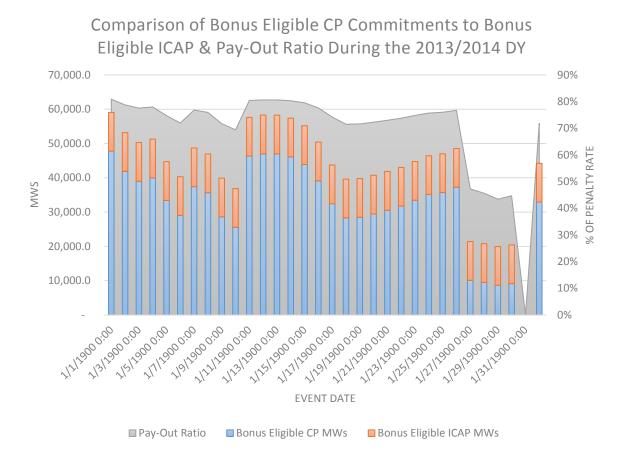
Comparison of excuses from performance obligation

Pay-for-Performance

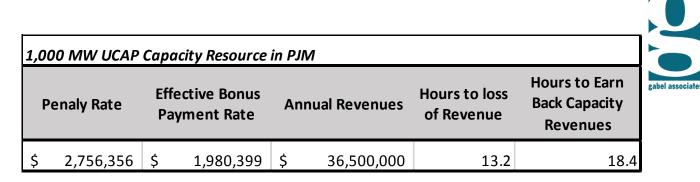
- ISO-NE directs the resource offline or dispatches down for a binding transmission constraint
- De-rate that does not push Performance Score below Capacity Supply Obligation * Balancing Ratio
- Monthly/Annual stop-loss limits

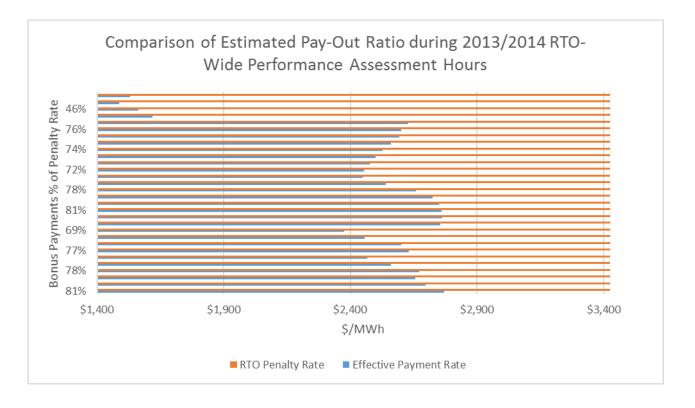
Capacity Performance

- UCAP v. ICAP
- Planned Outage
- Maintenance Outage
- Following dispatch below Expected Performance
- PJM determines that unit is not needed for reliability
- Annual stop-loss limit
- De-rate that does not push performance below Cleared UCAP
 * Balancing Ratio


Estimating the effect of underfunding on a capacity resource's risk profile

- Excuses such as PJM dispatch strategy are difficult to quantify due to lack of publically available data
- Focus on UCAP to ICAP contribution to under funding as a "jumping off point"
- PJM publishes cleared UCAP by fuel type for each Delivery Year
- IMM's State of the Market report provides EFORd rates by fuel type and a fleetwide average
- Gabel applied IMM's most recent EFORd values to PJM's cleared UCAP by fuel type for the 2018/2019 Delivery Year
- We then estimate the total quantity of bonus eligible MWs during all RTO-wide emergencies during the 2013/2014 Delivery Year using the Balancing Ratio values filed with FERC during Capacity Performance litigation process
- We assume that all capacity resources are producing their ICAP value during each event
- The sum of the ICAP/UCAP delta and bonus eligible MWs approximates the pool of resources that will receive a pro rata share of the corresponding penalties

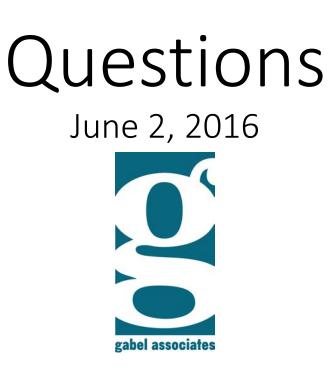

This analysis suggests that the average pay-out-ratio for all 2013/2014 RTO-wide events is 72%


2018/19 ICAP Estimate of Cleared UCAP MWs by Fuel Type								
Fuel Type	MWs UCAP	EFORd	ICAP					
Coal	44,560	10%	49,015.5					
Distillate Oil (No.2)	2,811	9%	3,064.2					
Gas	64,979	6.9%	69,462.3					
Kerosene	235	6.9%	251.0					
Nuclear	27,432	1.4%	27,815.8					
Other - Gas	301	6.9%	321.8					
Other - Liquid	40	6.9%	43.2					
Oil	5,025	9.0%	5,477.4					
Other - Solid	511	6.9%	546.3					
Solar	184	38%	297.6					
Water	7,273	4.7%	7,614.7					
Wood	263	6.9%	280.6					
Wind	857	13%	1,603.0					
Demand Response	11,084	0.0%	11,084.4					
Energy Efficiency	1,247	0.0%	1,246.5					
Grand Total	166,837		178,124.3					
Net Total			11,287.4					

Value of over-performance

- We see a meaningfully spread disparity in estimated pay-out ratios:
 - Highest: 81%
 - Lowest: 43%
- Additional excuses from performance likely further erode pay-out ratios
- Not the case for ISO-NE where full funding of Bonus Performance is mandated though uplift payments
 - Likely cost prohibitive in PJM
- Unlike, ISO-NE, over-performance MWs are not fungible in PJM
- PJM has no market-mechanism to manage under-funding
- Bonus value "trapped" by under-funding

ISO-NE Capacity Performance Bilateral v. PJM's Replacement Transaction


- ISO-NE allows capacity resources with a positive Capacity Performance Score to transfer some or all of its Capacity Performance Score to a third party
- Not limited to "un-cleared capacity"
- Fungible between market participants provide that both resources were included in the same scarcity event

- Replacement Resource Transactions limited to Available Capacity (i.e. un-cleared MWs) located in the owner's account before the emergency
- Parties must "predict" their performance and the probability of an emergency occurring shortfall in order to transact for a suitable Replacement Resource
- Over-Performance from cleared a Capacity Resource cannot be used as a Replacement Resource and is not fungible

Pay-for-Performance Two Settlement Examples: Over-Performance						
Market	ISC	D-NE (ROP)				
Capacity Supply Obligation (CSO)	MWs		1,000			
DY 2019/2020 Auction Clearing Price (ACP)	\$/MW-day	\$	231.13			
Balancing Ratio (BR)	\$		85%			
Actual Performance (A)	MWh		1,000			
Performance Payment Rate (PPR)	\$/MWh	\$	2,000			
Capacity Performance Score (A-(BR*CSO))	Hour		150			
Base Payment (CSO*ACP)	\$/Month	\$	7,030,100			
Performance Payment ([A-(BR*CSO)]*PPR)	\$/Month	\$	300,000			
Final Capacity Payment (Base Payment + Performance Payment)	\$/Month	\$	7,330,100			

Excess Capacity Performance Score value of Bonus Performance Payments or the price of a Capacity Performance Bilateral established by parties to the transaction

Michael Borgatti, Director, RTO Services

Gabel Associates, Inc.

Michael.Borgatti@gabelassociates.com

732.296.0770