III. Substation Bus Configurations and Substation Design Requirements

A. INTRODUCTION

There is some flexibility in developing a substation/switchyard arrangement for a particular interconnection. Pre-existing conditions, electrical arrangements or the criticality of the existing facility may limit this flexibility, but in the final analysis the interconnection arrangement must provide a high degree of reliability, operability and maintainability for the Transmission System. For these reasons, the breaker-and-a-half switchyard scheme is generally preferred for transmission switchyards and a line tap (particularly for high-voltage and extra-high-voltage lines) would not be considered acceptable. (Refer to PJM policies for additional guidance regarding three terminal line applications.)

There may also be instances when it is not considered prudent or practical to further extend an existing ring bus. Reasons for changing from a ring bus to a breaker-and-a-half arrangement might include the criticality or size of the load or generation to be interconnected, or the number of bus positions in existence or planned for the future. The larger the ring bus the greater the probability becomes during normal operations, multi-system events and maintenance that the substation could become fragmented into multiple pieces thereby losing its level of reliability.

The level of reliability for interconnected generation should be consistent with the generation’s anticipated availability and frequency of operation. Multiple generators bussed onto a single line, for example may minimize transmission interconnection cost, but it could be at the risk of severe economic lost-opportunity consequences for a single contingency failure.

B. FUNCTIONAL CRITERIA

When evaluating a proposed electrical interconnection for new Interconnection Customer, physical as well as electrical characteristics must be considered. This can be done to a certain degree by evaluating the arrangement using the following criteria:

1. The clearing of failed Interconnection Customer-owned facility equipment, including synchronizing breakers and Interconnection Customer transmission lines, should not adversely affect any TO transmission circuits. This generally means that there could be one or more intertie breakers.

2. The arrangement of circuits and breaker bays should be such that a stuck breaker operation will not trip two circuits on the same double circuit tower line.

3. Multiple ties should be provided between buses for all conditions, including all generation off-line while at least one transmission breaker is out of service for maintenance.

4. The arrangement of lines and breakers owned by the Interconnection Customer and not under control of PJM shall not allow transmission network load current to flow through the Interconnection Customer facility interconnection equipment.

5. For facilities without a generator terminal voltage synchronizing breaker or without transmission voltage intertie breakers, the generator radial attachment line should include motor-operated line isolation switches to allow transmission bus-ties to be established when a generator is off-line.
6. A transmission voltage line conductor or a static wire that drops within the switchyard area should not cause another transmission voltage circuit to trip. This means that there should be no line crossings within the switchyard fence and there should be adequate spacing between bays to minimize the possibility of a falling wire contacting another line’s phase conductor.

7. Electrical equipment must be adequately spaced to:
 - facilitate equipment replacement
 - facilitate maintenance activities and associated maintenance equipment
 - minimize the likelihood that catastrophic failure of an item of equipment will adversely impact adjacent equipment.

8. The electrical arrangement of interconnections should be balanced throughout the arrangement. For example generation interconnections should be spread along the bus rather than grouped together at one end. The objective is to facilitate better load flow and balance throughout the substation facility.

9. In addition to these evaluation criteria the following factors must be reviewed and weighed appropriately in performing the assessment of a substation configuration:
 - Operational complexity and flexibility
 - Reliability for the load
 - Reliability for transmission lines
 - Component reliability
 - Generator interface
 - Line Maintenance
 - NERC, MAAC requirements/criteria
 - Expandability/Adaptability
 - Safety
 - Changes in technology
 - Cost (capital and O&M)
 - Availability of spare equipment

C. SUBSTATION ARRANGEMENT

1. ACCESSIBILITY AND LAYOUT
 - Adequate space and firm vehicular surface must be provided on at least one side of each item of major electrical equipment to permit O&M vehicles, including bucket trucks and cranes, to access electrical equipment and to maneuver without requiring the de-energization of any adjacent electrical equipment in order to conduct maintenance or to remove and replace equipment. In a breaker bay this access must be provided the full length of the bay and must not be encumbered by overhead electrical equipment or conductors. Appropriate stone or asphalt roadway must be provided. Typical breaker bay centerline to adjacent bay breaker centerline distances is 65’ for 230kV and 110’ for 500kV.

 - Electrical equipment must be arranged with adequate clearance for maintenance activities and for associated maintenance equipment, such that only the equipment to be maintained, including its isolating devices, needs to be operated and/or de-energized for the maintenance work to be performed.
Electrical equipment must be arranged with adequate clearances such that a catastrophic failure of equipment associated with one circuit would be unlikely to adversely affect equipment associated with another circuit.

A corridor, typically 15 – 25 feet in width, must be provided around the inside perimeter of the substation for vehicle movement. The corridor must be adequate for the weight of vehicles transporting the heaviest item of electrical equipment installed in the substation. If the corridor is required to be paved, it must meet this same functional requirement and might typically be constructed with a 6” crushed stone base covered with 4” of asphalt, which is covered with a 2” top layer of cover asphalt.

Twenty-four hours, unobstructed access must be provided for the substation. Typically asphalt paving is required from the driveway entrance to the relay/control house with parking for several vehicles. The entrance gate must be double roadway width with the yard’s safety grounding covering the open gate area.

The switchyard should be appropriately graded to facilitate water runoff and to direct spilled dielectric fluid away from other major electrical equipment and toward planned containment.

2. GROUNDING AND FENCE

A minimum thickness of appropriate stone must be provided for the entire substation site (except where paved), including over the perimeter fence grounding, consistent with the substation’s grounding design for step and touch potential.

Grounding must be provided for the entire fenced site including the perimeter grounding outside the substation fence.

3. LIGHTING

Adequate lighting must be provided throughout the substation to facilitate the manual operation of electrical equipment at night and perimeter security lighting should be provided.

High mast lighting poles that could possibly fall across electrical equipment may not be employed.

4. LIGHTNING/SURGE/NOISE PROTECTION

Lightning protection must be provided for all electrical equipment in the form of static wires and lightning bayonets. Static wires must run parallel to breaker bays to minimize the likelihood that a fallen static wire would adversely impact an adjacent bay. See V.N for details of required lightning shielding and Section II Design Criteria for performance requirements.

Control wire shielding must be provided as appropriate and grounded as appropriate for substations with 230kV and above voltages.

5. RACEWAYS
• Typical outdoor main raceway systems consists of pre-cast trench raceway installed either on
grade or below grade with durable fire-resistant covers. Where vehicles must cross raceways,
such as a driveway near the relay/control house, suitable covers and construction must be
provided for the heaviest vehicle and equipment anticipated to cross the raceway.

• Physical separation of wiring associated with battery one from battery two associated wiring
must be maintained in the raceway system.

• All wiring and raceway corridors must be at grade or below grade. Conduit and cable tray
may not routed in a plane at or above the height of electrical equipment. This requirement is
intended to minimize the exposure of wiring to fire or explosion associated with electrical
equipment.

• Raceways must be routed perpendicular to the main busses and must not be routed parallel
and underneath high-voltage transmission lines.

6. SECURITY

• Locks are required for all gates and all doors and shall be compatible with the Transmission
Owner’s security system. If an electronic security system is provided there must be
provisions for manual entry in the event of loss of power supply.

• An intrusion alarm system shall be provided as appropriate and compatible with the
Transmission Owner’s security system.

7. RELAY/CONTROL HOUSE

• A substation relay/control house must be provided and should be located as centrally as
practical to minimize circuit length to electrical equipment. The relay/control house should
be located outside of the energized electrical infrastructure such that established roadway
access to the house does not require going under an energized main bus. If the Transmission
Owner approves that the roadway may go under overhead lines, the clearances must at least
meet industry’s overhead line roadway clearances.

• The relay/control house must be constructed for long life and minimum maintenance. The
local transmission owner must be contacted for specific design requirements, including the
need for lavatory facilities and HVAC and for approved construction materials.

• There must be an established demarcation in the relay/control house for leased
telecommunication services and phones for the dedicated use of the Transmission Owner.
These facilities must be independent of the Interconnection Customer’s facilities.

8. AUXILIARY FACILITIES

Layout of the substation must take into account auxiliary facilities such as space, as appropriate,
for an engine-generator set, maintenance facilities, lay down, pad and chain rail for bottle storage,
etc.