Duke Energy Business Services, Inc. adheres to any applicable NERC and RFC Reliability Standards.

Duke Energy Business Services, Inc. also has its own detailed planning criteria, which are shown on the following pages. Violations of these criteria would result in one or several of the following actions: expansion of transmission system; operating procedures; or a combination of the two. Acceptance of operating procedures is based on engineering judgment with the consideration of the probability of violation weighed against its consequences and possibly other factors.
Voltage

Bus voltages are screened using the Transmission System Voltage Limits below. These Limits specify minimum and maximum voltage levels during both normal and contingency conditions. Emergency Voltage Limits are defined as the upper and lower operating limits of each bus on the system.

The voltage limits are expressed as a percent of the nominal voltage.

All voltages should be maintained within the appropriate Emergency voltage limits.

Transmission System Voltage Limits

<table>
<thead>
<tr>
<th>Nominal Voltage (kV)</th>
<th>Normal Voltage Limits</th>
<th>Emergency Voltage Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimum</td>
<td>Maximum</td>
</tr>
<tr>
<td>345</td>
<td>95%</td>
<td>105%</td>
</tr>
<tr>
<td>230</td>
<td>95%</td>
<td>107%</td>
</tr>
<tr>
<td>138</td>
<td>95%</td>
<td>105%</td>
</tr>
<tr>
<td>132</td>
<td>95%</td>
<td>107.5%</td>
</tr>
<tr>
<td>69</td>
<td>95%</td>
<td>105%</td>
</tr>
<tr>
<td>66</td>
<td>95%</td>
<td>107.5%</td>
</tr>
</tbody>
</table>

Thermal

The following guidelines shall be used to ensure acceptable thermal loadings:

a) Under normal conditions, no facility should exceed its continuous thermal loading capability.

b) For a single contingency no facility should exceed its emergency loading capability.

Stability

The stability of the Duke Energy Midwest system and neighboring systems must be maintained for the contingencies specified in the applicable sections of the NERC and RFC Reliability Standards. Generating units must maintain angular stability under various contingency situations. Many different contingencies are considered and the selection is dependent on the location within the transmission system.

In addition to NERC and RFC Reliability Standards Duke’s jointly owned generating units with American Electric Power (AEP) formerly Columbus Southern Power (CSP) and Dayton Power and Light (DP&L) must remain stable for the following:

1. With one component out-of-service prior to fault, and a sudden subsequent single phase-to-ground fault accompanied by normal clearing of the fault.
2. Under Normal system conditions, a three-phase fault accompanied by a single pole circuit breaker failure with operation of back-up circuit breakers.

Fault Duty
All circuit breakers should be capable of interrupting the maximum fault current duty imposed on the circuit breaker.

Single Contingencies
The thermal and voltage limits should not be violated for either normal operations or under the loss of:
 a) A single transmission circuit
 b) A single transformer
 c) A single generating unit
 d) A single reactive power source or sink

Severe Contingencies
NERC Reliability Standards instruct transmission planners to evaluate extreme (highly improbable) contingency events resulting in multiple elements removed or cascading out of service. Severe contingencies are evaluated to determine the impact on the transmission system and on the surrounding interconnected transmission system. The severity of the consequences, availability of emergency switching procedures, probability of occurrence and the cost of remedial action will be considered in the evaluation of these double contingencies. For example double contingency line outages are considered in cases involving 132 kV underground cable feeders, which supply the West End and Charles substations in the Cincinnati, Ohio metropolitan area. For an outage of any other line with one such underground circuit out of service, the loading on all lines should be no higher than 100% of the emergency conductor rating and voltage should be 90% or higher at all points on the 132 kV system.

These planning criteria are not intended to be absolute or applied without exception. Other factors, such as severity of consequences, availability of emergency switching procedures, probability of occurrence and the cost of remedial action are also considered in the evaluation of the transmission system.