

Integrating Renewables at CAISO's Markets

Guillermo Bautista Alderete, Ph.D.
Director, Market Analysis and Forecasting
California ISO Corporation

PJM Operating Committee March 10, 2021

Major progress on meeting CA's renewable goals

- Currently Installed:
 - 21,000 MW of utility-scale renewables
 - ~11,000 MW of consumer rooftop solar
- Additional renewables:
 - 4,000+ MW additional utility-scale renewables by 2026
 - ~19,000 MW of consumer rooftop solar by 2030
- Projected 5000+ MW of storage and hybrid resources

System and markets are evolving towards a nondeterministic environment

- Weather variables, such as temperatures, introduce uncertainty components to multiple variables in the power system, including
 - Load forecast
 - Behind the meter generation
 - Utility-based wind and solar generation
 - Regulation requirements
- CAISO still uses a deterministic market clearing process with deterministic inputs
- Different products and procedures are developed to "factor in" uncertainty

The duck turns 10 years old: Actual net-load and 3-hour ramps are approximately four years ahead of the CAISO's original estimate

Demand Forecast Movement due to Behind the Meter Solar

BTM Solar Forecast Updates vs. Actual

Load Forecast Movement due to BTM Solar

CAISO PUBLIC Page 5

Variability poses a great forecasting challenge which results in uncertainty in market and systems operations

How does CAISO integrate renewables? CAISO's markets are technology agnostic

- Renewable forecast are generated and consumed every 5 minutes
- Renewable resources can economically bid
- Renewable resources are optimally dispatched in the market like any other type of generation resource
- Renewable resources receive and must follow operating instructions
- Ancillary services requirements consider the impact of renewable resources
- New flexible ramping product to handle uncertainty of renewable resources

Advancements to handle uncertainty in CAISO's market

and system

California ISO

Flexible ramping product implemented in 2016 makes important changes to the real-time market

- Secures ramping capability in the fifteen-minute market and real-time dispatch
- Accounts for upward and downward ramping needs
- Compensates resources that provide ramping and charges those that consume ramping capability

- Procures ramping capability for uncertainty when expected value greater than cost
- Aligns cost allocation with those who benefit from additional ramping capability to meet net load uncertainty

Wind & Solar Forecasting at CAISO

Eligible Intermittent Resources (EIR) Provide

- Asset Registration Information
- Outage/De-Rate Schedules
- Real-Time
 Generation
 Telemetry (MW)
- Real-Time Telemetry for Meteorological Information

opaz Solar Farm, San Luis Obispo County, Californi

Wind & Solar Forecast Service

Two Forecast Service Providers each provide:

- Hourly Day-Ahead Forecasts for each EIR out 4 Days; updated at 5:30 am and 8:45am Day Previous
- Real-Time
 Forecasts for rolling
 9 hours at a 5
 minute granularity.
 Updated every 5
 minutes
- One Provider
 Provides
 Probabilistic
 Forecasts used for risk assessment

- Forecasting Team can select "active"
 Forecast Provider for DA, RT, and Blend Configurations
- Hourly Forecast
 used in all reliability
 studies (RUC,
 Outage Coordination,
 Next Day Study)
- Real-Time Forecast used in real time dispatch to set DOT for EIR Resources
- Internal Persistence
 Forecast used in
 RTD to improve
 accuracy 40% from
 FSP providers.

Page 10

Forecast Horizons

Forecast Published

RTD

- Value produced every 5 min for interval 5-10 min ahead
- 288 binding intervals per day

RTPD

- Value produced every 15 min for interval 15-30 min ahead
- 96 binding intervals per day

HASP

- Values produced every hour for intervals
- 75-90 min ahead
- 90-105 min ahead
- 105-120 min a head
- 120-135 minahead

Day Ahead

 Values are published once a day

Persistence

Blending

Climatology

Why Is the Persistence Method needed?

Current:

Site Data Collected	FSP Creates Forecast	ALFS Process Complete				Binding Interval
13:45-13:50	13:51-13:53	13:54-13:57		13:57	Mkt Runs	14:05-14:10
5-10 minutes	up to 3 minutes	3 minutes			7.5 minutes	
PI Data submitted to FSP Forecast to ALFS			Site Data Collected Data to Market		Binding Interval	
Persistence Method:			13:56	13:57	Mkt Runs	14:05-14:10
					7.5 minutes	

- More recent actuals are used in forecast
- 6+ minutes are eliminated from lag

Forecast calculated within the market, eliminating forecasting system & processing time needed outside of CAISO

Data to Market

Page 12

Up to 50% of renewables is price responsive

RTD renewable curtailments exhibit a seasonal pattern

Page 14