

NERC Lessons Learned

Donnie Bielak Manager, Reliability Engineering

www.pjm.com | Public PJM © 2020

Lockout Relay Component Failure Causes Misoperation and Reportable Event

Midwest Reliability Organization

July 30, 2020

Problem Statement

- An unnecessary trip caused BES equipment to be removed from service
- Caused by a misoperation of the lockout relay associated with a 345 kV breaker at Substation A
- Tripped (2) lines and XFMR
- A faulty lighted nameplate control circuit was found to be responsible

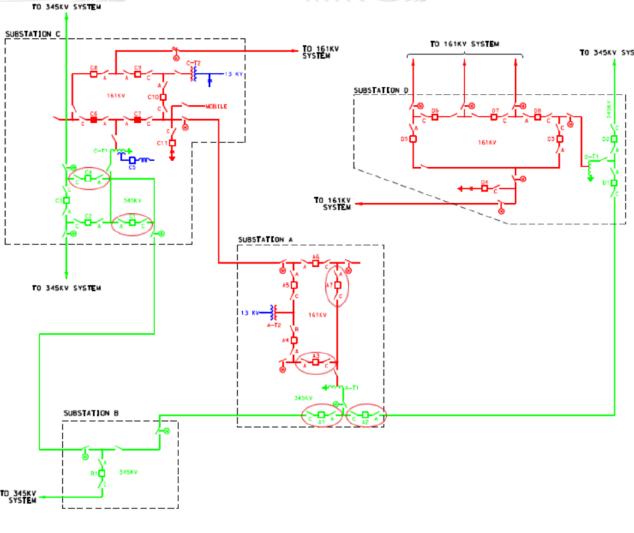


Figure 1: Diagram showing the breakers affected (circled) by the misoperation of the lockout relay [1]

- A 2014 product advisory note was found detailing potential issues with the circuit board
- The entity had no record of receiving the notice
- The entity surveyed to determine the locations of the affected products
- Replacement of either the circuit board or the entire lockout relay was done

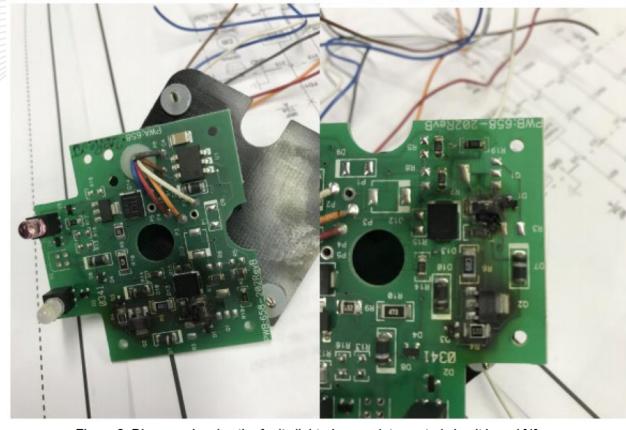


Figure 2: Diagram showing the faulty lighted nameplate control circuit board [1]

- Reach out to manufacturer for more information when needed from a product advisory to determine system risk and required corrective actions
- Develop procedures to log and review future advisory notes
- Survey manufacturers to ensure that all advisories are received, logged, and reviewed

www.pjm.com | Public 5 PJM © 2020

Verification of AC Quantities during Protection System Design and Commissioning

ERO Team (Multi-Region)

July 30, 2020

- Expanded version of "Verification of AC Quantities during Protection System Commissioning" from March 11, 2014
- Lack of effective commission testing and quality checks of protection systems has led to preventable misoperations
- Issues with voltage and current instrument transformer wiring regularly occur
- These misoperations can increase the magnitude of a system disturbance

- Relays have been put in service with missing connections and incorrect CT ratios due to a lack of effective testing and checks
- Both have contributed to an increase in magnitude of system disturbances
- Affected relays must then be rewired and tested

- Develop effective procedures to perform quality checks on protection systems before installation
- Develop effective procedures to perform commission testing on protection systems, including installation testing and in-service testing
- Commissioning Testing Attachment includes:
 - In-Service Voltage, In-Service Current, Phase Current In-Service Current, Residual Current In-Service Current, Zero Sequence Current Polarizing In-Service Current, Transformer Neutral Differential (87TN) In-Service Current, Primary Current, Secondary Current, CT

- Lockout Relay Component Failure Causes Misoperation and Reportable Event
 - https://www.nerc.com/pa/rrm/ea/Lessons%20Learned%20Document%20Library/LL20200703 Lockout Relay Component Failure Causes Misoperation.pdf
- Verification of AC Quantities during Protection System Design and Commissioning
 - https://www.nerc.com/pa/rrm/ea/Lessons%20Learned%20Document%20Library/LL20200702 Commissioning Testing.pdf

Donnie Bielak, donnie.bielak@pjm.com

SME:

Donnie Bielak, donnie.bielak@pjm.com

NERC Lessons Learned

Member Hotline

(610) 666 - 8980

(866) 400 - 8980

custsvc@pjm.com