

LMP Calculation and Uplift

Anthony Giacomoni January 29, 2018

- Review fundamentals of locational marginal pricing (LMP) and uplift
- Review simple locational marginal pricing and uplift examples

Three costs compose a resource's offer:

Start-up cost (\$/start)

Incremental energy cost (\$/MWh)

No-load cost (\$/hour)

Convexity refers to the curvature of a function.

A function is convex if any straight line you draw across the function does not intersect the function in more than two places.

Non-Convex Function –

more than two intersection

points

- LMP is the cost of optimally supplying an increment (or decrement) of load at a particular location while satisfying all operational constraints.
 - One can think of the LMP as the change in total production cost to deliver an increment of load at a location using the offers submitted to the market.
 - The commitment cannot change in response to an increment in load.
- LMPs are produced as a result of economic dispatch with the commitment fixed.

- PJM currently uses locational marginal pricing
 - Initially chosen for simplicity in concept and implementation
- It ignores the presence of non-convexities in its price-setting logic and assumes that certain units (often referred to as inflexible units), or certain output ranges of units, are ineligible to set price when they fail the convex condition
 - Many units have non-convex total cost curves because when their output decreases below their minimum operating limits, their incremental costs rise
 - To address this, units submit offers starting at the MW output at which their incremental costs become monotonically increasing

- In general, resources that are online and being dispatched by PJM can be relied upon to serve the next MW of load (eligible to set LMP)
 - Excludes: block loaded units, interchange transactions, among others
- From these resources, only those MW above the minimum operating limit may set LMP

What Part of a Resource's Offer is Used in LMP?

Three Part Offer

Startup Offer

No Load Offer **(2**)

Used In

Commitment Decisions

Dispatch and LMP

\$/Start

\$/Hour

\$/MW

Costs not included in LMP may be recovered via uplift

- For resources that are "out of the money", any portion of a resource's incremental cost that exceeds LMP
 - Units that are needed for only a portion of their minimum output
 - "Inflexible" units that are needed to serve load
- Generator start up and no load costs / DR Shutdown cost

Uplift = Make-Whole Payments + Lost Opportunity Cost

- Make-whole payments: Occur when a resource's revenue cannot cover its total offer costs, including fixed costs (start-up and no-load costs).
- Lost opportunity cost: Occurs when a resource's dispatch point is not profit maximizing.

Additional Uplift Drivers

Unit
Parameters
Long lead
time units

Load, interchange and outages under or over forecast

Reactive constraints

LMP AND UPLIFT EXAMPLES

Set 1

Example I

Example I

Example II

Example II

LMP AND UPLIFT EXAMPLES

Set 2

Example 5: Base Scenario

Hour 1

LMP = \$35/MWh

Hour 2

LMP = \$35/MWh

Load = **_ 700 MW**

Unit D: \$35 200 MW

Unit C: \$30 200 MW

Unit B: \$25 200 MW

Unit A: \$10 200 MW

Load = 200 MW

Unit C: \$30 200 MW

Unit B: \$25 200 MW

Unit A: \$10 200 MW

Units A and D are flexible

Units B and C are lumpy or block-loaded

Minimum Runtime = 1 hour

Example 5: Declining Demand

Hour 1

LMP = \$35/MWh

Hour 2 LMP = \$35/MWh

Load = ____ **700 MW**

Units A and D are flexible

Units B and C are lumpy or block-loaded

Minimum Runtime = 1 hour

Unit D: \$35 200 MW

Unit C: \$30 200 MW

Unit B: \$25 200 MW

Unit A: \$10 200 MW

Load = Unit D: \$35 500 MW

Linit B: \$25

Unit B: \$25 200 MW

Unit A: \$10 200 MW Unit C: \$30 200 MW

Example 5: Unit C has an Incentive to Bid Inflexibly

LMP = \$35/MWh

Hour 2

LMP = \$35/MWh

Load = **700 MW**

Units A and D are flexible

Units B and C are lumpy or block-loaded

Minimum Runtime = 1 hour

Unit D: \$35 200 MW

Unit C: \$30 200 MW

Unit B: \$25 200 MW

Unit A: \$10 200 MW Load = Unit D: \$35 500 MW 200 MW

Unit C: \$30 200 MW

Unit A: \$10 200 MW Unit B: \$25 200 MW

Unit C raises its Minimum Runtime to 2 hours and replaces Unit B

Example 5: Units B & C have an Incentive to Bid Inflexibly

LMP = \$35/MWh

Load = **700 MW**

Units A and D are flexible

Units B and C are lumpy or block-loaded

Minimum Runtime = 1 hour

Unit D: \$35 200 MW

Unit C: \$30 200 MW

Unit B: \$25 200 MW

Unit A: \$10 200 MW

Hour 2

LMP = \$10/MWh Uplift = \$4,000

Load = Unit C: \$30 200 MW

Unit B: \$25 200 MW

Unit A: \$10 200 MW Unit D: \$35 200 MW

Both units B and C raise their Minimum Runtime to 2 hours and are dispatched

APPENDIX

LMP AND UPLIFT EXAMPLES

Set 3

- Load = 480 MW
- No imports, exports or price-sensitive demand
- Can be considered in the context of the Day-Ahead or Real-Time Market
- Objective: to determine the least-cost commitment and dispatch to meet the load

Note: The following numerical example was initially developed by ISO New England and is used with permission. https://www.iso-ne.com/static-

assets/documents/support/training/courses/energy_mkt_ancil_serv_top/price_information_technical_session_session4.pdf

Example #1: Offer Blocks (MW)

Any resource that is "committed" must run at least at its minimum.

Example #1: Marginal Pricing with Minimum Generation

Example #1: What Is the Commitment and Dispatch?

Example #1: What Is the Commitment and Dispatch?

The settlement:

LMP = \$69/MWh

Resource	Commitment	Dispatch (MW)	Total Offer Cost (\$)	Payment (\$)	MWP (\$)
W	On	260	13,270	17,940	0
X	On	170	10,670	11,730	0
Υ	On	50	10,000	3,450	6,550

Y has an incentive to deviate from the 50 MW dispatch (it would prefer 0 MW given the \$69/MWh price) without the make-whole payment.

Load = 365 MW

Same offer blocks as Example #1 for each resource

 Fixed costs (start-up) added to Resource X and Resource Y

Example #2: Offer Blocks (MW) & Fixed Costs Any resource that is "committed" must run at least at its minimum

The LMP is \$241/MWh.

Resource	Commitment	Dispatch (MW)	Total Offer Cost (\$)	Payment (\$)	MWP (\$)	LOC (\$)
W	On	260	13,270	62,660	0	0
X	Off	0	0	0	0	2,020
Y	On	105	27,255	25,305	1,950	0

Reminder: At X's offer prices of \$60–\$69/MWh, it would want to come online at a \$241/MWh clearing pricing since it would make a profit at \$241/MWh of \$2,020. Today's markets in general do not pay this LOC to offline resources.

What if the Load Went Up for this Example?

- As total load rises, the total offer cost of meeting that demand rises.
- Increase load to:
 - Example 3 Load = 430 MW
 - Example 4 Load = 445 MW

Example #3: Pricing and Settlement

The LMP is \$69/MWh.

Resource	Commitment	Dispatch (MW)	Total Offer Cost (\$)	Payment (\$)	MWP (\$)	LOC (\$)
W	On	260	13,270	17,940	0	0
X	On	170	40,670	11,730	28,940	0
Y	Off	0	0	0	0	0

Example #4: Pricing and Settlement

The LMP is \$65/MWh:

Resource	Commitment	Dispatch (MW)	Total Offer Cost (\$)	Payment (\$)	MWP (\$)	LOC (\$)
W	On	260	13,270	16,900	0	0
X	On	135	38,275	8,775	29,500	0
Υ	On	50	15,000	3,250	11,750	0

• In Examples 2-4, the price decreases as load increases

Load (MW)	LMP (\$/MWh)
365	241
430	69
445	65