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I. INTRODUCTION 

 
This document discusses the impetus for, and development of, significant changes to the load forecasting 
models maintained by the PJM Interconnection. These changes were implemented with the release of the 
2016 PJM Load Forecast Report. It is intended to serve as documentation of the implemented peak and 
energy forecast models. Its intended audience is members of the PJM Load Analysis Subcommittee and 
the Planning Committee. 
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II. BACKGROUND OF FORECAST INVESTIGATION 

 
The PJM Interconnection established an independent load forecast, produced by PJM staff, with the 
release of the 2006 PJM Load Forecast Report. The initial PJM load forecast model was an econometric 
model that produced estimates of non-coincident and coincident peak loads for each PJM zone, locational 
deliverability area (LDA) and the RTO. It used local economic activity, weather, and day-type variables as 
explanatory variables/drivers. Weather data and economic data and forecasts were procured from outside 
vendors. The model featured simulation of historical weather patterns and regional diversities to develop a 
distribution of forecasts which were then used to produce monthly and seasonal forecasts across a range 
of weather conditions. In ensuing years, PJM made numerous changes to the model based on internal 
review, stakeholder input and recommendations from outside consultants (e.g., adding a net energy for 
load forecast, extending the forecast horizon from ten to fifteen years, directly modeling coincident peak, 
adopting an indexed economic variable with six components, etc.), but the basic structure of the model 
remained consistent. 
 
Beginning with the Great Recession of 2007-2009, the accuracy of the PJM model decayed noticeably, with 
a trend towards over-forecasting. Each successive load forecast tended to be lower for a given year than 
the forecast produced one year prior, as illustrated in Figure II-1 below. Initially, the majority of the 
inaccuracy could be attributed to revisions to the economic forecast used to develop the PJM load forecast. 
While the U.S. economy recovered at a slow and unsteady pace from the recession, successive economic 
forecasts continued to predict a period of robust growth in the near-term followed by a resumption of trend 
growth in the long-term. Since the economic forecast is acquired from a third party, PJM’s ability to correct 
the bias was extremely limited. But as the economy continued to recover and economic forecasts 
stabilized, the model’s accuracy did not improve commensurately and it became apparent that other factors 
were also contributing to model error. The declining peak load forecasts had significant impacts: previously 
approved transmission expansion projects were postponed or canceled and resources were over-procured 
through the forward capacity market. As a result, by the end of 2012 there were growing calls both 
internally and externally for PJM to address the issue. The latest efforts are discussed in Section IV, along 
with commentary on earlier efforts in APPENDIX E and APPENDIX F. 
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Figure II-1 : History of PJM Peak Load Forecasts 
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III. FORECAST MODEL STRUCTURE 

 
PJM uses regression models with daily load as the dependent variable and independent variables including 
calendar effects, weather, economics, and end-use characteristics. The model is estimated over historical 
data back to 1998 and is used to produce a 15-year forecast for PJM zones, LDAs, and the RTO. LDA and 
RTO forecasts are produced using a bottom-up approach, forecasting zonal contributions and aggregating. 

Dependent Variables 

 
PJM starts with hourly metered load data collected via Power Meter, and then makes adjustments based 
on estimated load drops1 and estimated distributed solar generation to obtain hourly unrestricted loads. 
Individual daily zonal peaks (non-coincident peaks or NCPs) are identified, as well as zonal contributions to 
LDA and RTO peaks.  
 
In the case of daily energy, hourly metered load is only supplemented with estimated distributed solar 
generation and not estimated load drops. Daily energy is then the sum of these hourly values.  

Independent Variables 

 
Calendar 
 
The forecast model includes a number of variables to capture calendar effects, represented primarily as 
either binary variables or fuzzy binary variables. Binary variables take a value of 1 or 0, whereas fuzzy 
binary variables have values ranging from 0 to 1. There is also a graduated variable to take into account 
the effect of Christmas lights. 
 
Day of Week (=1 when that day, 0 otherwise) 
 

Monday Tuesday Wednesday Thursday Friday Saturday 

 
Month (=1 when that month, 0 otherwise) 
 

January February March April May June 

July August September October November 

 
Holiday variables are coded such that they have values for more than one day, and for some holidays 
these values can differ year to year depending on the day of the week the holiday is observed. These 
variables are included because generally these days would be expected to have loads below norm. 
 
 
 
 

                                                
1 Load Drops are described in Attachment A of PJM Manual 19.  
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MLK (Martin Luther King Day), PresDay (Presidents’ Day), MemDay (Memorial Day), and LaborDay (Labor 
Day)  
 

 Value 

Day before Holiday 0.2 

On Holiday 1 

All other days 0 

 
GoodFri (Good Friday) and Thanks (Thanksgiving Day)  
 

 Value 

On Holiday 1 

All other days 0 

 
July4th (Independence Day) 
 

 Value by Day of Week 

 Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

July 2 0.10 0.00 0.00 0.15 0.15 0.10 0.15 

July 3 0.70 0.25 0.15 0.20 0.80 0.20 0.20 

July 4 1.00 1.00 0.80 1.00 1.00 0.40 0.30 

July 5 0.80 0.15 0.15 0.25 0.70 0.30 0.15 

July 6 0.00 0.00 0.00 0.00 0.10 0.20 0.00 

All other days 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 
FriAThanks (After Thanksgiving Day) 
 

 Value 

On Holiday 1 

Day After 0.2 

All other days  0 

 
XMasWkB4 (Week before Christmas Day) 
 

 Value by Day of Week 

 Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

December 21 0.33 0.33 0.33 0.50 0.50 0.50 0.33 

December 22 0.50 0.50 0.67 0.67 0.80 0.50 0.50 

December 23 1.00 0.67 0.67 1.00 1.00 0.67 0.67 

All other days 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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XmasEve (Christmas Eve) 
 

 Value by Day of Week 

 Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

December 24 1.00 1.00 0.80 0.67 1.00 0.50 0.33 

All other days 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 
XMasDay (Christmas Day) 
 

 Value by Day of Week 

 Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

December 25 1.00 1.00 1.00 1.00 1.00 0.50 0.50 

All other days 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 
XMasWk (Time around Christmas and New Year’s) 
 

 Value by Day of Week 

 Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

December 26 1.00 0.67 0.67 0.67 1.00 0.20 0.25 

December 27 0.25 0.33 0.33 0.33 0.50 0.20 0.15 

December 28 0.25 0.33 0.33 0.33 0.33 0.20 0.15 

December 29 0.33 0.33 0.33 0.33 0.33 0.20 0.15 

December 30 0.80 0.50 0.33 0.50 0.50 0.25 0.25 

January 2 0.80 0.15 0.33 0.33 0.67 0.25 0.15 

January 3 0.00 0.15 0.00 0.15 0.15 0.15 0.15 

January 4 0.00 0.00 0.00 0.00 0.15 0.00 0.00 

All other days 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 
NYEve (New Year’s Eve) 
 

 Value by Day of Week 

 Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

December 31 0.8 0.8 0.8 0.8 1.0 0.4 0.4 

All other days 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 
NYDay (New Year’s Day) 
 

 Value by Day of Week 

 Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

January 1 1.0 1.0 1.0 1.0 1.0 0.5 0.4 

All other days 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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DLSav_EPA2005 (Daylight Savings Time Indicator) 
 

 Value 

Within Daylight Savings Time Period 1 

All other days 0 

 
XMasLights (Christmas Lights Indicator) 
 
This is a graduated variable that starts at 1 on the Friday after Thanksgiving, and increases by 1 each day 
until December 23.  
 
Economics 
 
PJM uses a collection of economic variables to represent different sectors (Residential, Commercial, and 
Industrial). Variables are combined into a single Economic Index using a weighting scheme that reflects 
each sector’s share of a zone’s total electricity sales. Moody’s Analytics provides the historic and forecast 
data for all economic variables. 
 
Each zone is assigned one or more metropolitan statistical areas (MSAs) 2 that represent economics in its 
footprint3. Each individual variable is summed across MSAs to derive the zonal figure to be used in later 
calculations. 
  

Residential Commercial Industrial 

Households Non-manufacturing Employment Gross Domestic Product 

Population Gross Domestic Product Gross Metropolitan Product 

Real Personal 
Income 

Gross Metropolitan Product  

 Population  

 
Each variable is then divided by its value in 1998 to convert each into an index. This conversion is 
necessary because the variables are expressed in different terms, with some being count-based measures 
(i.e. population) while others are dollar-based (i.e. Gross Domestic Product). Three sector economic 
indexes are then constructed based on survey-driven weights4 (see Equation III-1). 
 
 
 
 
 
 

                                                
2 The lone exception to the use of metropolitan statistical areas is the Dominion zone. Statewide economics are used in its case.  
3 The MSAs used for each zone are listed in Manual 19 
4 These weights originate from a 2010 forecasters survey by Itron which ascertained the relative importance of each variable to 

sector energy sales. 

http://www.pjm.com/


 
Load Forecasting Model Whitepaper 

 

PJM © 2016     www.pjm.com    13 | P a g e  
 

Equation III-1 : Sectoral Economic Indexes 

ResEconIndexzone,t = (HHzone,t/HHzone,1998)0.47 x (Popzone,t/Popzone,1998)0.26 x (PInczone,t/PInczone,1998)0.27 

 
ComEconIndexzone,t = (NMEmpzone,t/NMEmpzone,1998)0.47 x (GDPzone,t/GDPzone,1998)0.20 x 

(GMPzone,t/GMPzone,1998)0.16 x (Popzone,t/Popzone,1998)0.17 

 
IndEconIndexzone,t = (GDPzone,t/GDPzone,1998)0.47 x (GMPzone,t/GMPzone,1998)0.53 

 
Where 

HH = Households 
Pop = Population 

PInc = Real Personal Income 
NMEmp = Non-manufacturing Employment 

GDP = Gross Domestic Product 
GMP = Gross Metropolitan Product 

 
The three individual sector economic indexes are then combined into a single economic index for each 
zone, using each sector’s share of the zone’s total electricity sales over a 5-year period from FERC Form 1 
(see Equation III-2)5. Weights are published annually with the Load Forecast Statistical Appendix. 
 

Equation III-2 : Aggregate Economic Index 

EconIndexzone,t = ResWt x ResEconIndexzone,t + ComWt x ComEconIndexzone,t + IndWt x 
IndEconIndexzone,t 

 
Where 

ResWt = (Residential Sales)/(Total Sales) 
ComWt = (Commercial Sales)/(Total Sales) 

IndWt = (Industrial Sales)/(Total Sales) 

 
The economic index is then used in several locations in the forecast model to help the model explain 
different phenomena, namely, base load growth and the relationship of economics with weather sensitive 
energy demand.  
 
End-Use Characteristics 
 
The load forecast model includes variables to capture trends in end-use characteristics of equipment 
saturation and efficiency. Terms, analysis, and index construction are described in detail in Section IV - 
Equipment/Appliance Saturation and Efficiency. The result is three equipment indexes that describe 
different activity types: Heating, Cooling and Other. Each index is a weighted combination of various 
equipment types across the Residential and Commercial sectors. These variables are then used in several 
locations in the forecast model as laid out in Equation IV-4, Equation IV-5, and Equation IV-6. 
 

                                                
5 Data for EKPC is collected from the Kentucky Public Service Commission (http://psc.ky.gov/).  
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Weather 
 
The forecast model includes several different variables to capture the impact of weather on load across the 
seasons. Weather variables are specified as splines over defined ranges, to allow for different relationships 
of load to weather depending on conditions.  
 
For the winter and colder periods in the shoulder months, wind-adjusted temperature (or oft-called winter 
weather parameter (WWP)) is used as the weather parameter. For the summer and hotter periods in the 
shoulder months, the temperature-humidity index (THI) is used as the weather parameter. These concepts 
are defined in Equation III-3. 
 

Equation III-3 : Weather Parameters (WWP and THI) 

Wind-Adjusted Temperature 
 

WWP = Temp – (0.5 x (Wind – 10)), if Wind > 10  
WWP = Temp, if Wind <= 10 

 
Where  

Wind = Wind velocity in MPH 
WWP = Wind-Adjusted Temperature 

Temp = Dry bulb temperature 
 

Temperature-Humidity Index 
 

THI = Temp – 0.55 x (1 – Hum) x (Temp – 58), if Temp >= 58 
THI = Temp, if Temp < 58 

 
Where  

THI = Temperature-Humidity Index 
Temp = Dry bulb temperature 

Hum = Relative Humidity (where 100% = 1) 

 
These weather concepts are then used to create four-section splines each for the summer6 (May – 
September) and winter (January, February, and December) seasons. The shoulder months use a 
combination of WWP and THI to reflect the contrasting weather patterns that these periods contain. These 
combinations are defined and described in detail in Section IV - Refined Weather Treatment. 
 
In addition to the seasonal specific splines, CDD, HDD and one day lags of both terms are used in the 
forecast model as well. These variables are used year-round, and are defined in Equation III-4.  
 

                                                
6 This definition of summer for THI differs from that used in the Load Forecast to define summer, which includes only June 

through August. This is because while May and September are noticeably milder than June through August and very unlikely 
to contain summer peaks, they do share similar weather characteristics. 
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Equation III-4 : Weather Parameters (CDD and HDD) 

CDD = Maximum (Avg_Temp – 65 , 0) 
HDD = Maximum (60 – Avg_Temp , 0) 

 
Where 

Avg_Temp = Daily Average Temperature 

 
Load Adjustments 
 
Load adjustments are variables introduced to individual zones to reflect a change that has already occurred 
that is not adequately captured by the forecast model. Examples of situations potentially requiring a load 
adjustment would be a large customer shutdown/addition or service territory shift in a zone. These 
adjustments are intended to cover sudden shifts that the load forecast model would otherwise overlook. 
Load adjustment variables are a 1 for a specified time period and a 0 otherwise. 
 
Autoregressive Error Term 
 
The load forecast employs an autoregressive model for the errors with a one period lag, or an AR(1) error 
structure. This is a statistical method to account for errors being correlated with a lag of themselves. The 
rationale and investigation into the use of an autoregressive term is detailed in Section IV.  
Autoregressive error parameter definitions can vary depending on the software being used. PJM uses SAS 
software to develop the load forecast model, and as such the coefficient on the AR(1) parameter is defined 
in Equation III-5.  

Equation III-5 : Autoregressive Error Term Specification 

OrigErrort = NewErrort – φ x OrigErrort-1 

 
Where 

OrigError = Model Error prior to AR(1) 
New Error = Model Error after AR(1) 

φ = AR(1) coefficient 
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Model Summary 
 
The following tables are a summary of the dependent and independent variables used in the load forecast 
model. This is intended as a quick reference guide with variable names as they are listed in the Statistical 
Appendix released with each annual Load Forecast.  
 

Dependent Variables 

Variable Description 

ENERGY Daily Energy (GWh) 

NCP Daily Non-coincident Peak (MW) 

CP_RTO_EKPC Daily contribution to PJM Peak (MW)  

CP_RFC_ATSI_DUKE Daily contribution to RFC portion of PJM Peak (MW) 

CP_WEST_EKPC Daily contribution to PJM West Peak (MW) 

CP_PJM_MA Daily contribution to PJM Mid-Atlantic Peak (MW) 

CP_MA_CENT Daily contribution to PJM Central Mid-Atlantic Peak (MW) 

CP_MA_EAST Daily contribution to PJM Eastern Mid-Atlantic Peak (MW) 

CP_MA_SOUTH Daily contribution to PJM Southern Mid-Atlantic Peak (MW)  

CP_MA_WEST Daily contribution to PJM Western Mid-Atlantic Peak (MW) 

CP_PJM_SOUTH Daily contribution to PJM South Peak (MW) 

CP_GPU Daily contribution to FE-East Peak (MW) 

CP_PLGRP Daily contribution to PLGRP Peak (MW) 
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Independent Variables 

Variable Description 

Intercept Model Intercept term 

Monday Daily binary 

Tuesday Daily binary 

Wednesday Daily binary 

Thursday Daily binary 

Friday Daily binary 

Saturday Daily binary 

MLK Holiday fuzzy binary 

PresDay Holiday fuzzy binary 

GoodFri Holiday binary 

MemDay Holiday fuzzy binary 

July4th Holiday fuzzy binary 

LaborDay Holiday fuzzy binary 

Thanks Holiday binary 

FriAThanks Holiday fuzzy binary 

XMasWkB4 Holiday fuzzy binary 

XMasEve Holiday fuzzy binary 

XMasDay Holiday fuzzy binary 

XMasWk Holiday fuzzy binary 

NYEve Holiday fuzzy binary 

NYDay Holiday fuzzy binary 

XMasLights Graduated variable 

January Monthly binary 

February Monthly binary 

March Monthly binary 

April Monthly binary 

May Monthly binary 

June Monthly binary 

July Monthly binary 

August Monthly binary 

September Monthly binary 

October Monthly binary 

November Monthly binary 

DLSav_EPA2005 Daylight Savings binary 

Heat_IN2_HDD Heating Trend variable: Heating Equipment Index x Economic Index x 
Heating Degree Days 

Cool_IN2_CDD Cooling Trend variable: Cooling Equipment Index x Economic Index x 
Cooling Degree Days 

Heat_IN2_Lag1HDD One-Day Lag Heating Trend variable: Heating Equipment Index x  
Economic Index x Heating Degree Days (-1) 
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Cool_IN2_Lag1CDD One-Day Lag Cooling Trend variable: Cooling Equipment Index x   
Economic Index x Cooling Degree Days (-1) 

S1_THI Temperature-Humidity Index Spline 1 (in effect months 5-9) 

Cool_S2_THI Cooling Equipment Index x Temperature-Humidity Index Spline 2 (in effect 
months 5-9) 

Cool_S3_THI Cooling Equipment Index x Temperature-Humidity Index Spline 3 (in effect 
months 5-9) 

Cool_S4_THI Cooling Equipment Index x Temperature-Humidity Index Spline 4 (in effect 
months 5-9) 

Heat_S1_WWP Heating Equipment Index x Wind-adjusted Temperature Spline 1 (in effect 
months 1, 2, 12) 

Heat_S2_WWP Heating Equipment Index x Wind-adjusted Temperature Spline 2 (in effect 
months 1, 2, 12) 

Heat_S3_WWP Heating Equipment Index x Wind-adjusted Temperature Spline 3 (in effect 
months 1, 2, 12) 

Heat_S4_WWP Heating Equipment Index x Wind-adjusted Temperature Spline 4 (in effect 
months 1, 2, 12) 

Heat_Shldr_WAT19_50lt Heating Equipment Index x Wind-adjusted Temperature (in effect months 3, 
4, 10, 11 when less than 50) 

Shldr_WAT19_Base Wind-adjusted Temperature (in effect months 3, 4, 10, 11 when greater than 
or equal to 50 and less than or equal to 70) 

Cool_Shldr_THI Cooling Equipment Index x Temperature-Humidity Index (in effect months 3, 
4, 10, 11 when wind-adjusted temperature is greater than 70) 

Other_DailyIN2 Other Equipment Index x Economic Index 

LA_YYYY Load Adjustment identified by year it takes effect, Binary variable 

AR1 Autoregressive Error Term 
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Forecast Simulation – Non-Coincident Peaks 

 
Once the load model is estimated, forecasts for each PJM transmission zone are produced by solving the 
zonal NCP equations, moving through the year day by day, using forecasted economic variables, 
equipment indexes, and historical weather patterns for each day. 
 
For forecasting purposes, values for economic variables and equipment indexes are drawn from the 
forecasts obtained from third party vendors. 
 
To model the most likely weather conditions (often referred to as normal or peak-eliciting weather) a 
weather rotation technique is used to simulate a distribution of daily load scenarios generated by historical 
weather observations, representing actual weather patterns that occurred across the PJM control region. 
 
To enhance the simulation process, each yearly weather pattern is shifted by each day of the week moving 
forward six days and backwards six days, providing 13 different weather scenarios for each historical year. 
For early January and late December dates, data from the same calendar year is applied. Table III-1 below 
illustrates the shift of weather data across the scenarios. 
 

Table III-1 : Mapping of Weather Scenarios to Dates 

 
 
This approach has two key advantages. One, by rotating the data on the calendar, peak-producing weather 
will be applied to peak producing days. Two, by producing scenarios over a wide range of weather 
conditions, the weather rotation method is able to identify both the probable and possible levels of future 
peak load. 
 
The process is repeated for the remaining years of historical weather data. For example, using twenty 
years of weather history, this approach will result in 260 (20 weather years x 13 days) separate forecast 
simulations for each year in the forecast horizon. These simulations produce a frequency distribution of 
NCP demands by zone, as illustrated in Figure III-1 below. 
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Figure III-1 : Summer NCP Forecast Distribution 

 
 
For each weather scenario, monthly NCPs are determined by obtaining the maximum NCP for the month. 
Seasonal NCPs are determined as the maximum over the summer/winter/spring/fall months. At this point, 
only monthly and seasonal zonal NCP forecasts are retained. For each season, the ratio of each month’s 
peak to the highest monthly peak is taken, and then each month’s ratio is multiplied by the seasonal peak. 
In this way, one of the month’s peaks is the seasonal peak while still preserving the relationship between 
monthly peaks. 
 
For purposes of system planning, only a couple of the values in the forecast distribution are used. After 
ranking the scenario forecasts by MW value, the median value is selected as the base (or 50/50) forecast. 
This is the value used for most system planning studies. The 90th percentile (or 90/10) result is used for 
studies where the system is assumed to be at system emergency conditions. 

Forecast Simulation – Coincident Peaks 

 
To obtain peak forecasts for the entire PJM RTO and Locational Deliverabity Areas (LDA), the forecast 
simulation and weather rotation method described above is applied to the results of the coincident peak 
(CP) model equations. Each zone has an RTO CP model; additionally, zones will have CP models for each 
LDA of which they are a member (e.g., PJM Western Region, EMAAC LDA, ReliabilityFirst region, etc.). In 
addition to those listed above for NCP forecasting, rotating the weather data on the calendar provides an 
additional benefit for identifying coincident peaks - the natural diversity of weather patterns that impact the 
PJM footprint is simulated. This is a more plausible approach to peak forecasting than traditional methods 
which tend to have all weather stations having peak producing weather on the same day. Using the latter 
approach would overstate the PJM or LDA peak forecast by minimizing diversity. The impact of modeling 
diversity is illustrated in Figure III-2 below, which shows the RTO CP forecast compared to the sum of all 
zones’ NCP forecasts. 
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Figure III-2 : PJM RTO Summer Peak Forecast Distribution 

 
 
The general decline in expected diversity as forecasts increase is primarily related to weather; lower 
forecasts are consistent with milder weather conditions which lead to other factors driving the peak which 
results in greater diversity, while the highest forecasts are consistent with RTO-wide extreme weather 
which results in less diversity. 
 
To obtain the RTO/LDA peak forecast, the solution for each of the zonal coincident peak (CP) models are 
summed by day and weather scenario to obtain the RTO/LDA peak for the day. Monthly RTO/LDA peaks 
are determined by obtaining the maximum of the summed zonal values for the month. Seasonal RTO/LDA 
peaks are determined as the maximum over the summer/winter/spring/fall months. At this point, the values 
of the overall RTO/LDA peaks are set, but not the contribution of each zone. 
 
To determine the final zonal RTO/LDA-coincident peak forecasts, a methodology similar to the process for 
deriving zonal NCPs is applied. By weather scenario, the maximum daily CP load contribution for each 
zone over the month/season is identified. For each zone a distribution of zonal CP versus weather scenario 
is developed. From this distribution the median value is selected. The median zonal CPs are summed and 
this sum is then used to apportion the forecasted RTO/LDA peak to produce the final zonal CP forecasts. 
 
For the RTO/LDA, a distribution of the seasonal RTO/LDA peak vs. weather scenario is developed. For 
each season, the ratio of each month’s peak to the highest monthly peak is taken, and then each month’s 
ratio is multiplied by the seasonal peak. From this distribution, the median result is used as the base 
(50/50) forecast; the values at the 10th percentile and 90th percentile are assigned to the 90/10 weather 
bands. 
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Forecast Simulation – Energy 

 
To obtain forecasts of net energy for load for zones, LDAs, or the entire RTO, the forecast simulation and 
weather rotation method described above is applied to the results of the energy model equations. The 
simulation process produces a distribution of monthly forecast results by summing the daily values per 
forecast year for each weather scenario. 

Forecast Adjustments 

 
After completion of the weather rotation process to formulate the distribution of forecast peaks, adjustments 
are applied to account for events outside of the forecast model and for distributed solar generation7. Events 
outside of the forecast model are future load additions or subtractions that are deemed to not be captured 
by the forecast process. The procedure to evaluate these forecast adjustments is described in Manual 19 
Attachment C.  
 
Distributed solar adjustments are netted off the forecasted load. Recall from Section III - Dependent 
Variables that the dependent variable in the load forecast model is load with an addback for historical 
distributed solar generation. Thus the resulting load forecast must be reduced by expected future 
distributed solar generation. This process is explored in depth in Section IV - Distributed Solar Generation. 
 
In summary, the final load forecast by zone and LDA is a function of the forecasted load without distributed 
solar generation adjusted for existing and future distributed solar generation and other exogenous forecast 
events as is laid out in Equation III-6. 
 

Equation III-6 : Application of Solar and Forecast Adjustments 

Final_Load = Model_Load – Dist_Solar_Forecast + Forecast_Adjustment 
 

Where 
Final_Load = Forecasted load (peak or energy) used by PJM Planning and Market functions 

Model_Load = Forecasted load (peak or energy) resulting from the econometric model and weather rotation 
process 

Dist_Solar_Forecast = Expected future distributed solar generation (peak or energy)  
Forecast_Adjustment = Exogenous plus/minus adjustment for an individual zone 

                                                
7 Distributed solar generation are resources that are not interconnected to the PJM markets. These resources do not go through 

the full interconnection queue process and do not offer as capacity or as energy resources. Furthermore, the output of these 
resources is netted directly with the load. PJM does not receive metered production data from any of these resources. 
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IV. 2015 CHANGES 

 
Recognizing the need for better accuracy, PJM sought to make improvements to the load forecast model. 
Throughout 2015, PJM examined the load forecast model and discussed revisions with the stakeholder 
community. The most important changes to the model framework were: 
 

 New variables to account for equipment and appliance saturation and efficiency  

 A refined weather treatment 

 Shorter weather simulation period 

 Distributed solar energy resource adjustments  

The changes were thoroughly vetted through the PJM stakeholder process and ultimately endorsed by the 
Markets and Reliability Committee in December, 2015.  The changes are documented in the PJM Load 
Forecasting Manual (M-19) and were implemented for the 2016 Load Forecast. In the following sections, 
the mechanics of each area of change is described.  

Equipment/Appliance Saturation and Efficiency 

 
The most important methodological change was adding variables that capture trends in 
equipment/appliance saturation and efficiency. Significant customer behavior changes post-2010, including 
more efficient technology adoption, contributed to the breakdown in the relationship between economics 
and electricity demand. These factors help explain why electricity demand languished even as the economy 
began to recover. PJM compiled three indexes to explain these developing trends in different usage 
segments: Cooling, Heating, and Other. The following subsections explain this process.  
 
Base Data Overview 
 
The Energy Information Administration (EIA) is the originator of data used by PJM to model the impacts of 
equipment/appliance saturation and efficiency. Once a year, the EIA publishes the Annual Energy Outlook 
(AEO)8. The AEO has a Reference Case and several Scenarios based on changing various model 
assumptions. The Reference Case is the basis for the data used in the PJM Load Forecast. From the 
AEO2015 Preface: 
 

The AEO2015 Reference case projection is a business-as-usual trend estimate, given known 
technology and technological and demographic trends…The main cases in AEO2015 generally 
assume that current laws and regulations are maintained throughout the projections. Thus, the 
projections provide policy-neutral baselines that can be used to analyze policy initiatives. 
 

                                                
8 Link to AEO: http://www.eia.gov/forecasts/aeo/  
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The projections for the AEO are a product of the National Energy Modeling System (NEMS)9. NEMS 
contains modules to represent demand at the Census Division10 level across different sectors: residential, 
commercial, industrial and transportation11.  
 
Within each demand module, consumers are modeled over time. Equipment/appliance stock evolves as 
existing stock becomes obsolete and is replaced or as new demand is warranted through new homes or 
buildings. Increases or replacements of equipment/appliance stock consider expected technology choices 
available12. National efficiency standards influence the technology choices available, but are not a ceiling. 
Adopted efficiency can and does exceed standard.  
 
Itron compiles data from NEMS13 on equipment/appliance saturation and their associated efficiency, and 
combines it with historical data that they maintain and update that is consistent with the EIA data set. This 
is a necessary step as EIA does not provide a full historical data set with each annual release, and long-
term load forecasting requires more data than what EIA makes available. PJM receives Residential and 
Commercial sector data for each Census Division from Itron through membership in its Energy Forecasting 
Group14. Residential and Commercial data have the following equipment/appliance detail.  
 
Residential  
 

 Heating: Electric Furnaces and Resistant Room Space Heaters, Heat Pumps, Ground-source Heat 

Pumps, Secondary Heating, Furnace Fans 

 Cooling: Central Air Conditioning, Heat Pumps, Ground-source Heat Pumps, Room Air 

Conditioners 

 Other: Electric Water Heating, Electric Cooking, Refrigerator, Second Refrigerator, Freezer, 

Dishwasher, Electric Clothes Washer, Electric Clothes Dryer, TV Sets, Lighting, Miscellaneous 

Electric Appliances15 

Commercial 
 

 Heating: Single Heating Type 

 Cooling: Single Cooling Type 

                                                
9 Link to NEMS Overview: http://www.eia.gov/forecasts/aeo/nems/overview/pdf/0581(2009).pdf  
10 Census Divisions are groupings of states. There are nine Census Divisions.  
11 NEMS Documentation: http://www.eia.gov/reports/index.cfm#/KNEMS%20Documentation,T144  
12 More information on the EIA Technology Forecasts can be found here: 

http://www.eia.gov/analysis/studies/buildings/equipcosts/  
13 Information on independently retrieving NEMS data can be found here: 

http://www.eia.gov/forecasts/aeo/info_nems_archive.cfm  
14 Link to information on Itron’s Energy Forecasting Group: 

https://www.itron.com/na/productsAndServices/Pages/Energy%20Forecasting%20Group.aspx?market=electricity 
15 Residential Miscellaneous Electric Appliances is intended as a catch-all of other appliances not captured under the other listed 

types. Examples would be Laptops, Desktop PCs, Rechargeables, Security Systems, and Pool Heaters. 
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 Other: Ventilation, Water Heating, Cooking, Refrigeration, Outdoor Lighting, Indoor Lighting, Office 

Equipment (PCs), Miscellaneous16 

 
Saturation 
 
The saturation (or share) term is a percentage value to indicate the pervasiveness of a certain equipment 
type. Considering saturation is important, because these values will eventually be applied to transmission 
zones of many different sizes. Saturation rates, rather than counts, are size neutral. 
  
In the case of the Residential sector, saturation is the percent of households that use a certain equipment 
type. This can be calculated by considering the total stock of a certain equipment type divided by the 
number of households. Certain equipment types (Refrigerators, TVs, Lighting and Miscellaneous) are 
considered ubiquitous, and are assigned a 100% saturation rate. The usage of these types over time will be 
handled solely by their associated efficiency term. 
 
In the case of the Commercial sector, saturation is the percent of floor space that uses a certain equipment 
type. The EIA considers commercial energy consumption over 11 building types, and saturation for each 
type is calculated as the weighted percent of floor space. Only ventilation is considered universal, and 
assigned a 100% saturation rate. 
 
Efficiency 
 
The efficiency term measures the relative energy use of equipment/appliance types over time. In each 
case, positive movements in the efficiency term indicate an improvement and negative movements indicate 
deterioration.  
 
The energy efficiency of Residential equipment/appliances is typically measured by some type of energy 
efficiency metric that measures energy out relative to energy in. Common examples of these would be the 
Energy Efficiency Ratio (EER) used to measure Central AC or the Efficiency Factor (EF) used to measure 
water heaters. In these instances, increases in the efficiency term indicate efficiency improvements.  
 
However, many types (such as refrigerators or televisions) in the Residential sector are measured by a Unit 
Energy Consumption (UEC) metric measured in expected kilowatt-hours per year. Increases in a UEC-
based metric would indicate deterioration; as a result PJM takes the reciprocal of these efficiency terms to 
maintain consistency. 
  
In the case of the Commercial sector, all efficiency measures are in the form of an efficiency metric, 
therefore no transformations to the data are required. 
 
 
 
 

                                                
16 Commercial Miscellaneous is intended as a catch-all of other appliances not captured under the other listed types. Examples 

would be Security Systems, Medical Imaging Equipment, Elevators, and Escalators. 
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Equipment Index Construction 
 
Three equipment indexes are constructed for each zone for use in the Load Forecast Model: Heating, 
Cooling, and Other. Constructing the indexes is a two-step process: 
 

1) Develop Residential and Commercial sector indexes for each usage category; 

2) Weight sector indexes and combine into a single index for each usage category.  

Step 1: The sector index for each usage category is a weighted average across equipment types of 
saturation normalized for efficiency. Heating and Cooling Equipment Indexes are handled in the same 
manner as they will both be linked to weather parameters, which can be seen in the next section.  
Indexes are created for each Census Division17 defined by the equation: 
 

Equation IV-1 : Sector Equipment Index Construction (Heating and Cooling) 

EquipIndexSector,Category,y = ∑type WType x (SatType,y/EffType,y)/(SatType,1998/EffType,1998) 

 

Where  
Sector = Residential or Commercial 

Category = Heating or Cooling 
y = Year 

Type = Equipment/Appliance type (see types listed earlier in this document) 
W = Weight, defined here as the 1998 share of annual usage used by the specified equipment type in the 

specified category 
Sat = Saturation, defined by year and equipment type 
Eff = Efficiency, defined by year and equipment type 

 
As can be seen in the equation, indexes are anchored to 1998 both by the weight and by the denominator 
of the equation. However, the index will evolve with time as saturations of various equipment types change 
and efficiencies improve.  
 
Unlike the Heating and Cooling measures, the Other Equipment index is not linked with weather 
parameters. It instead is linked with each equipment type’s expected use at different points of the year. 
Residential appliances in the Other category have different monthly energy usage profiles. Some appliance 
types are assumed to use the same amount of energy year-round (Electric Cooking, Dishwashers, Clothes 
Washers, Clothes Dryers, Televisions, and Miscellaneous). In these cases, the monthly weight is 8.33% (or 
1/12). The remaining four Residential appliance types (Water Heaters, Refrigerators, Freezers and 
Lighting) have monthly weights derived from 2001 Itron/EIA data (see Figure IV-1). All Commercial 
equipment types in the Other category are given the 8.33% monthly weight. 

 
 
 
 

                                                
17 Additionally, some zones have modified indexes based on data they supplied. This is discussed in APPENDIX D.  
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Figure IV-1: Residential Other Equipment Monthly Energy Usage Share 

 
 

The monthly weights are combined with the equipment saturation and efficiency data to provide a slight 
variation on the equations seen for the Heating and Cooling Indexes. 
 

Equation IV-2 : Sector Equipment Index Construction (Other) 

EquipIndexSector,Other,t = ∑type MwType,m x WType x (SatType,y/EffType,y)/(SatType,1998/EffType,1998) 
 

Where 
Sector = Residential or Commercial 

t = Time, year and/or month 
Mw = Monthly weight 

m = Month (1-12) 
Type = Equipment/Appliance type (see types listed earlier in this document) 

W = Weight, defined here as the 1998 share of annual usage used by the specified equipment type in the 
specified category 

Sat = Saturation, defined by year and equipment type 
Eff = Efficiency, defined by year and equipment type 
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Step 2: Total indexes for Heating, Cooling, and Other are now created by weighting and summing the 
sectoral components determined in Step 1. The weighting mechanism takes into account both the 
importance of that category within the sector (for instance, cooling usage as a share of a residential 
consumer’s total usage) and the importance of that sector within the zone (for instance, residential sales as 
a share of a zone’s residential and commercial sales).  
 

Equation IV-3 : Overall Equipment Index Construction 

EquipIndexCategory,t = ∑Sector WeightSector,Category x EquipIndexSector,Category,t 

 
WeightResidential,Category= AdjSalesResidential,Category /(AdjSalesResidential,Category + AdjSalesCommercial,Category) 
WeightCommercial,Category= AdjSalesCommercial,Category /(AdjSalesResidential,Category + AdjSalesCommercial,Category) 

AdjSalesResidential,Category=TotalSalesResidential x (IntensityResidential,Category/IntensityResidential,All) 
AdjSalesCommercial,Category=TotalSalesCommercial x (IntensityCommercial,Category/IntensityCommercial,All) 

 
Where 

Sector = Residential or Commercial 
Category = Heating, Cooling, or Other 

t = Time, year and/or month 
Intensity = 5-year Sector Average Annual Energy Usage (by Category or All) from Itron/EIA data set 

TotalSales = 5-year Sector Average Annual Energy Sales from FERC Form 1 

 
Equipment Index Application 
 
Each index—Heating, Cooling, and Other—is used according to the load behavior type it is meant to 
explain. The Heating and Cooling Equipment Indexes are intended to help explain weather sensitive load 
and therefore are tied to weather variables in the model. This technique allows weather condition 
magnitude as well as climate control equipment prevalence and efficiency to drive weather sensitive load. 
The Other Equipment Index is more centered on year-round load behavior (i.e. base load conditions), and 
thus does not have weather variable linkages.  
 
Heat 
 
The Heating Equipment Index is utilized primarily in winter months (January, February, and December), 
though it is also used in parts of the shoulder months (March, April, October, November) when conditions 
can be cold and windy. 
 

Equation IV-4 : Heating Equipment Index Utilization 

Winter (January, February, December) 
 

EquipIndexHeat
 x S_WWPN 

 

Where  
S_WWP = Variable based on values of the Winter-Weather Parameter or Wind-Adjusted Temperature at 

Hour Ending 19 
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N = Spline segment (1, 2, 3, or 418)  
 

Shoulder (March, April, October, November) 
 

EquipIndexHeat
 x (WWP – 50) 

When WWP < 50 
 

All Months 
 

EquipIndexHeat x EconIndex x HDD 
EquipIndexHeat x EconIndex x HDD(-1) 

 
Where  

EconIndex = Economic Index  
HDD = Heating Degree Days 

HDD(-1) = Heating Degree Days, lagged one day 

 
Cool 
 
The Cooling Equipment Index is utilized primarily in summer months (May through September), though it is 
also used in parts of the shoulder months (March, April, October, November) when conditions can be hot 
and humid. 

Equation IV-5 : Cooling Equipment Index Application 

Summer (May - September) 
 

EquipIndexCool
 x S_THIN 

 

Where  
S_THI = Variable based on values of the Maximum Temperature Humidity Index 

N = 2, 3, or 419  
 

Shoulder (March, April, October, November) 
 

EquipIndexCool
 x MaxTHI 

When WWP > 70 
 

All Months 
 

EquipIndexCool x EconIndex x CDD 
EquipIndexCool x EconIndex x CDD(-1) 

 
Where  

                                                
18 The construction of winter seasonal weather variables is discussed in Refined Weather Treatment 
19 The construction of summer seasonal weather variables is discussed in Refined Weather Treatment 
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MaxTHI = Maximum daily temperature-humidity index 
EconIndex = Economic Index  
CDD = Cooling Degree Days 

CDD(-1) = Cooling Degree Days, lagged one day 

 
Other 
 
As was discussed earlier, the Other Equipment Index does not have weather variable linkages. It is more 
intended to help explain base load conditions, which are nevertheless an important determinant for peak 
load demand.  
 

Equation IV-6 : Other Equipment Index Application 

All Months 
 

EconIndex x EquipIndexOther 

 
Where  

EconIndex = Economic Index  

 

Refined Weather Treatment 

 
Summer and Winter 
 
In the PJM load forecast model, different weather variables and relationships are used to represent the 
seasons. In the summer months, load tends to increase with hotter and more humid the weather conditions. 
However, in the winter months, load tends to increase with colder and windier weather conditions. While 
the forecast model has always allowed for varied treatment over the seasons, it now permits more granular 
treatment within the seasons.  
 
Previously, the forecast model had a single independent variable in each season: the Temperature-
Humidity Index (THI) and Winter-Weather Parameter (WWP) in summer and winter, respectively. The 
model also had additional time-of-day weather variables that allowed for a dynamic relationship of load with 
weather. However, because of multicollinearity (a situation where two or more independent variables are 
highly correlated), the coefficients on these variables were sometimes counterintuitive and obscured model 
transparency20. The goal of re-examining the seasonal weather treatment was to clean up this section of 
the model and improve transparency. In addition to re-visiting how weather is represented in the model, the 
definition of WWP was revised to be its value at hour ending 19 (7:00 PM) instead of the daily minimum. 
Daily minimums of WWP often occur in the morning or overnight hours, and thus this switch was 
considered to be more coincident with actual PJM winter peaks. 

                                                
20 See Slide 16 of the April 30, 2015 Load Analysis Subcommittee presentation: http://www.pjm.com/~/media/committees-

groups/subcommittees/las/20150430/20150430-item-03-load-model-enhancements.ashx 
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Assuming a linear relationship with a constant slope between THI (or WWP) and load may lead to 
misrepresenting the underlying dynamic relationship of load to weather (see Figure IV-2 and Figure IV-3). 

Figure IV-2 : THI Example (No Granular Treatment) 

 

Figure IV-3 : WWP Example (No Granular Treatment) 
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A better representation of the load to weather relationship is to allow for a different load response at 
different ranges of the given weather variable. There are mild days that elicit minimal load-weather 
response. Also, there is some degree of HVAC saturation in extreme weather (i.e. the load to weather 
response moderates as equipment operates constantly).  
 
The impact of mild days can be seen in both the summer and winter seasons. At THI values less than 65 or 
WWP values greater than 40, there appears to be minimal load response to weather conditions. At THI 
values around the high 70s and higher, there is often some moderation in load response from mid-range 
THI values. This reflects some degree of AC saturation. Modeling this intricacy should be explicit (see 
Figure IV-4 and Figure IV-5). 
 

Figure IV-4 : THI Example (Granular Treatment) 
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Figure IV-5 : WWP Example (Granular Treatment) 

 
 

Weather conditions vary across the PJM footprint so it is best to treat zones individually, recognizing that 
what characterizes extreme conditions can vary zone by zone. Spline cut-off points were selected with the 
goal of best representing the behavior of load under extreme weather conditions when seasonal peaks will 
occur. The process to accomplish this was as follows:  
 

1. Using time series analytical techniques, de-trend load history. This removes the impact of 

economics and other factors that impact load on a year-to-year basis, and puts all load on a level 

playing field; 

2. Using regression analysis, model de-trended load against the weather parameter over a subset of 

weather values (for instance THI greater than 80 or WWP less than 25). Each regression is 

conducted from 1998 through 2014, and has additional variables to control for weekends and 

holidays;  

3. Subset the load data to only show the top 10 zonal peaks per year. Compare the model-generated 

predicted values to the de-trended loads determined in step 1;  

4. Choose the range cut-point that minimizes average percent error.  

Once the extreme cut-points are determined for each zone and for each season, the remaining cut-points 
are determined. Mild conditions for all zones are defined as less than or equal to 65 THI and greater than or 
equal to 40 WWP for summer and winter, respectively. The two intermediate ranges are then the remaining 
range split roughly in half. The resulting THI and WWP spline range definitions are below (see Table IV-1 
and Table IV-2). These are the ranges used in the 2016 Load Forecast; they will be re-visited periodically.  
 

http://www.pjm.com/


 
Load Forecasting Model Whitepaper 

 

PJM © 2016     www.pjm.com    34 | P a g e  
 

Table IV-1 : Thresholds for THI Splines 

Spline 2 Spline 3 Spline 4

AE 65 74 82

AEP 65 73 81

APS 65 73 81

ATSI 65 73 81

BGE 65 74 83

COMED 65 73 81

DAYTON 65 73 81

DPL 65 74 82

DQE 65 73 80

DUKE 65 73 81

EKPC 65 74 82

JCPL 65 73 81

METED 65 73 81

PECO 65 74 82

PENLC 65 72 78

PEPCO 65 74 83

PL 65 72 79

PS 65 73 81

RECO 65 73 81

UGI 65 72 79

VEPCO 65 74 82  
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Table IV-2 : Thresholds for WWP Splines 

Spline 2 Spline 3 Spline 4

AE 40 32 24

AEP 40 32 24

APS 40 31 22

ATSI 40 29 18

BGE 40 34 28

COMED 40 28 17

DAYTON 40 30 21

DPL 40 34 29

DQE 40 30 21

DUKE 40 32 25

EKPC 40 32 25

JCPL 40 33 27

METED 40 31 23

PECO 40 33 27

PENLC 40 30 20

PEPCO 40 35 30

PL 40 31 23

PS 40 34 28

RECO 40 33 27

UGI 40 29 18

VEPCO 40 36 32  
 

These ranges are then used to create a series of weather variables, which build off one another. When THI 
or WWP is in the range of Spline 4 (S4), the load impact is calculated by taking into consideration the three 
splines that precede it (S1-S3).  
 

Equation IV-7 : Summer and Winter Weather Spline Definitions 

Summer (May – September) 
 

S1_THI = MaxTHI 
IF MaxTHI > S2Lower Bound THEN S2_THI = MaxTHI – S2Lower Bound; ELSE S2_THI = 0 

IF MaxTHI > S3Lower Bound THEN S3_THI = MaxTHI – S3Lower Bound; ELSE S3_THI = 0 

IF MaxTHI > S4Lower Bound THEN S4_THI = MaxTHI – S4Lower Bound; ELSE S4_THI = 0 

 
Winter (January, February, and December) 

 
S1_WWP = WWP 

IF WWP < S2Upper Bound THEN S2_WWP = WWP – S2Upper Bound; ELSE S2_WWP = 0  
IF WWP < S3Upper Bound THEN S3_WWP = WWP – S3Upper Bound; ELSE S3_WWP = 0  
IF WWP < S4Upper Bound THEN S4_WWP = WWP – S4Upper Bound; ELSE S4_WWP = 0  
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Shoulder Months 
 
Unlike the summer and winter seasons, the shoulder months have more diverse weather with some days 
being summer-like and others winter-like. This leads to a U-shaped relationship of load to weather (see 
Figure IV-6).  
 

Figure IV-6 : Shoulder Months - Load vs Weather Example 

 
 
To accommodate this situation, the load to weather relationship is permitted to vary over three segments 
(see Figure IV-7). In doing so, the model can account for conditions that mimic winter or summer, as well 
as mild conditions in which there is little weather sensitivity.  
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Figure IV-7 : Shoulder Months – Load vs Weather Segmented 

 
 

The left-most and center segments will be explained using the same WWP that is used in the winter, which 
accounts for both temperature and wind (see Figure IV-8). The right-most segment will be explained using 
THI, as in the summer months (see Figure IV-9).  
 

Figure IV-8 : Shoulder Months – Load vs Weather (Less than 70 WWP) 
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Figure IV-9 : Shoulder Months – Load vs Weather (Greater than 70 WWP) 

 
 

Equation IV-8 : Shoulder Month Weather Definitions 

Shoulder Months (March, April, October, November) 
 

IF WWP < 50 THEN Shldr_WWP_50LT = WWP - 50; ELSE THEN Shldr_WWP_50LT = 0 
IF 50 <= WWP <= 70 THEN Shldr_WWP_BASE = WWP; ELSE THEN Shldr_WWP_BASE = 0 

IF Shldr_WWP_50LT = 0 AND Shldr_WWP_BASE = 0 THEN Shldr_THI = MaxTHI; ELSE Shldr_THI = 0 

 

Autoregressive Error Term 

 
As part of its comprehensive model redevelopment, PJM examined whether there was cause to address 
the pervasive autocorrelation in the model’s error terms. Autocorrelation is a common occurrence with time 
series modeling, and is an issue because it violates the assumption that the model errors are independent 
of one another (i.e. white noise). Consequently, model coefficient estimators are inconsistent and standard 
errors of the coefficient estimates are both biased and inconsistent, resulting in test statistics that are no 
longer valid. However, the presence of autocorrelation does not necessarily indicate that a forecast is 
biased. 
 
Visual inspection and statistical tests can determine whether autocorrelation is present. In time series 
modeling, the goal is to have the residuals resemble white noise, meaning that they have no discernible 
pattern. This was clearly not the case for most zones (see Figure IV-10). Positive residuals indicate the 
model is under-predicting and negative residuals vice versa. The residuals seem to show a pattern, 
wherein residuals are correlated with the prior period(s). Moreover, the pattern of negative residuals in the 
most recent years may contribute to over-forecasting in the early years of the forecast period as present 
errors with autocorrelation are tied to past errors.  
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Figure IV-10 : Residuals Without AR Error Correction Example 

 
 

To confirm or refute the presence of autocorrelation in the residuals, Durbin-Watson test statistics were 
computed for each zonal model. This is a common method in this type of analysis. In each instance, the 
results indicated the presence of positive autocorrelation (a positive residual in one period is likely to be 
followed by another positive residual and vice versa). The appropriate fix can then be determined through 
observing plots of both the autocorrelation function (ACF) and partial autocorrelation function (PACF) 
produced via statistical software (PJM uses SAS). These plots pointed to the need for an autoregressive 
error structure with 1 lag, alternatively referred to as AR(1). This means that residuals can be modeled 
using a one period lag of itself.  
 
Upon fitting the models with an AR(1) error structure, the residuals appeared more like white noise (see 
Figure IV-11). To confirm that there was no longer autocorrelation in the residuals, Durbin-Watson test 
statistics were computed on the modified zonal models. The results confirmed that this was the case and 
that the issue had been adequately resolved. 
 
The impact of adopting the autoregressive error term into PJM’s model was to reduce the starting point of 
forecasts, with little impact on growth rates. This was deemed a worthwhile change as it contributed to 
addressing the problem of the first year of the forecast often exhibiting unrealistically high growth rates. 
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Figure IV-11 : Residuals With AR Error Correction Example 
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Weather Simulation Period 

 
The preceding sections cover model structure changes, specifically revisions to the regression model that 
determine the parameter estimates to generate the load forecast. There is a distinction between these 
revisions and a change to assumptions that are applied to derive the forecast: economic growth, equipment 
saturation and efficiency projections, and weather. 
 
Weather is an important electricity demand driver; however, in order to arrive at a peak forecast, PJM does 
not forecast weather. Instead, future weather is assumed to mimic past weather. Past practice had been to 
use all available weather data back to the early 1970s. Weather is then sampled to arrive at the distribution 
of potential peaks. From this distribution, PJM can determine a range of values that are used in RTEP such 
as the 50/50 (50% chance the peak will be less than and 50% the peak will be greater than) or the 90/10 
(90% chance the peak will be less than and 10% the peak will be greater than).  
 
The past weather used to generate the distribution is an important input in determining the forecast values 
used. In using data back to the early 1970s, this implicitly makes the assumption that all weather is equally 
likely in the future. In other words, weather in 2020 is just as likely to resemble the 1970s as it is to 
resemble the 2010s. An investigation was conducted to determine whether this is a prudent assumption. 
  
At the time of the investigation in Summer 2015, the forecast model was using data from 26 weather 
stations across the footprint. The data was broken down in a number of ways, comparing median and 90th 
percentile values of maximum THI from 1973-1993 to those from 1994-2013. The preponderance of 
evidence indicated that the majority of weather stations had experienced higher THI values in the more 
recent 20 years than in the prior 20 years21. The concern was that using the full amount of weather history 
may lead to understating the extremeness of weather and thus potentially also understating peak load.  
 
Once it was determined that using weather history back to the early 1970s was imprudent, a new time 
period needed to be selected. To do so, weather data from 2005-2014 was considered a control sample, 
since it was a sample of sufficient size to have a mean and standard deviation to compare to other 
samples. This sample was then compared with samples from historical years to evaluate consistency. For 
each weather station for each year, the 13 highest THI values were selected. Multiple test samples were 
then constructed with an end point of 2004 and a starting point that varied incrementally from 1973 by two 
years (i.e. 1973-2004, 1975-2004, 1977-2004, etc.).  
 
Test samples were then compared with the control sample using a two-sample t-Test to determine 
consistency. In this statistical test, the null hypothesis is that the two samples are equivalent and the null 
hypothesis is rejected when the test statistic exceeds a critical value (in this case, evaluated at a 5% 
significance level). On average, across weather stations, the test statistic did not lie below the critical value 
until the test sample had a start year of 1995 (see Figure IV-12). At this point, 18 of the 26 weather stations 
had test statistics that lie below the critical value (each dot in the figure represents a weather station’s test 
statistic).  
 

                                                
21 Analysis was shared at Load Analysis Subcommittee on September 2, 2015: http://www.pjm.com/~/media/committees-

groups/subcommittees/las/20150902/20150902-item-04-forecast-update.ashx  
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Figure IV-12 : Weather Simulation Period Evaluation – Test Statistic Values 

 
 

Based on these results, PJM decided to use only weather from 1994/1995 forward as the assumption for 
weather in the forecast model. This assumption will be revisited periodically as more data becomes 
available. 

Distributed Solar Generation 

 
In early 2015, recognizing the growing market of solar installations, PJM began to investigate and develop 
a plan to incorporate distributed solar generation into the long-term load forecast. For the purposes of the 
long-term load forecast, PJM defines distributed solar generation as any solar resource which is not 
interconnected to the PJM markets. These resources do not go through the full interconnection queue 
process and do not offer as capacity or as energy resources. Furthermore, the output of these resources is 
netted directly with the load. PJM does not receive metered production data from any of these resources. 
 
PJM EIS and GATS 
 
PJM Environmental Information Services (EIS), a wholly owned subsidiary of PJM Technologies, Inc. which 
is a subsidiary of PJM Interconnection, operates the Generation Attribute Tracking System (GATS). The 
functional design of the GATS has been developed through considerable deliberation of a stakeholder 
group that included representatives from various state agencies (state public utility commissions, state 
environmental protection offices, state Energy offices and consumer advocates), market participants, 
environmental advocates, and PJM staff. The design of the GATS is an “unbundled,” certificates-based 
tracking system. This means that the attributes or characteristics of the generation are separated from the 
megawatt hour (MWh) of Energy and recorded onto a Certificate after the MWh of Energy is produced. 
There is one Certificate, with a unique serial number representing the attributes of the generation for each 
MWh produced. The Certificate’s value is that it can be traded separately from the actual MWh of Energy in 
a voluntary bilateral market. The generation data which GATS collects includes distributed solar generation 
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that are behind the meter. Utilizing this collection of data, PJM estimates the amount of distributed solar 
generation in terms of direct current (DC) nameplate capacity. Figure IV-13 below shows the amount of DC 
nameplate capacity (MW) of distributed solar generation as recorded in GATS for the PJM footprint. In the 
last five years, there has been over a 1000% increase of installations in the PJM region, and the number of 
installations is expected to continue to grow. 

 

Figure IV-13 : Nameplate Capacity of Distributed Solar Generation in the PJM Footprint 

 
 

Approach 
 
PJM recognizes the need to isolate distributed solar generation from the historical load. Not addressing 
these resources would mean that the reductions in the load attributable to distributed solar generation 
would be explained by the other independent variables in the model, thus misrepresenting the actual values 
of the model parameters and biasing the forecast. PJM is using a two-step approach to incorporate 
distributed solar generation into the long term load forecast. 
 
Step 1: Back-casting Historical Distributed Solar Generation 
 
In this first step, historical hourly impacts of distributed solar generation are estimated in order to add them 
back to the historical load values. This allows the load forecast model to accurately estimate the 
relationship between load and the various explanatory variables without undue interference from distributed 
solar energy resource impacts. 
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GATS and Solar Insolation 
 
To account for the historical impacts of distributed solar generation, PJM used the distributed solar 
generation installation data from the Generation Attribute Tracking System (GATS) as the basis of the 
amount of installed MW22. The first step to estimate the historical back-casted values is to convert the 
nameplate capacity amount to a value which incorporates the maximum possible insolation. Solar 
insolation is the amount of solar energy that would reach the Earth’s surface at a given time of day based 
on a cloudless sky. PJM referenced National Oceanic and Atmospheric Administration (NOAA) data via an 
ITRON application to determine the hourly value of how much energy would be produced from a particular 
solar panel on any given day23. The distributed solar generation were mapped to the local weather stations 
that are listed in Section 3 of Manual 19 and the applicable latitude and longitude definitions were used as 
the point on the Earth’s surface. 
 
Cloud Cover 
 
A cloud cover variable based on the weather stations listed in Section 3 of Manual 19 was also applied to 
the nameplate MW amount. The cloud cover variable is important to include because the varying degrees 
of cloud cover can greatly impact the amount of energy produced by a solar panel. Metar, a weather 
measurement, data includes five categories for cloud cover as well as a separate code for weather 
phenomena (rain, thunderstorm, blowing snow, etc.). In the weather data PJM receives from its weather 
vendor, these two measurements have been merged into one column. PJM translates the combination 
cloud cover/weather phenomena into a 0-8 index; a value of 8 is considered overcast, whereas a value of 
zero is considered to be a weather condition where there are no clouds. Each MW value was multiplied by: 

Equation IV-9 : Cloud Cover Adjustment 

, where cloud cover index is less than 8 

 
Research showed that even when there is cloud cover, a variable amount of energy is still produced, so for 
hours when the cloud cover index was equal to eight, instead of applying Equation IV-9, the MW nameplate 
capacity amount was multiplied by ten percent. 
 
Temperature Impacts 
 
In addition to cloud cover and solar insolation, higher temperatures have also been found to result in 
degradation of energy output. For every degree above 55°F, the energy output of the solar panel is 
reduced by 0.27%24. The equation applied is: 

Equation IV-10 : Temperature Degradation Adjustment 

1-(Maximum(Temperature-55,0)*0.0027) 

 
 

                                                
22The values from GATS are available publicly through the PJM EIS website 
23A more complete description and list of equations is provided in this ITRON Forecast Practitioner’s Handbook. 
24 Page 6 of the ITRON Forecast Practitioner’s Handbook. 
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Tilt of Solar Panel and DC to AC Conversion 
 
Finally, two last variables were considered to determine the historical back-casted values: the DC to AC 
conversion; and the 27 degree tilt factor25. PJM also assumed that the panels were southern facing. 
Southern facing panels are the ideal position so it was assumed that all installations strived to be as 
southern facing as possible26. Since the GATS data is submitted in direct current (DC) terms, a conversion 
to alternating current (AC) terms needed to be applied. Most homes utilize AC, thus the need for the DC/AC 
inverter losses. Also, on average, panels are not installed completely flat; rather they are installed based on 
a particular tilt. This tilt generally corresponds to the angle of the roof on which it is installed. On average, 
this tilt is approximately 27 degrees. To determine the impact of these two adjustments, PJM conducted 
simulations using the PVWATTS calculator27. PJM calculated the hourly average of the ratio of a zero 
degree tilt to a 27 degree tilt by month for each weather station as listed in Section 3 of Manual 19. PJM 
used a 96% DC to AC conversion factor which was based on analysis of the PVWATTS simulations. Since 
PVWATTs uses a typical meteorological year these values represent a good estimate of their impact on the 
energy production of the solar panels. Table IV-3 shows the Annual GWh of back-casted distributed solar 
generation by zone. Please note that all years except for 2015 are based on calendar year, however, 2015 
is only through August 31, 2015. 
 

Table IV-3 : Annual Energy of Back-casted Distributed Solar 

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

AE 0.0          0.1          0.5          1.2          4.8          7.9          11.6        26.2        60.8        105.5      181.6      214.8      270.8      211.9      

AEP 0.0          0.0          0.0          0.0          0.0          0.0          0.1          0.3          10.7        13.4        19.0        23.9        26.0        22.3        

APS 0.0          0.0          0.0          0.0          0.0          0.0          0.0          0.0          0.0          0.1          0.2          1.1          6.0          16.6        23.1        31.1        43.3        28.1        

ATSI 0.0          0.0          0.0          0.0          0.1          0.1          0.2          0.4          4.4          15.9        31.7        43.1        49.9        41.8        

BGE 0.0          0.0          0.0          0.1          0.2          2.0          5.9          15.2        32.8        46.0        62.8        68.0        

COMED 0.0          0.0          0.0          0.1          0.1          0.1          0.1          0.1          0.1          0.2          0.5          0.8          14.0        22.2        23.6        21.6        

DAYTON 0.0          0.0          0.1          0.3          1.0          3.9          9.8          10.1        8.0          

DEOK 0.0          0.0          0.0          0.0          0.0          0.0          0.0          0.1          0.1          0.2          0.4          0.8          3.5          8.5          11.0        11.2        8.7          

DLCO 0.0          0.0          0.0          0.0          0.0          0.0          0.2          0.6          1.4          3.0          3.2          2.5          

DOM 0.0          0.0          0.0          0.0          0.0          0.0          0.0          0.0          0.1          0.2          0.6          3.2          6.5          9.9          18.4        35.8        94.3        

DPL 0.0          0.0          0.0          0.0          0.0          0.0          0.0          0.2          0.7          2.1          5.2          9.2          32.2        55.2        99.8        129.1      113.4      

EKPC 0.0          0.0          0.0          0.1          0.1          0.2          0.2          0.2          0.3          

JCPL 0.0          0.0          0.1          0.6          1.5          3.8          9.8          16.6        24.0        38.1        66.1        121.7      250.1      315.5      395.3      328.2      

METED 0.0          0.0          0.0          0.1          0.1          0.1          0.1          0.1          0.1          0.8          6.8          27.4        38.0        37.2        38.2        28.2        

PECO 0.0          0.0          0.0          0.0          0.1          0.1          0.2          0.3          0.4          0.6          0.7          1.3          9.1          27.1        42.2        47.4        49.2        35.9        

PENLC 0.0          0.0          0.0          0.0          0.0          0.0          0.0          0.0          0.0          0.1          0.8          2.6          4.8          5.3          6.0          4.9          

PEPCO 0.0          0.0          0.0          0.1          0.2          0.5          4.1          9.4          20.9        36.1        57.2        83.1        46.6        

PL 0.0          0.0          0.1          0.2          0.8          17.9        66.3        93.9        94.0        97.3        75.3        

PS 0.0          0.3          0.4          0.5          0.9          2.5          8.2          17.2        24.9        48.1        114.2      196.7      365.8      481.9      518.2      403.1      

RECO 0.0          0.0          0.0          0.0          0.0          0.1          0.1          0.7          0.9          1.0          1.8          3.2          8.2          11.0        11.5        8.6          

UGI 0.0          0.0          0.2          0.4          0.4          0.5          0.5          0.4          

PJM RTO 0.0          0.0          0.1          0.4          0.7          1.5          3.4          8.4          24.2       44.6       66.2       130.7     328.3     677.7     1,220.8  1,573.4  1,865.4  1,552.3  

Annual GWh of Back-casted Distributed Solar Generation

 
 
Application in Load Forecast Model 
 
Once all of the adjustments were applied, PJM summed the estimated energy impacts on an hourly basis 
by zone and these estimates were added to the unrestricted load used in PJM load models to generate a 
forecast that essentially removes distributed solar generation impacts from the load. 
 

                                                
25 Common roof pitches range from 4:12 to 9:12 which translates to a roof angle of as little as 18.4 degrees to as high as 36.9 

degrees. 27 degrees was chosen as it lies firmly in the middle of this range. 
26 http://rredc.nrel.gov/solar/calculators/pvwatts/system.html  
27 The PVWATTS calculator is available via this web link: http://pvwatts.nrel.gov/ 
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Step 2: Ex-Post Adjustment of Distributed Solar Generation  
 
The second step in the process to incorporate distributed solar generation into the long term load forecast 
was to utilize a long term forecast of distributed solar generation. 
 
IHS Forecast 
 
PJM procured a distributed solar generation forecast from IHS. This entailed working with IHS to define 
inputs which represented the power demand growth rate specific to PJM, as well as the policies which were 
in effect at the time the forecast was conducted. Some key assumptions included that the 30% Investment 
Tax Credit (ITC) would expire for any resources installed after 2016 and that it would drop to a 10% ITC 
thereafter. Additionally, PJM assumed that current net metering policies will remain in effect through the 
duration of the forecast.28 Table IV-4 below shows the forecast of the distributed solar generation annual 
additions of nameplate capacity, by state within the PJM territory. 
 

Table IV-4 : Distributed Solar Energy Resource Forecast by State - PJM Territory Only -Annual Additions of 
Nameplate Capacity 

PJM Territory of the State 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031

DC 3.9           3.6           3.8           4.6           4.1           3.4           3.3           3.3           3.2           3.2           3.2           3.2           3.1           3.1           3.1           3.1           

DE 14.6        19.4        24.1        25.4        16.8        18.3        30.9        34.2        24.3        23.9        25.2        28.0        34.7        45.4        60.3        81.2        

IL 37.2        22.3        15.1        15.0        14.9        24.2        30.0        29.7        32.0        32.8        32.5        32.2        32.0        31.7        33.7        36.4        

IN 2.6           2.0           1.3           1.2           1.2           1.2           1.2           1.2           1.2           1.3           2.0           2.9           4.1           5.7           5.9           6.2           

KY 0.9           0.4           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.2           2.8           3.7           

MD 131.3      117.1      119.4      88.4        39.2        14.5        10.3        15.6        25.7        37.6        51.3        68.0        95.9        129.6      142.5      154.7      

MI 0.6           0.4           0.4           0.6           0.7           0.9           1.2           1.6           2.0           2.6           3.4           4.5           5.8           6.7           7.6           8.7           

NC 85.4        70.1        37.1        37.3        37.5        37.8        38.3        39.0        40.0        42.1        44.8        48.0        52.9        59.6        68.0        77.2        

NJ 209.3      116.9      56.4        43.8        52.5        56.2        70.1        92.0        118.6      176.8      245.6      293.6      316.1      354.6      367.3      372.4      

OH 10.9        35.6        39.6        39.2        38.9        43.1        44.3        44.8        48.3        49.2        48.8        17.7        8.9           9.9           12.7        16.0        

PA 68.3        45.7        47.8        51.5        53.7        38.3        32.4        32.1        31.9        31.6        31.4        32.2        35.2        39.1        53.5        61.5        

TN -          -          -          -          -          -          -          -          -          -          -          -          -          -          -          -          

VA 35.3        33.5        29.9        51.7        72.5        81.3        107.2      121.0      126.5      129.8      132.9      138.2      145.3      153.9      164.4      175.3      

WV 1.1           3.9           5.0           4.9           4.9           4.8           4.8           4.8           4.7           4.7           4.6           4.6           4.6           4.5           8.3           14.3        

Total 601.4      470.8      379.9      363.9      337.0      324.3      374.2      419.3      458.6      535.7      625.8      673.2      738.8      844.1      930.1      1,010.6    
 
Converting State to Zone 
 
The IHS report presented nameplate capacity additions by state, for the PJM portion of the state. To derive 
additions by zone, PJM converted the state values to zone using EIA 826 data to estimate each utility’s 
share of sales in the state. Once the zone’s share of the state was calculated, that ratio was applied to the 
state level annual additions of installed capacity. For those transmission zones that span multiple states, 
their state shares were aggregated to obtain a total for the zone. Table IV-5 below shows the annual 
additions of installed capacity of distributed solar generation by zone. 
 

                                                
28The full report is available via this link: http://pjm.com/~/media/committees-groups/subcommittees/las/20151130/20151130-

item-04-ihs-pjm-pv-forecast-report.ashx. 
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http://pjm.com/~/media/committees-groups/subcommittees/las/20151130/20151130-item-04-ihs-pjm-pv-forecast-report.ashx
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Table IV-5 : Distributed Solar Energy Resource Forecast by Zone Annual Additions of Nameplate Capacity 

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031

AE 27.6        15.3        7.4           5.7           6.8           7.3           9.1           11.9        15.3        22.8        31.6        37.8        40.6        45.4        47.0        47.5        

AEP 13.6        23.1        23.9        27.1        30.3        33.3        37.8        40.3        42.9        44.3        46.1        37.2        37.5        41.6        48.4        56.5        

APS 27.3        23.6        24.5        22.2        17.3        12.5        12.2        13.4        14.9        16.5        18.3        20.7        25.0        30.2        35.9        41.4        

ATSI 6.7           14.9        16.4        16.4        16.4        17.3        17.5        17.6        18.8        19.1        18.9        7.6           4.6           5.1           6.6           8.0           

BGE 64.3        57.2        58.3        43.1        19.1        7.0           5.0           7.6           12.5        18.2        24.9        32.9        46.4        62.7        68.9        74.7        

COMED 37.2        22.3        15.1        15.0        14.9        24.2        30.0        29.7        32.0        32.8        32.5        32.2        32.0        31.7        33.7        36.4        

DAYTON 1.2           3.8           4.2           4.2           4.1           4.6           4.7           4.8           5.1           5.2           5.2           1.9           1.0           1.1           1.4           1.7           

DEOK 1.8           5.6           6.2           6.1           6.1           6.8           7.0           7.0           7.6           7.7           7.7           2.8           1.4           1.6           2.2           2.8           

DLCO 6.2           4.2           4.3           4.7           4.9           3.5           2.9           2.9           2.9           2.8           2.8           2.9           3.1           3.5           4.8           5.4           

DOM 113.4      96.7        60.9        78.5        95.3        102.7      123.9      135.8      141.3      146.2      151.3      158.9      169.5      183.1      200.1      218.0      

DPL 23.7        27.5        32.4        31.8        20.1        20.1        32.7        36.4        27.2        27.6        29.9        33.8        42.4        55.4        71.3        93.2        

EKPC 0.5           0.2           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           1.6           2.1           

JCPL 60.1        33.7        16.3        12.7        15.2        16.2        20.3        26.6        34.4        51.2        71.2        85.3        92.0        103.4      107.2      108.9      

METED 6.8           4.5           4.8           5.2           5.4           3.8           3.2           3.2           3.2           3.2           3.2           3.3           3.6           4.0           5.5           6.3           

PECO 17.7        11.8        12.4        13.4        13.9        9.9           8.4           8.4           8.3           8.2           8.2           8.4           9.2           10.2        14.0        16.1        

PENLC 7.6           5.0           5.2           5.6           5.8           4.2           3.5           3.5           3.4           3.4           3.3           3.4           3.7           4.1           5.5           6.3           

PEPCO 46.3        41.4        42.3        33.2        16.8        8.1           6.6           8.3           11.5        15.3        19.7        25.1        34.1        44.9        49.1        53.0        

PL 17.5        11.7        12.2        13.2        13.8        9.8           8.3           8.2           8.2           8.1           8.0           8.2           9.0           10.0        13.7        15.7        

PS 117.6      65.7        31.7        24.6        29.5        31.6        39.5        51.8        66.7        99.4        138.2      165.1      177.7      199.3      206.3      209.2      

RECO 4.0           2.2           1.1           0.8           1.0           1.1           1.3           1.7           2.2           3.3           4.6           5.5           5.9           6.6           6.8           6.9           

UGI 0.4           0.3           0.3           0.3           0.3           0.2           0.2           0.2           0.2           0.2           0.2           0.2           0.2           0.2           0.3           0.4           

PJM RTO 601.4      470.8      379.9      363.9      337.0      324.3      374.2      419.3      458.6      535.7      625.8      673.2      738.8      844.1      930.1      1,010.6   
 
The annual additions shown in the table above include an assumption that there is a degradation factor of 
0.8% for every year installed29. While the median degradation is 0.5%, PJM chose to use the more 
conservative average value of 0.8%. Table IV-6 below shows the total cumulative nameplate capacity by 
zone. 
 

Table IV-6 : Cumulative Nameplate Capacity of Distributed Solar Generation Forecast by Zone 

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031

AE 27.6        42.9        50.3        56.0        62.8        70.1        79.2        91.1        106.4      129.2      160.8      198.6      239.2      284.6      331.6      379.1      

AEP 13.6        36.7        60.6        87.7        118.0      151.3      189.1      229.4      272.3      316.6      362.7      399.9      437.4      479.0      527.4      583.9      

APS 27.3        50.9        75.4        97.6        115.0      127.5      139.7      153.1      168.0      184.5      202.7      223.5      248.5      278.7      314.5      355.9      

ATSI 6.7           21.6        38.1        54.5        70.8        88.1        105.6      123.1      141.9      161.0      179.9      187.5      192.1      197.1      203.7      211.8      

BGE 64.3        121.5      179.7      222.9      242.0      249.0      254.0      261.6      274.1      292.3      317.2      350.1      396.6      459.3      528.1      602.9      

COMED 37.2        59.5        74.6        89.7        104.6      128.8      158.8      188.5      220.5      253.3      285.8      318.0      350.0      381.7      415.3      451.7      

DAYTON 1.2           4.9           9.1           13.3        17.4        22.0        26.7        31.5        36.6        41.8        47.0        48.9        49.9        50.9        52.3        54.0        

DEOK 1.8           7.3           13.5        19.7        25.8        32.5        39.5        46.5        54.1        61.9        69.6        72.4        73.8        75.4        77.6        80.4        

DLCO 6.2           10.4        14.7        19.4        24.2        27.7        30.6        33.5        36.4        39.2        42.0        44.9        48.1        51.5        56.3        61.7        

DOM 113.4      210.1      271.0      349.5      444.8      547.5      671.4      807.2      948.5      1,094.7   1,246.0   1,404.9   1,574.5   1,757.6   1,957.6   2,175.7   

DPL 23.7        51.2        83.5        115.3      135.4      155.4      188.1      224.4      251.6      279.2      309.1      342.9      385.3      440.8      512.1      605.3      

EKPC 0.5           0.7           0.8           0.9           1.0           1.1           1.1           1.2           1.3           1.4           1.4           1.5           1.6           1.7           3.3           5.5           

JCPL 60.1        93.8        110.2      122.9      138.0      154.3      174.5      201.1      235.5      286.7      357.9      443.2      535.1      638.5      745.8      854.6      

METED 6.8           11.3        16.1        21.2        26.6        30.4        33.7        36.9        40.1        43.3        46.5        49.7        53.3        57.3        62.7        69.0        

PECO 17.7        29.5        41.9        55.3        69.3        79.2        87.6        96.0        104.3      112.5      120.7      129.1      138.3      148.5      162.5      178.6      

PENLC 7.6           12.6        17.9        23.5        29.3        33.5        37.0        40.4        43.8        47.2        50.5        53.9        57.6        61.6        67.1        73.5        

PEPCO 46.3        87.7        130.0      163.2      180.0      188.1      194.8      203.1      214.6      229.9      249.7      274.8      308.8      353.8      402.8      455.9      

PL 17.5        29.2        41.4        54.6        68.4        78.2        86.5        94.7        102.9      111.0      119.0      127.2      136.2      146.2      159.9      175.6      

PS 117.6      183.3      214.9      239.5      269.1      300.7      340.2      391.9      458.6      558.1      696.3      861.4      1,039.1   1,238.3   1,444.6   1,653.8   

RECO 4.0           6.2           7.3           8.1           9.1           10.1        11.5        13.2        15.4        18.7        23.3        28.8        34.7        41.2        48.0        54.9        

UGI 0.4           0.7           1.0           1.4           1.7           1.9           2.1           2.3           2.5           2.7           2.9           3.1           3.3           3.6           3.9           4.3           

PJM RTO 601.4      1,072.2  1,452.1  1,816.1  2,153.1  2,477.4  2,851.6  3,270.9  3,729.6  4,265.3  4,891.1  5,564.3  6,303.1  7,147.2  8,077.4  9,088.0   
 
Historical Distributed Solar Generation Installations 
 
Since PJM added the estimated historical back-casted solar impacts to the unrestricted loads, those must 
be considered as well. Using the GATS data of currently installed distributed solar generation, along with a 
96% DC to AC conversion factor, and a 0.8% degradation assumption, PJM calculated the amount of 

                                                
29 Beginning on Page 5 of this NREL study: http://www.nrel.gov/docs/fy12osti/51664.pdf  

http://www.pjm.com/
http://www.nrel.gov/docs/fy12osti/51664.pdf
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nameplate capacity of distributed solar generation that have already been installed. Table IV-7 below 
shows how much of the currently installed resources are assumed to operate in the future. 
 

Table IV-7 : Cumulative Nameplate Capacity of Existing Distributed Solar Generation by Zone  

ZONE 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031

AE 192.0      190.4      188.9      187.4      185.9      184.4      182.9      181.5      180.0      178.6      177.1      175.7      174.3      172.9      171.5      170.2      

AEP 36.3        36.0        35.8        35.5        35.2        34.9        34.6        34.4        34.1        33.8        33.5        33.3        33.0        32.7        32.5        32.2        

APS 41.7        41.4        41.1        40.7        40.4        40.1        39.8        39.4        39.1        38.8        38.5        38.2        37.9        37.6        37.3        37.0        

ATSI 50.4        50.0        49.6        49.2        48.8        48.4        48.0        47.6        47.3        46.9        46.5        46.1        45.8        45.4        45.0        44.7        

BGE 105.0      104.2      103.4      102.5      101.7      100.9      100.1      99.3        98.5        97.7        96.9        96.2        95.4        94.6        93.9        93.1        

COMED 33.9        33.7        33.4        33.1        32.9        32.6        32.3        32.1        31.8        31.6        31.3        31.1        30.8        30.6        30.3        30.1        

DAYTON 12.6        12.5        12.4        12.3        12.2        12.1        12.0        11.9        11.8        11.7        11.6        11.6        11.5        11.4        11.3        11.2        

DEOK 13.5        13.4        13.3        13.2        13.1        12.9        12.8        12.7        12.6        12.5        12.4        12.3        12.2        12.1        12.0        11.9        

DLCO 4.4           4.4           4.3           4.3           4.3           4.2           4.2           4.2           4.1           4.1           4.1           4.0           4.0           4.0           3.9           3.9           

DOM 109.6      108.7      107.9      107.0      106.2      105.3      104.5      103.6      102.8      102.0      101.2      100.4      99.6        98.8        98.0        97.2        

DPL 112.6      111.7      110.8      109.9      109.0      108.2      107.3      106.5      105.6      104.8      103.9      103.1      102.3      101.4      100.6      99.8        

EKPC 0.3           0.3           0.3           0.3           0.3           0.3           0.3           0.3           0.3           0.3           0.3           0.3           0.3           0.3           0.3           0.3           

JCPL 381.3      378.2      375.2      372.2      369.2      366.3      363.4      360.4      357.6      354.7      351.9      349.1      346.3      343.5      340.7      338.0      

METED 37.2        36.9        36.6        36.3        36.0        35.7        35.4        35.1        34.9        34.6        34.3        34.0        33.8        33.5        33.2        32.9        

PECO 49.8        49.4        49.0        48.6        48.2        47.8        47.5        47.1        46.7        46.3        46.0        45.6        45.2        44.9        44.5        44.1        

PENLC 5.5           5.5           5.4           5.4           5.3           5.3           5.2           5.2           5.2           5.1           5.1           5.0           5.0           5.0           4.9           4.9           

PEPCO 82.9        82.3        81.6        81.0        80.3        79.7        79.0        78.4        77.8        77.2        76.5        75.9        75.3        74.7        74.1        73.5        

PL 86.7        86.0        85.3        84.6        83.9        83.3        82.6        81.9        81.3        80.6        80.0        79.3        78.7        78.1        77.5        76.8        

PS 585.1      580.5      575.8      571.2      566.6      562.1      557.6      553.1      548.7      544.3      540.0      535.7      531.4      527.1      522.9      518.7      

RECO 12.4        12.3        12.2        12.1        12.0        11.9        11.8        11.7        11.6        11.5        11.4        11.3        11.2        11.1        11.1        11.0        

UGI 0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           

PJM RTO 1,953.8  1,938.2  1,922.7  1,907.3  1,892.0  1,876.9  1,861.9  1,847.0  1,832.2  1,817.5  1,803.0  1,788.6  1,774.3  1,760.1  1,746.0  1,732.0   

 
Determination of Total Nameplate Capacity of Distributed Solar Generation in the Forecast 
 
To determine the net amount of nameplate capacity of distributed solar generation for each of the forecast 
years, PJM added the forecasted values and the amount of existing resources. Table IV-8 below shows the 
total cumulative impact of distributed solar generation for each of the forecast years. 
 

Table IV-8 : Cumulative Nameplate Capacity of Existing and Forecasted Distributed Solar Generation by 
Zone 

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031

AE 219.6     233.3     239.2     243.4     248.7     254.5     262.1     272.6     286.4     307.8     337.9     374.3     413.5     457.5     503.1     549.3       

AEP 49.9       72.7       96.4       123.2     153.2     186.2     223.7     263.8     306.4     350.4     396.2     433.2     470.4     511.7     559.9     616.1       

APS 69.0       92.3       116.5     138.3     155.4     167.6     179.5     192.5     207.1     223.3     241.2     261.7     286.4     316.3     351.8     392.9       

ATSI 57.1       71.6       87.7       103.7     119.6     136.5     153.6     170.7     189.2     207.9     226.4     233.6     237.9     242.5     248.7     256.5       

BGE 169.3     225.7     283.1     325.4     343.7     349.9     354.1     360.9     372.6     390.0     414.1     446.3     492.0     553.9     622.0     696.0       

COMED 71.1       93.2       108.0     122.8     137.5     161.4     191.1     220.6     252.3     284.9     317.1     349.1     380.8     412.3     445.6     481.8       

DAYTON 13.8       17.4       21.5       25.6       29.6       34.1       38.7       43.4       48.4       53.5       58.6       60.5       61.4       62.3       63.6       65.2          

DEOK 15.3       20.7       26.8       32.9       38.9       45.4       52.3       59.2       66.7       74.4       82.0       84.7       86.0       87.5       89.6       92.3          

DLCO 10.6       14.8       19.0       23.7       28.5       31.9       34.8       37.7       40.5       43.3       46.1       48.9       52.1       55.5       60.2       65.6          

DOM 223.0     318.8     378.9     456.5     551.0     652.8     775.9     910.8     1,051.3  1,196.7  1,347.2  1,505.3  1,674.1  1,856.4  2,055.6  2,272.9    

DPL 136.3     162.9     194.3     225.2     244.4     263.6     295.4     330.9     357.2     384.0     413.0     446.0     487.6     542.2     612.7     705.1       

EKPC 0.8          1.0          1.1          1.2          1.3          1.4          1.4          1.5          1.6          1.7          1.7          1.8          1.9          2.0          3.6          5.8            

JCPL 441.4     472.0     485.4     495.1     507.2     520.6     537.9     561.5     593.1     641.4     709.8     792.3     881.4     982.0     1,086.5  1,192.6    

METED 44.0       48.2       52.7       57.5       62.6       66.1       69.1       72.0       75.0       77.9       80.8       83.7       87.1       90.8       95.9       101.9       

PECO 67.5       78.9       90.9       103.9     117.5     127.0     135.1     143.1     151.0     158.8     166.7     174.7     183.5     193.4     207.0     222.7       

PENLC 13.1       18.1       23.3       28.9       34.6       38.8       42.2       45.6       49.0       52.3       55.6       58.9       62.6       66.6       72.0       78.4          

PEPCO 129.2     170.0     211.6     244.2     260.3     267.8     273.8     281.5     292.4     307.1     326.2     350.7     384.1     428.5     476.9     529.4       

PL 104.2     115.2     126.7     139.2     152.3     161.5     169.1     176.6     184.2     191.6     199.0     206.5     214.9     224.3     237.4     252.4       

PS 702.7     763.8     790.7     810.7     835.7     862.8     897.8     945.0     1,007.3  1,102.4  1,236.3  1,397.1  1,570.5  1,765.4  1,967.5  2,172.5    

RECO 16.4       18.5       19.5       20.2       21.1       22.0       23.3       24.9       27.0       30.2       34.7       40.1       45.9       52.3       59.1       65.9          

UGI 0.8          1.1          1.4          1.8          2.1          2.3          2.5          2.7          2.9          3.1          3.3          3.5          3.7          4.0          4.3          4.7            

PJM RTO 2,555.2 3,010.4 3,374.8 3,723.4 4,045.1 4,354.3 4,713.5 5,117.9 5,561.8 6,082.8 6,694.1 7,352.9 8,077.4 8,907.3 9,823.4 10,820.0  
 
 

http://www.pjm.com/
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Capacity Factors 
 
Having obtained the nameplate capacity of the distributed solar generation, PJM must apply this to both the 
energy and peak forecasts. In order to do so, PJM calculated a capacity value at peak, as well as hourly 
capacity factors for the energy forecasts. 
 
To calculate the capacity value at peak, PJM derived a capacity factor based on the back-casted values. 
This capacity factor at summer peak represents the ratio of estimated output divided by the nameplate 
amount taken as an average of hour ending 17:00 over the months of June, July, and August. The capacity 
factor at fall peaks represents the ratio of estimated output divided by the nameplate amount taken as an 
average of hour ending 17:00 over the months of September, October, and November. The capacity factor 
at spring peaks represents the ratio of estimated output divided by the installed amount taken as an 
average of hour ending 17:00 over the months of March, April, and May. The capacity factor at winter 
peaks represents the ratio of estimated output divided by the installed amount taken as an average of hour 
ending 19:00 over the months of December, January, and February. The specific hour selected for each 
season corresponds to the typical peak hour of that season. The capacity factors applied to the installed 
capacity for energy purposes represent the hourly average by month and zone. The capacity factor for 
energy purposes is the estimated output divided by the installed amount at that particular point in time. 
Table IV-9 below shows the capacity factors for the seasonal peaks that are applied to the installed 
capacity amount. 

http://www.pjm.com/
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Table IV-9 : Capacity Factors at Seasonal Peak by Zone30 

Fall Winter Spring Summer

AE 14% 0% 26% 32%

AEP 14% 0% 18% 22%

APS 11% 0% 17% 20%

ATSI 15% 0% 25% 31%

BGE 11% 0% 18% 21%

COMED 13% 0% 19% 24%

DAYTON 15% 0% 19% 25%

DEOK 14% 0% 19% 24%

DLCO 10% 0% 16% 22%

DOM 13% 0% 20% 23%

DPL 14% 0% 25% 29%

EKPC 21% 0% 32% 32%

JCPL 10% 0% 18% 23%

METED 10% 0% 19% 23%

PECO 9% 0% 16% 19%

PENLC 13% 0% 25% 33%

PEPCO 11% 0% 16% 19%

PL 12% 0% 24% 27%

PS 8% 0% 15% 18%

RECO 8% 0% 15% 18%

UGI 12% 0% 23% 25%

Capacity Factors by Season

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                
30 Fall capacity factors are calculated as an average of HE 17:00 during the months of September, October, and November. 

Winter capacity factors are calculated as an average of HE 19:00 during the months of December, January, and February. 
Spring capacity factors are calculated as an average of HE 17:00 during the months of March, April, and May. Summer 
capacity factors are calculated as an average of HE 17:00 during the months of June, July, and August.  

http://www.pjm.com/
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Ex-Post Bias Adjustment of Distributed Solar Generation in the Long Term Peak Load Forecast 
 
Table IV-10 below shows the result of multiplying the cumulative installed capacity of the net forecasted 
and historical distributed solar generation by the derived capacity factor at summer peak. 
 

Table IV-10 : Cumulative Capacity at Summer Peak of Forecasted and Historical Distributed Solar 
Generation by Zone 

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031

AE 69.3       73.6       75.5       76.8       78.5       80.3       82.7       86.0       90.4       97.1       106.6     118.1     130.5     144.4     158.8     173.3     

AEP 11.1       16.2       21.4       27.4       34.1       41.4       49.8       58.7       68.2       78.0       88.2       96.4       104.7     113.9     124.6     137.2     

APS 13.7       18.4       23.2       27.5       30.9       33.4       35.7       38.3       41.2       44.5       48.0       52.1       57.0       63.0       70.0       78.2       

ATSI 17.8       22.3       27.3       32.3       37.3       42.5       47.8       53.2       58.9       64.8       70.5       72.8       74.1       75.6       77.5       79.9       

BGE 35.6       47.4       59.5       68.3       72.2       73.5       74.4       75.8       78.2       81.9       87.0       93.7       103.3     116.3     130.6     146.2     

COMED 17.2       22.5       26.1       29.7       33.2       39.0       46.2       53.3       60.9       68.8       76.6       84.3       92.0       99.6       107.6     116.3     

DAY 3.4          4.4          5.4          6.4          7.4          8.5          9.7          10.9       12.1       13.4       14.7       15.1       15.4       15.6       15.9       16.3       

DEOK 3.7          5.0          6.5          8.0          9.4          11.1       12.7       14.4       16.2       18.1       19.9       20.6       20.9       21.3       21.8       22.4       

DLCO 2.3          3.3          4.2          5.2          6.3          7.0          7.7          8.3          8.9          9.6          10.2       10.8       11.5       12.2       13.3       14.5       

DOM 50.9       72.7       86.4       104.1     125.6     148.8     176.9     207.7     239.7     272.8     307.1     343.2     381.7     423.2     468.7     518.2     

DPL 39.7       47.4       56.6       65.6       71.2       76.8       86.0       96.4       104.0     111.8     120.3     129.9     142.0     157.9     178.5     205.4     

EKPC 0.3          0.3          0.4          0.4          0.4          0.4          0.5          0.5          0.5          0.5          0.6          0.6          0.6          0.6          1.1          1.8          

JCPL 100.1     107.0     110.0     112.2     115.0     118.0     121.9     127.3     134.5     145.4     160.9     179.6     199.8     222.6     246.3     270.4     

METED 10.0       11.0       12.0       13.1       14.2       15.0       15.7       16.4       17.0       17.7       18.4       19.0       19.8       20.6       21.8       23.2       

PECO 13.0       15.3       17.6       20.1       22.7       24.6       26.1       27.7       29.2       30.7       32.2       33.8       35.5       37.4       40.0       43.1       

PENLC 4.3          5.9          7.6          9.4          11.3       12.6       13.7       14.8       15.9       17.0       18.1       19.2       20.4       21.7       23.4       25.5       

PEPCO 24.3       32.0       39.8       45.9       49.0       50.4       51.5       53.0       55.0       57.8       61.4       66.0       72.3       80.6       89.7       99.6       

PL 28.5       31.6       34.7       38.2       41.8       44.3       46.3       48.4       50.5       52.5       54.5       56.6       58.9       61.5       65.1       69.2       

PS 125.3     136.2     141.0     144.6     149.1     153.9     160.1     168.6     179.7     196.6     220.5     249.2     280.1     314.9     350.9     387.5     

RECO 2.9          3.3          3.5          3.6          3.8          3.9          4.1          4.4          4.8          5.4          6.2          7.2          8.2          9.3          10.5       11.7       

UGI 0.2          0.3          0.4          0.5          0.5          0.6          0.6          0.7          0.7          0.8          0.8          0.9          0.9          1.0          1.1          1.2          

PJM RTO 573.7     676.0     759.0     839.3     913.8     986.0     1,070.4 1,164.7 1,266.8 1,385.2 1,522.7 1,669.0 1,829.4 2,013.2 2,217.4 2,441.0  
 
The values shown in this table were then subtracted from the summer peak forecast, in order to adjust the 
forecast for the impact of distributed solar generation. Table IV-10 corresponds to Table B-8 in the 2016 
Load Forecast Report.  
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V. WEATHER NORMALIZATION 

 
PJM produces Weather Normalized (WN) values for each zone’s summer and winter non-coincident and 
coincident peaks. Weather normalized loads are not explicitly used in PJM’s planning or load forecast 
modeling processes. The intent of WN loads is to indicate a long-term trend in each zone’s seasonal peak 
loads and to help understand the forecast path.  

Background of Change 

 

Previously, PJM used its zonal peak models to derive the official weather normalized peak for each season. 
After each season, each zonal NCP and CP model was re-estimated, adding the most recent historical 
load, weather, and economic data. The weather simulation process was then run, including historical 
weather through the just-completed season. For the RTO WN value, the zonal results were aggregated and 
from the resulting distribution of results the median value was selected as the weather normalized seasonal 
peak. 
 
With the significant model changes adopted in 2015, PJM’s method of weather normalizing peak loads 
using the forecast models resulted in a considerably different weather-normalized history. 

 

Figure V-1 : PJM RTO Model-Driven Weather Normal Comparison 

 
 

As a result, PJM investigated a weather normalization approach that was not tied to the model but would 

produce meaningful historical load trends for each zone.  
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New Process for Summer & Winter 

 
PJM separately weather normalizes the summer and winter seasons, though the process is identical for 

each season. PJM began the investigation for a new weather normalization process by revisiting the former 

bottom-up weather normalization procedure developed by the Load Analysis Subcommittee and used until 

2007. In that method, the zone’s daily peak unrestricted loads for a season were regressed against a 

weather parameter, and the resulting equation was solved at the zone’s weather standard (the long-term 

average of weather conditions on peak days). The months included in the summer regression were June, 

July and August. The weather parameter used in the summer was a two-day weighted temperature 

humidity index (THI) with a weighting of 4 for the current day (t) and 1 for the prior day (t-1). 

 

Equation V-1 : Summer Weather Parameter – Weighted THI 

WTHI = (4*maxTHIt + 1*maxTHI(t-1)) /5 

 

If DB ≥ 58, 

THI = DB - 0.55 * (1 – HUM) * (DB – 58) 

If DB < 58, 

THI = DB 

Where: THI = Temperature humidity index; 

DB = Dry bulb temperature (oF); 

HUM = Relative Humidity (where 100% = 1) 

 

The months included in the winter regression were December, January and February. The weather 

parameter used in the winter was a two-day weighted wind-adjusted temperature called winter weather 

parameter (WWP) at hour ending 19:00 with a weighting of 4 for the current day (t) and 1 for the prior day 

(t-1). 

 

Equation V-2 : Winter Weather Parameter – Weighted WWP 

WWWP = (4*WWPhr19t + 1*WWPhr19(t-1)) /5 

 

If WIND > 10 mph, 

WWP = DB – (0.5 * (WIND – 10)) 

If WIND ≤ 10 mph, 

WWP = DB 

Where: WIND = Wind velocity, in miles per hour; 

WWP = Wind speed adjusted dry bulb temperature; 

DB = Dry bulb temperature (oF) 
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PJM chose to retain the weather parameters from the prior method and then investigated using a single 

year or three year history for the regression. The single year analysis resulted in slightly more volatile 

weather normalized series as sudden shifts in load growth and extreme weather in a single year dominated 

the results. The three year history, which controls for inter-year load growth, smoothed the weather 

normalized series and allowed for more weather history in the regression. 

Weather Standard 

 
PJM considered a number of methods to produce the weather standards at which the three year regression 

equations were solved. The time periods reviewed were 1998 to 2014 to be consistent with the historical 

load period used and 1994 to 2014 to be consistent with the historical years used in the weather simulation. 

In order to keep the weather standard in line with the forecast weather distribution, PJM decided to use the 

time period of 1994 to the most recent year available. 

 

Next, the pool of days to pick the maximum weather standard was examined. Three categories of weather 

days were considered. First, only peak day weather; second, seasonal extreme weather; and finally, 

weather that occurred on non-holiday weekdays were investigated. Using only weather that occurred on 

peak days produces a weather standard that is lower in the summer and higher in the winter since extreme 

weather on non-peaking days is not captured. By using seasonal extremes for the weather standard the 

weather normalized series may be inflated and thus overstate the long term trend of historical load and first 

year load growth. To balance possible and probable weather, PJM chose to use weather from non-holiday 

weekdays.  

 

PJM had the option of using a rolling number of years in the weather standard or a static number of years. 

If a rolling number of years is used then trends in weather would be picked up but the weather standard 

would be slightly different each year. By using a static number of years in the weather standard the weather 

normalized loads indicate load changes but not weather trends. It was decided to use a static number of 

years with the intent to occasionally revisit and, if necessary, revise the number of years used in the 

weather standard. This method will have the effect of producing updated historical weather normalized 

loads each year as every three year regression will be solved at the updated weather standard for all 

historical years. Using a static number of years has the added benefit of being similar to the load forecast 

and thus helps in comparing the WN values to the forecast. 

 

Finally, the method of using either an average or median to compute the weather standard was reviewed. 

Using the average or median reflects central tendency and will only differ significantly if the distribution is 

not normal. PJM decided to use the average as it is an industry standard and using either average or 

median produced similar results. 

 

The resulting weather normalization procedure (illustrated in Figure V-2) produces a series of values which 

successfully meets the goal of indicating the long-term trend in each zone’s seasonal peak. However, its 
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ability to accurately portray first year growth in the forecast will be compromised following a year in which a 

zone experienced significantly milder or harsher weather than average. 

 

Figure V-2: Comparison of New and Model-Driven Weather Normalization Procedures 
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APPENDIX A. ACCURACY ANALYSIS 

 
The catalyst for extensive model review was the growing concern of increasing forecast error. PJM has 
been producing an independent forecast since 2006. This short period of time limits the number of data 
points from which to draw firm conclusions about accuracy, especially when perhaps the most critical points 
of the long-term forecast are 3 and 5 years out (the RPM and RTEP years, respectively). However, the 
trend seemed clear that error was high and increasing.  
 
When considering accuracy, the total effective error comprises the economic error and the model error. 
PJM does not forecast economics, and instead uses a series of economic drivers forecast by Moody’s 
Analytics. As a result, there is some error that is outside of the modeler’s control. Model error is the 
remaining error, once some control is put in place for economic error.  
 
In Figure A-1, total error and model error for the three-year out forecast are plotted. Total error is computed 
using only the information that would have been available at the time the forecast was generated. Model 
error is calculated in a similar way, but instead of using economics available at the time, a more recent 
snapshot of economics is used. In each case, the models are evaluated as to how they would perform on 
the 10 highest load days of each year. 
 

Figure A-1 : Three-Year Out Forecast Error (Old Model Specification) 

 
 

Model error increased with successive forecast updates. In the early years of PJM producing a load 
forecast (which coincided with the Great Recession in 2007 to 2009), much of the forecast error was 
attributable to inaccuracy in the economic forecast. However, more recent years were showing this to not 
be the case and error was increasingly attributable to the model. As model development progressed 
throughout 2015, improvement of model error was the identified metric for comparison purposes. The 

http://www.pjm.com/


 
Load Forecasting Model Whitepaper 

 

PJM © 2016     www.pjm.com    57 | P a g e  
 

current model specification showed significant improvement in model error (see Figure A-2 and Figure 
A-3)31. 
 

Figure A-2 : Forecast Model Error (Current versus Old) 

 

                                                
31 In the Figures, forecast performance is observed over 10 days for each forecast for each year out. Thus, there are a different 

number of points used in each calculation. The performance at 0 years out is calculated over 70 points, whereas the 
performance at three years out is calculated over 40 points, and so forth. 
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Figure A-3: Three-Year Out Forecast Model Error (Current versus Old) 
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APPENDIX B. DECOMPOSITION AND SENSITIVITY ANALYSIS 

Decomposition Analysis 

 
Each change made throughout the load forecast model investigation had varying degrees of significance. 
The analysis that follows breaks down the model changes into distinct categories to isolate the forecast 
impact of each improvement. Analysis was conducted using the 2015 forecast model as the base case, 
with some slight differences from the official forecast released in January 2015. As a result, the starting 
point of the analysis is not identical to what was presented in that report. The differences are: 
 

 Economics were updated to the Moody’s Analytics July 2015 release; 

 No binary variable adjustment was made; 

 No forecast adjustments were applied. 

The breakdown of the impacts on the summer forecast can be seen in Figure B-1. The new specification 
has a forecast that is 4.1% below the forecast that would have been produced using existing practices at 
the time. The introduction of the new equipment index variables that capture trends in saturation and 
efficiency were the single largest contributor to the forecast reduction (-3.4%). Various model changes, 
which include refinements to the weather specification as well as the introduction of an autoregressive 
(AR(1)) error term were the next largest contributor to the forecast reduction (-1.4%). Also acting to lower 
the forecast was the treatment of distributed solar generation (-0.4%)32. Partially offsetting these reductions 
is the shorter weather simulation period (+1.1%). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                
32 The forecast reduction attributed to distributed solar generation is calculated using the solar forecast that was in place for the 

2016 Load Forecast, as no prior PJM distributed solar energy resource forecast is available.  
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Figure B-1 : Component Decomposition – Summer Forecast 

 

It is important to keep in mind that these contributions are calculated for a particular point in time (three 
years out). Earlier years in the forecast would show less of a reduction as there would be less time for 
equipment efficiency gains and distributed solar generation to influence the forecast. Similarly, further years 
would show a larger reduction as these types of trends become more significant. 
 
The breakdown of the impacts on the winter forecast can be seen in Figure B-2. The new specification has 
a forecast that is 3.7% below the forecast that would have been produced using existing practices at the 
time. The introduction of the new equipment index variables that capture trends in saturation and efficiency 
were the single largest contributor to the forecast reduction (-4.4%). A shorter weather simulation also 
acted to reduce the forecast (-0.6%) as winter peak weather conditions have tended to be milder in the 
most recent 20 years than in the 20 years prior. Various model changes–including refinements to the 
weather specification and the AR(1) error term—offset some of these changes (+1.4%). This indicates that 
the old weather specification understated the elasticity of load to weather in severe conditions. There is no 
impact from solar treatment as the output from distributed solar generation at the time of the winter peak 
(typically 7:00 PM) is forecast to be 0 MW. 
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Figure B-2 : Component Decomposition – Winter Forecast 

 
 

Sensitivity Analysis 

 
With the inclusion of end-use variables in the load forecast model, the forecast is now influenced by input 
from another outside information source in addition to the economic forecast already provided by Moody’s 
Analytics. The end-use variables obtained from EIA data include projections of both equipment saturation 
and equipment efficiency. These variables affect the load forecast in two major ways. First, they better align 
the forecast with historical trends which lowers the starting point beyond what it otherwise would be. 
Second, they augment the forecast with EIA’s projections for future end-use behavior. 
  
Better alignment with historical trends is an important step forward. The previous load forecast model was 
arguably biased high in recent years as it was failing to adequately capture the rapid evolution of end-use 
behavior. More accurately capturing the forecast starting point increases the model’s ability to project the 
loads in the out-years more accurately.  
 
The EIA end-use projections also impact the shape of the forecast going forward. Three sensitivities were 
run to capture these impacts: 
 

 Hold efficiency constant on all equipment at 2015 levels; 

 Hold saturation constant on all equipment at 2015 levels; 

 Hold saturation and efficiency constant on all equipment at 2015 levels. 

Figure B-3 below shows these sensitivity results for the summer peak forecast. The Cooling and Other 
Equipment Indexes are the measures of consequence in the summer period. The equipment efficiency 
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projections pull the forecast downward on average by 0.6% per year over the next five years. This is 
somewhat offset by increasing equipment saturation overall33 that adds on average 0.2% per year over the 
next five years. Overall, the total impact of the saturation and efficiency projections is 0.4% per year over 
the next five years compared with these two projections being held constant. 
 

Figure B-3 : End-Use Variable Sensitivities – Summer Forecast 

 
 

Figure B-4 below shows these sensitivity results for the winter peak forecast. The Heating and Other 
Equipment Indexes are the measures of consequence in the winter period. The equipment efficiency 
projections pull the forecast downward on average 0.5% per year over the next five years. This is 
somewhat offset by increasing equipment saturation overall that add on average 0.1% per year over the 
next five years. Overall, the total impact of the saturation and efficiency projections is 0.5% per year over 
the next five years compared with these two projections being held constant.  

 
 
 
 

                                                
33 Saturation of some equipment goes up while others go down, but the net impact is positive. For instance, most commercial 

equipment types have declining saturation, whereas most residential equipment/appliance types have increasing saturation. 
An interesting exception is the future declines in room air conditioners, though this is more than offset by increases in other 
residential cooling types.  
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Figure B-4 : End-Use Variable Sensitivities – Winter Forecast 

 
 

The notable difference between the summer and winter seasons is that the winter has less upward 
pressure from increasing saturation. This is because the prevalence of natural gas heating alternatives 
impacts heating saturation rates. There is not a significant non-electric equivalent in the cooling space.  
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APPENDIX C. SEER TO EER CONVERSION 

 
The end-use data supplied by Itron to PJM defines efficiency for residential central air conditioning units 
and heat pumps by their Seasonal Energy Efficiency Ratio (SEER). Throughout the 2015 model 
development process, some stakeholders contracted with a consultant, Navigant, who raised the concern 
that the use of SEER could lead to overstating efficiency improvements and that the Energy Efficiency 
Ratio (EER) was a more appropriate metric34. Navigant conducted analysis to convert SEER to EER and 
provided it to PJM, and PJM verified their analysis. 
  
This is the only time that SEER ratings for central air conditioners and heat pumps will need to be manually 
converted to EER ratings. Going forward, Itron will be making EER ratings a part of the standard annual 
release through the Energy Forecasting Group. 

Rationale for EER instead of SEER 

 
The rationale for using EER instead of SEER can be traced to the intention of each of these metrics. SEER 
is meant to capture the efficiency of a cooling unit over the course of the entire cooling season. This 
measure is calculated as a ratio of cooling output during a typical year to the energy consumed. SEER 
would best be described as measuring seasonal average performance. 
  
The primary goal of the PJM load forecast is to anticipate load under system peak conditions, not daily 
peaks under average conditions. EER measures unit performance at a single outside temperature of 95 
degrees, more in line with this goal. This would not be an issue if the relationship between SEER and EER 
ratings were static, but the data does not support this. Figure C-1 shows split system air-conditioning unit 
records data (roughly 1 million records) from the Air-Conditioning, Heating, and Refrigeration Institute 
(AHRI)35. 
 

                                                
34 Navigant presented information on their findings at the November 30, 2015 Load Analysis Subcommittee meeting: 

http://www.pjm.com/~/media/committees-groups/subcommittees/las/20151130/20151130-item-05-navigant-presentation.ashx  
35 AHRI website: https://www.ahridirectory.org/ahridirectory/pages/home.aspx  
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Figure C-1 : SEER versus EER– Central A/C Units 

 
 

While there has been some movement towards EER-based standards36, SEER ratings remain the 
predominant metric used to gauge air conditioner efficiency. This is sensible as SEER ratings are the 
metric more indicative of a consumer’s annual expenses. As a result, there is strong incentive for 
manufacturers to increase SEER without necessarily increasing EER.  
 
The figure above shows that for a given SEER rating, there is a wide range of potential EER ratings. Also, 
the EER to SEER ratio decreases with higher SEER ratings. A typical 13 SEER unit has an associated 
EER rating of 11, a ratio of 0.85. Whereas a typical 18 SEER unit has an associated EER rating of 13, a 
ratio of 0.72. The data on split system heat pumps tells a similar story (see Figure C-2).  
 

                                                
36 Arizona, California, Nevada, and New Mexico have corresponding EER requirements as a standard. 
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Figure C-2 : SEER versus EER – Heat Pump Units 

 

Converting SEER to EER 

 
Average SEER ratings provided by Itron need to be converted to EER ratings to reflect the relationship 
described above. This conversion requires the use of two sets of equations: one set for before 2006 and 
one after 2006. Two sets of equations are required because the historical timeframe of the data spans two 
sets of standards. From 1992 to 2005, the minimum SEER for central air conditioners and heat pumps was 
10. Starting in 2006, a new standard pushed the minimum SEER to 13. This standard was eventually 
amended such that heat pumps as of 2015 need to have a minimum SEER of 14.  
 
For SEER ratings less than 13, data is gathered from technical documentation associated with the rule 
change that took effect in 200637. For SEER ratings 13 and higher, the aforementioned unit data from the 
AHRI is used. In both cases, the model considers the median unit and fits a second order polynomial 
equation to the data. A second order polynomial is used rather than a linear trend to account for the 
declining EER to SEER ratio discussed above. This can be observed in Figure C-3 and Figure C-4, and the 
equations in Equation C-1. 
 
 
 
 
 
 

                                                
37 U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy (2002). Technical Support Document to 

Energy Conservation Standards for Central Air Conditioners and Heat Pumps (Docket No. EERE-2006-STD-0089). Chapter 4 
Engineering Analysis, Table 4.27. http://www.regulations.gov/#!documentDetail;D=EERE-2006-STD-0089-0371 
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Figure C-3 : SEER to EER Relationship – Central A/C 

 
 

Figure C-4 : SEER to EER Relationship – Heat Pumps 
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Equation C-1 : SEER to EER Conversion Equations 

Central Air Conditioners 
 

Before 2006: EER = -0.0118 x SEER2 + 1.043 x SEER 
2006 and after: -0.0274 x SEER2 + 1.227 x SEER 

 
Heat Pumps 

 
Before 2006: EER = -0.0045 x SEER2 + 0.9635 x SEER 

2006 and after: -0.0267 x SEER2 + 1.1954 x SEER 

 
The Itron data spreadsheets, arranged by Census Division, contain information on average SEER, the 
saturation rate, and the number of households. The combination of the latter two provides the number of 
central air conditioners or heat pumps. With this information, PJM derives an estimate of average EER by 
equipment type using a multi-step process.  
 
Step 1: Estimate the number of cooling units that retire each year, and the number of cooling units added 
each year. Cooling units are assumed to have a lifetime of 19 years.  
 

Equation C-2: Calculating New and Retired Cooling Units (Step 1) 

Retired_Unitst = Total_Unitst / 19 
New_Unitst = Retired_Unitst +(Total_Unitst+1 - Total_Unitst) 

 
Step 2: Calculate the Average EER in the first historical year (1995) using SEER-to-EER conversion 
equations for before 2006. 
 
Step 3: Estimate the average SEER of new cooling units. This is done by resolving algebraically the identity 
that the average SEER rating in one period is related to the average SEER rating in the prior period after 
adjusting for new and retired cooling units. 
 

Equation C-3 : Calculate Average SEER of New Units (Step 3) 

Avg_SEERt x Total_Unitst = (Avg_SEERt-1 x Total_Unitst-1) - (Avg_SEERt-1 x Retired_Unitst-1) + 
(Avg_New_SEERt-1 x New_Unitst-1) 

 
which algebraically can resolve to: 

Avg_New_SEERt-1 = ((Avg_SEERt x Total_Unitst) - (Avg_SEERt-1 x Total_Unitst-1) + (Avg_SEERt-1 x 
Retired_Unitst-1)) / New_Unitst-1 

 
Step 4: Translate the average SEER of new cooling units (Avg_New_SEER) into the average EER of new 
cooling units (Avg_New_EER) using SEER-to-EER conversion equations. 
 
Step 5: Calculate the average EER of total cooling units. This is done by resolving algebraically the identity 
that the average EER rating in one period is related to the average EER rating in the prior period after 
adjusting for new and retired cooling units. 
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Equation C-4 : Calculate Average EER of Total Cooling Units (Step 5) 

Avg_EERt x Total_Unitst = (Avg_EERt-1 x Total_Unitst-1) - (Avg_EERt-1 x Retired_Unitst-1) +     
(Avg_New_EERt-1 x New_Unitst-1) 

 
which algebraically can resolve to: 

Avg_EERt = ((Avg_EERt-1 x Total_Unitst-1) - (Avg_EERt-1 x Retired_Unitst-1) +                              
(Avg_New_EERt-1 x New_Unitst-1)) / Total_Unitst 

 
The average EER calculated using these described methods is then used to replace the average SEER 
metric and the resulting Cooling Equipment Index is calculated.  

Assumptions Discussion 

 
Aside from the equations derived to map SEER to EER in Equation C-1, there are two additional 
assumptions made that should be discussed. First, the process assumes that the retiring cooling units have 
average efficiency. Second, the assumption is made that a cooling unit’s lifetime is 19 years. Neither of 
these assumptions has a significant impact on the analytical results. 
 
Consider the assumption that the retiring cooling units have average efficiency. This is probably not the 
case as it is intuitive to think that a cooling unit being replaced is likely to be less efficient than average in 
the year it is replaced. To gauge the impact of this assumption, consider the hypothetical scenario that a 
retiring cooling unit has 95% the efficiency rating of the average unit in the year it is retired.  
 
Assuming a lower efficiency of retiring cooling units has a couple implications. First, the remaining cooling 
units implicitly must be more efficient than the average in that year. And consequently, new cooling units 
are less efficient under this assumption than they otherwise would be and the resulting average EER shifts 
downward. The results of this hypothetical case can be seen in Figure C-5.  
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Figure C-5 : EER Comparison – Hypothetical Scenario 

 
 

In the construction of the Cooling Equipment Index, it is really the trend that matters as efficiency is 
captured in how it moves relative to the base year (1998). EER improves at an annualized rate of 1.1% 
from 1998 to 2015 under the baseline compared with 1% in the hypothetical scenario. However in the 
forecast period, there is no noticeable difference, as both grow at an annualized rate of 0.6% from 2015 to 
2020. 
  
To test the impact on the forecast, these hypothetical EER figures for central air conditioning units and heat 
pumps were plugged into the equipment index. The results indicate that the forecast would have been 0.1% 
higher in all years, a negligible impact. 
 
The second assumption to consider is the 19 year average lifetime of cooling units. This assumption is 
supported by technical documentation38 produced by the Department of Energy as a part of the amended 
standards process that took place in 2011, which states that “the mean lifetime for central air conditioners is 
19.01 years, for heat pumps is 16.24 years”. For simplicity, 19 years was used as the lifetime for both 
central air conditioners and heat pumps. Assuming a 19 year lifespan for heat pumps rather than 16 years 
does not make a material difference, as the historical and forecast estimated EER values under either 
assumption are indistinguishable from one another (see Figure C-6).  
 

                                                
38 U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy (2011). Technical Support Document: Energy 

Efficiency Program for Consumer Products: Residential Central Air Conditioners, Heat Pumps, and Furnaces (Docket No. 
EERE-2011-BT-STD-0011-0012). Chapter 8 Life-Cycle Cost and Payback Period Analysis, pp 59-67. 
http://www.regulations.gov/#!documentDetail;D=EERE-2011-BT-STD-0011-0012  
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Figure C-6 : Effect on Average Efficiency of Varying Unit Lifetime 

 

Verifying Accuracy 

 
Adopting EER as the efficiency metric over SEER made intuitive sense, but PJM wanted to confirm that 
making the switch did not compromise the accuracy of the forecast model. The forecast model was run 
under two sets of conditions and evaluated for accuracy on the 10 highest load days of the year. The two 
conditions are:  

 Keeping SEER as the efficiency measure for Central A/C and Heat Pumps  

 Converting SEER to EER and using EER as the efficiency measure for Central A/C and 

Heat Pumps  

On average, the EER-based approach has been about 10% more accurate than the SEER-based approach 
in the zero to three year-out forecasts (see Figure C-7). This confirmed that, not only was EER logically 
correct for use in peak load forecasting, but it was also more accurate. 
 
 
 
 
 
 
 
 
 
 
 

http://www.pjm.com/


 
Load Forecasting Model Whitepaper 

 

PJM © 2016     www.pjm.com    72 | P a g e  
 

Figure C-7 : Accuracy Comparison – Using EER Instead of SEER 
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APPENDIX D. INCORPORATING ZONAL SATURATION DATA 

 
Unless otherwise supplied, the current practice is to assign each zone to a Census Division for its 
equipment saturation and equipment efficiency data. However, many zones still maintain a load research 
function and periodically survey their customers regarding their appliances. If this data can improve model 
results, it was deemed worthwhile to use. Zones were solicited to supply end-use saturation data, and 10 
supplied information: AEP, APS, ATSI, ComEd, Dominion, Duke, EKPC, JCPL, MetEd, and PENLC. 
 
The zonal data was then pulled into the existing framework as it was important that the data be compatible 
with the Itron/EIA data that would remain the basis for the forecast. In this manner, the forecast data for the 
zones that supplied information would remain comparable to those that did not in order to ensure 
impartiality. Forecasted saturation data from the allocated Census Division are applied proportionately to 
the zones as is described in Equation D-1. 
 
The lone exception to the proportional treatment is in the case where a zone has a higher saturation of a 
particular equipment type than the Census Division, and that equipment type is growing. In this case, the 
zonal saturation will increase at the same level rate as the Census Division. This is to guard against 
saturation rates growing out of control. A zone having a higher concentration of a particular equipment type 
is a snapshot in time, and is not necessarily indicative that its saturation rate should grow at a faster rate in 
perpetuity. In addition, new historical annual average usages or intensities (used as weights in the 
Equipment Index calculations) are calculated by type based on the zonal saturation relative to the Census 
Division saturation. 
 

Equation D-1 : Forecasted Saturation Rates with Zonal Supplied Data 

SatZone,Type,t = SatCensus,Type,t x (SatZone,Type,b / SatCensus,Type,b) 
Except when (SatZone,Type,b > SatCensus,Type,b) and (SatCensus,Type,t - SatCensus,Type,t-1) > 0 

Then SatZone,Type,t = SatZone,Type,t-1 + (SatCensus,Type,t - SatCensus,Type,t-1) 
 

Where 
Sat = Saturation, defined by year and equipment type 

Type = Equipment/Appliance type (see types listed earlier in this document) 
Zone = Transmission Zone 
Census = Census Division 

 
IntensityZone,Type,t = IntensityCensus,Type,t x (SatZone,Type,t / SatCensus,Type,t) 

 
Where 

Intensity = Average Annual Use 

 
The resulting saturation rates are then used to calculate the equipment indexes as described earlier in the 
document. In the event that data on a particular equipment type is not supplied, then Census Division data 
is used. 
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Some zones have two possible sets of equipment indexes. One set that incorporates zonal-supplied data, 
and one that does not. The inclination is to use zonal-supplied data, but it should not be used at the 
expense of accuracy. Accuracy was tested by computing three-year out forecast model error, and to then 
only use the equipment index that leverages zonal-supplied data if it results in improved accuracy. The 
results of this analysis can be seen in Figure D-1. 
 

Figure D-1 : Accuracy Comparison – With and Without Zonal Data 

 
 

Of the 10 zones that supplied data, only JCPL and METED produced forecast results that were less 
accurate. As a result, they were not used in the official forecast. Figure D-2 shows the results of using zonal 
saturation data. There is negligible impact at the RTO level. For six out of the eight zones affected, the 
change is in the realm of plus or minus 0.5%. The exceptions are EKPC and PENLC, the latter of which 
had the most noticeable improvement in accuracy due to inclusion of their zonal saturation data. In EKPC, 
the lower forecast is due to a higher proportion of relatively more efficient heat pumps than central air 
conditioners than is reflected in the East South Central Census Division data. In PENLC, the higher 
forecast is due to a sharper historic rise in cooling equipment saturation than in the Mid-Atlantic Census 
Division. Cooling equipment was comparatively sparse in PENLC in the late 1990s followed by a sharp rise 
in the 2000s. 
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Figure D-2 : Forecast Impact of Using Zonal Data 
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APPENDIX E. 2013 INVESTIGATION 

 
In 2013 PJM conducted a reexamination of the load forecast model with the intent to identify and implement 
model changes that would address the persistent over-forecasting. Areas of investigation focused on the 
variable types then used in the model: day type, weather and economics, as well as revisions to model 
processes. Tests were conducted on each zone’s non-coincident peak model and potential changes were 
scored based on their contribution to lowering the mean absolute percent error (MAPE) compared to the 
official 2013 model, with priority given to MAPE calculated on a daily basis as well as on the five highest 
and the single highest peaks of each summer. The results for each category studied were: 
 
• Day type variables - Deleted weekday and month variables from the model and replaced with Day/month 
variables (e.g., MonJan, MonFeb, etc.). Result: insignificant improvement, at the cost of significantly more 
variables in the model; 
 
• Weather variables - Replaced Temperature-Humidity Index with Summer Simmer Index, a related 
measure that results in a broader range than THI. Result: insignificant changes and in some cases a worse 
model fit; 
 
• Weather variables - Replaced Temperature-Humidity Index (THI) with Summer Simmer Index, a related 
measure that results in a broader range than THI. Result: insignificant changes and in some cases worse 
model fit; 
 
• Economic variables - Replaced the indexed variable with its six individual components: Gross Domestic 
Product, Gross Metropolitan Product, Population, Households, Non-Manufacturing Employment, and Real 
Personal Income. Result: improved fit in all zones but produced unexpected coefficient signs and wildly 
unstable forecast results; 
 
• Economic variables - Replaced the indexed variable with its six individual components and added 
Manufacturing Employment. Result: improved fit in all zones but produced unexpected coefficient signs and 
wildly unstable forecast results;  
 
• Economic variables - Replaced the indexed variable with a simpler one, using only Households, Non-
Manufacturing Employment and Manufacturing Employment. Result: worse fit in all but a few zones; 
 
• Weekday-Only - Removed weekend days and holidays from model. Result: no significant change;  
 
• Price Term - Added a price shift dummy variable to capture the impact of significant historical changes in 
retail electricity prices, as recommended by Itron. Result: notable improvement in all cases where zones 
had significant price shifts; 
 
• Recession Bands - Added a dummy variable for the recession bands as defined by the National Bureau of 
Economic Research. Result: no significant changes;  
 
• Shortened the estimation period - PJM currently uses an estimation period that spans 1998 to the 
preceding August. Testing was done by incrementally trimming two years from the front end of the 
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estimation period for the forecast model. Result: no significant improvements in fit until estimation period 
was shortened by at least eight years, at which point zonal forecasts became unstable – some much higher 
and others much lower than the baseline forecast. 
 
PJM’s results were reviewed with the Load Analysis Subcommittee and PJM management. None of the 
changes received sufficient support to be adopted and no changes to the model were made at that time. 
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APPENDIX F. 2014 INVESTIGATION 

 
In a continued effort to investigate the cause of accuracy degradation, PJM began to seek other avenues 
for improvement. Analysis pointed to a breakdown in the relationship between load and economics, which 
was being driven in part by the acceleration of energy efficiency activities. PJM’s goal was to incorporate 
these trends into an alternative energy model, and to pursue incorporation into the peak forecast model in 
the following year. Since the energy forecast is primarily used internally, it could be used as a starting point 
of testing concepts and laying the groundwork for future stakeholder discussion. 
 
To begin understanding efficiency trends, PJM contracted with Itron to obtain Residential and Commercial 
equipment/appliance saturation and efficiency data39. Historical and forecast data were available at the 
Census Division level, and each zone was assigned to a Census Division. Three equipment indexes were 
then created: Heating, Cooling, and Other. Each index is constructed using a Residential and a 
Commercial component, that are then combined based on FERC Form 1 sectoral electricity sales. Within 
each sector component the indexes are a weighted average across equipment types of saturation (the 
share of households or businesses using an equipment type) normalized for efficiency. 
 
Separately, usage indexes were created to indicate the need for each equipment category (Heating, 
Cooling or Other). Heating and Cooling usage are determined using Heating Degree Days (HDD) and 
Cooling Degree Days, respectively. Other usage is determined by using monthly weights from EIA data, 
which indicate the share of each appliance’s annual usage in a given month. 
 
Equipment indexes were then interacted with usage indexes to create four variables: 
 

 XHeat: Heating Equipment Index interacted with Heating Use;  

 XCool: Cooling Equipment Index interacted with Cooling Use; 

 XCoolHum: Cooling Equipment Index interacted with Cooling Use and Humidity; 

 XOther: Other Equipment Index interacted with Other Use. 

The model was transitioned from a daily frequency to a monthly frequency. Due to this change, several 
variables that existed in the daily model were no longer appropriate and were removed. Variables removed 
included day of week variables, holiday variables, and various time-of-day weather variables. PJM adopted 
this new monthly method as its alternative energy forecast for the 2015 Load Forecast (Tables E-1a, E-2a, 
and E-3a), which reflected a near 2% reduction in the 5-year out forecast from the in-place model. PJM 
indicated to stakeholders that this was the energy forecast it would use for its own internal planning. 
. 

                                                
39 These data are explained in detail in section IV - Equipment/Appliance Saturation and Efficiency 
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