Sixth Review of PJM's RPM VRR Curve Parameters

PRELIMINARY DRAFT RECOMMENDATIONS

PREPARED BY

The Brattle Group

Sam Newell Kathleen Spees Andrew W. Thompson Ethan Snyder Xander Bartone Nathan Felmus

Sargent & Lundy

Joshua Jungé Hyojin Lee PRESENTED TO PJM Market Implementation Committee

MARCH 11, 2025

Where we are in the Net CONE and VRR Review

	20	024		2025							
September 27 th Virtual Overview and VRR Curve Presentation	October 24 th Virtual Reference Technology Presentation	November 26 th Virtual Preliminary CONE and E&AS Presentation	December 17 th In person Updated CONE/E&AS and VRR Curve Concepts Presentation	January 29 th Virtual Cancelled	February 21 st Virtual Updated CONE and VRR Shape Presentation	March 11 th Virtual Draft Recs Presentation	April 8 th Virtual Final CONE/EAS and VRR Reports Presentation	May onward PJM Board Vote and filing date for VRR parameters			
				Dra	ft Recommen	dations Fi	nal Word Repor	ts			

posted March 11th, 2025 posted April 8th, 2025

1. OVERVIEW

Draft Quadrennial Review Recommendations

System-Wide Variable Resource Requirement (VRR) Curve

- Adopt Marginal Reliability Impact (MRI) VRR curve, with prices reflective of incremental reliability value
- Stabilize Pricing Parameters by adopting "Reference Price" to replace Net CONE parameter (see <u>Feb 21 MIC presentation</u> for indicative range, final recommendation pending Net CONE updates). Annual updates relative to consumer price index (CPI) between quadrennial reviews
- Price Cap: In the range of 1.5-1.75 × Reference Price (approximately \$450-625/MW-day). Quantity at the cap no lower than 99% × Reliability Requirement (lower price cap corresponds to higher quantity at the cap to maintain 1-in-10)

Locational VRR Curves

Locational Deliverability Area (LDA) VRR curves drawn through locationspecific MRI curves. Local reference price may be higher in some locations (pending final outcomes from Net CONE study)

Interactions with Reliability Pricing Model (RPM) Performance

- Enhance Reliability Backstop to: (1) trigger review in the event of a shortfall (i.e. price cap) event on an LDA-specific basis (not just RTOwide); and (2) enable backstop procurements more quickly in a more competitive fashion
- >>> **Restore 3-Year Forward Period** of the Base Residual Auctions (BRAs)
- >>> Transition to Sub-Annual Capacity Construct with at least two seasons

Draft Recommendation: MRI-Based VRR Curve

% of Reliability Requirement

UCAP Reserve Margin (% of Peak Load)

Sources and Notes: Recommended Curve constructed using Reference Price of \$300/MW; Current VRR Formula from PJM, <u>Open Access Transmission Tariff</u>. Attachment DD, Section 5.10.a.iii, using Brattle estimates of CT Net CONE (\$513/MW-day) and CT CONE (\$834/MWday); 1.75 × Net CONE is the binding parameter in setting the price cap.

- 2 MRI-Based VRR Curve
- **3** LDA MRI Curves
- **4** Interactions with RPM Performance

3. MRI CURVE

System-Wide Curve: Transition to MRI-based Demand Curve

Draft Recommendation: Adopt demand curve derived from MRI, with VRR prices reflective of incremental reliability value

*Final recommendation for quantity at the cap pending final Net CONE estimates and stakeholder input (lower multiple of Reference price would correspond to brattle.com | 5 higher volume at the cap).

Stabilize Net CONE and Reference Price

Draft Recommendation: Stabilize VRR curve pricing parameters

- ∞ "Reference Price" replaces Net CONE parameter
- Initial value established for 2028/29. See Feb 21 MIC presentation* for indicative range, subject to revision pending final Net CONE study results
- Simplified annual updates based on CPI between quadrennial reviews

- Stabilizing pricing parameters of VRR curve can offer more certainty to investors and customers and is more consistent with a value of reliability (that would not fluctuate with changes in costs or energy market prices)
- Multiple technologies and data points may be considered in selecting reference price within each quadrennial review
- ➣ Transition away from single reference technology will help avoid swings in pricing parameters associated with industry transition
- ₻ Eliminates need for CONE-based minimum on price cap

2. MRI-BASED VRR CURVE

Stabilize Price Cap

Draft Recommendation: Price cap at 1.5-1.75 × Reference Price

- Approximately \$450-625/MW-day UCAP (pending final Reference Price recommendation)
- Quantity at or somewhat above 99% × Reliability Requirement, where Reliability Backstop is triggered (specific value to be aligned with Reference Price and "tuning" to 1-in-10)
- Remove CONE-based minimum (not needed to mitigate possibility of low/zero Net CONE if Reference Price is stabilized over review period)

Consideration	Range	Suggests Price Cap:
Historical RPM Price Cap	\$500-\$550	 Historical price cap range has been sufficient to maintain supply-side interest in new developments (except in most recent auction; other issues at play)
Proposed Temporary Cap	\$325	 Negotiated proposal to temporarily reduce price cap & mitigate customer exposure to price-cap events under near-term tight supply conditions. Paired with price floor at \$175 to maintain supply interest
Neighboring Markets' Caps	\$500-\$626	 Price high enough to align with price caps in neighboring capacity markets and compete for imports when multiple regions are tight
Simulation Modeling	162%-191% × Net CONE	 162%-191% cap in that range supports 0.1 LOLE if minimum is at 99% Requirement.
		 Lower cap at 1.5x Net CONE would be right-shifted at minimum quantity
Reference Technology	\$400-\$850	 CC Reference Tech: Price cap of approximately \$400- \$850/MW-day may be relevant considering uncertainty range around CC Net CONE
(Numbers refer to Feb 21 MIC QER Update)		 Higher price cap of approximately \$850 or \$1,275 if CT or BESS is reference technology (~1.7 × preliminary Net CONE estimates)

Note: Historical price caps are adjusted up to account for transition to ELCC, not adjusted brattle.com | 7 for inflation. Neighboring market caps reflect 2026\$, and UCAP of each market.

- 2 MRI-Based VRR Curve
- **3** LDA MRI Curves
- **4** Interactions with RPM Performance

3. LDA MRI CURVES

LDA VRR Curves: Transition to MRI-Based Demand Curves

Draft Recommendation: LDA-specific MRI curves

- LDA curves defined by target point at Reliability Requirement and Reference Price, produces a different scaling factor in each LDA
- ∞ Price cap at 1.5-1.75 × LDA Reference Price
- LDA Reference Price may be higher in LDAs with evidence of persistent higher long-run cost of supply
- Quantity at cap ranges 95%-99% of LDA Reliability Requirement (flatter curve reflects graduated reliability value)
- Longer-term: Consider moving to uniform \$/MWh scaling factor across all LDAs and seasons (will help to manage tradeoffs in reliability vs. cost by location and season, but requires updated clearing logic similar to ISO-NE)

Draft Recommendation: MRI-Based Curve in LDAs

Notes: Each gray line represents the MRI curve for a different LDA.

- 2 MRI-Based VRR Curve
- **3** LDA MRI Curves
- **4** Interactions with RPM Performance

Enhance Reliability Backstop Provisions

Role of Price Cap vs. Reliability Backstops

- >>> A well-functioning capacity market ideally produces few events at the price cap and rarely or never relies on a reliability backstop
- >>> However, it is difficult to set a price cap for a single-year commitment high enough to procure sufficient capacity in *all* conceivable conditions
- To mitigate risks posed by acute and transient tight supply conditions, a backstop may be needed, but the current RPM backstop can be improved to be more systematic, competitive and limit impacts on the broader market

Current RPM Backstop Mechanism:

- <99% Reliability Requirement (1 Year): Triggers investigation to review reasons for shortfall to recommend changes to address shortfall (e.g. address barriers to entry, increase VRR curve prices)
- <99% Reliability Requirement (3 Consecutive Years): Triggers post-BRA backstop auction (up to 15-year commitments, seller offers collected for 6-month bid window, sellers compete on price)</p>
- >>> Backstop mechanisms apply only on an RTO-wide basis (not to LDAs)

Potential Enhancements to Reliability Backstop Mechanism

- **Timing of Backstop Procurement:** Update timing of backstop auction to be automatically triggered if BRA auction clears short, to avoid delay in attracting supply
- Procurement Trigger and Volume: Backstop procurement triggered to restore cleared volume up to minimum acceptable levels: 99% RTO wide, and volume at cap for LDAs (95-99% of Requirement)
- **Term:** If one year at price cap is insufficient to attract supply, procure incremental supply at the price cap, but under a multi-year commitment (ranging from 2- to 15-year terms)
- Format of competitive procurement:
 - <u>At or below the price cap</u>: sellers compete on price (lowest-price offers clear for 1-year commitments), as usual
 - <u>Backstop at the price cap</u>: sellers compete on term up to 15 years (shortest term wins)*
- Sellers eligible for multi-year commitments: New resources, plus existing resources with demonstrated cost consistent with the price cap & offered term
- **Other sellers**: Earn 1-year commitment @ price cap (same as today)
- **Applicability to LDAs:** Apply investigation & backstop triggers for both RTOwide and LDA-specific shortfall events (e.g. LDA-specific investigation may identify localized barriers to entry or supply cost issues)

Current Backstop Provisions: PJM Tariff Attachment DD.16.

^{*}Details of procurement format would need to be refined to incentivize sellers to offer at the lowest price and/or term they are willing to accept and address the possibility that the price cap and term together remain insufficient to attract offers.

4. INTERACTIONS

Restore Full 3-Year Forward Delivery Period

Draft Recommendation: Maintain current schedule to restore 3-year forward period, aligned with overall RPM design

- May require some reforms to be implemented in a staged fashion (delay implementation rather than delaying auctions)
- ∞ Compared to recent compressed forward periods, full 3-year-forward auctions can allow more time for market participants to manage design changes and bring supply online

Sources and Notes: Timeline of future auctions from PJM, Auction Schedule, 2024.

Transition to sub-annual capacity market

Draft Recommendation: Transition to sub-annual capacity market with MRI-based VRR curves

- Will substantially improve capability to manage of reliability needs across seasons with different reliability drivers, resource capabilities, and relative supply-demand balance
- Sub-annual MRI-based curves can naturally balance economic value by season (same \$/MWh scaling factor by sub-annual period, similar to MISO's 4-season MRI curves)

Illustrative Seasonal Capacity Demand Curves

Sources and Notes: Curves are illustrative set based on projections of winter and summer peak demand. Seasonal curves use the same scaling factor as the annual curve.

- 2 MRI-Based VRR Curve
- **3** LDA MRI Curves
- **4** Interactions with RPM Performance

5. NEXT STEPS

Discussion & Next Steps

- Seeking stakeholder input on draft recommendations
- ➢Final recommendations to be included in full quadrennial review report by April 8th, 2025

Draft Recommendation: MRI-Based VRR Curve

% of Reliability Requirement

UCAP Reserve Margin (% of Peak Load)

Sources and Notes: Recommended Curve constructed using Reference Price of \$300/MW; Current VRR Formula from PJM, <u>Open Access Transmission Tariff</u>. Attachment DD, Section 5.10.a.iii, using Brattle estimates of CT Net CONE (\$513/MW-day) and CT CONE (\$834/MWday); 1.75 × Net CONE is the binding parameter in setting the price cap.

Appendix: Tuned MRI Curve Detail*

* The Brattle Group, <u>Sixth Review of PJM's RPM VRR Curve Parameters</u>, <u>Updated Gross CONE and VRR Curve Analysis</u>, February 21, 2025.

APPENDIX

Summary of Implications for Price Cap Given Net CONE Uncertainties

Net CONE = \$150	\$290	193%	\$140	98.3%	100.0%	\$245	163%	\$95	99.0%	100.2%	Ş225	150%	Ş75	99.4%	100.3%
Net CONE = \$200	\$430	215%	\$230	98.0%	100.0%	\$335	168%	\$135	99.0%	100.2%	\$300	150%	\$100	99.5%	100.4%
Net CONE = \$300	\$675	225%	\$375	97.9%	100.0%	\$515	172%	\$215	99.0%	100.3%	\$450	150%	\$150	99.6%	100.6%
Net CONE = \$400	\$1,050	263%	\$650	97.5%	100.0%	\$695	174%	\$295	99.0%	100.3%	\$600	150%	\$200	99.7%	100.6%
Net CONE = \$700	\$2,200	314%	\$1,500	97.0%	100.0%	\$1,280	183%	\$580	99.0%	100.5%	\$ 51,050	150%	\$350	100.0%	100.8%

Curve #1: Cap is a substantially higher multiple of Net CONE compared to today. Poorer reliability before reaching cap Curve #2: Cap @ 99% of requirement and lower value than current CONE-based minimum. Curve runs through Net CONE @ about 0.5% above Requirement Curve #3: Lowering cap to 50% of Net CONE requires right-shifting the curve another 0.5% to maintain reliability

brattle.com | 17

APPENDIX

Tuned MRI Curves: Performance with Varying Net CONE

	Clearing Price				P	Price Cap @ 1-i	in-10	Reliability							
Curve 1:		Average Clearing	Standard Deviation	Frequency at Cap	Price	Multiple of Net CONE	Adder to Net CONE	Average LOLE	Average Excess (Deficit) Above	Average Excess (Deficit) Above	Average EUE	Normalized Portfolio EUE	Frequency Below Reliability	Frequency Below 99% of Reliability	Average Procurement
Curves tuned to		Price							Reliability Requirement	Target Reserve Margin		(% of Target)	Requirement	Requirement	Cost
Net CONE and		(\$/MW-d)	(\$/MW-d)	(%)	(\$/MW-d)	(%)	(\$/MW-d)	(\$/MW-d)	(MW)	(UCAP RR + X %)	(MWh)	(%)	(%)	(%)	(\$ mln/yr)
Reliability	Net CONE = \$150 Net CONE = \$200	\$150 \$200	\$62 \$88	2.8% 3.6%	\$290 \$430	193% 215%	\$140 \$230 \$275	0.100	329 323	0.25%	1,564 1,589	102.9% 104.6%	47.7% 44.1% 27.1%	9.4% 12.6%	\$7,348 \$9,810
Requirement	Net CONE = \$300 Net CONE = \$400 Net CONE = \$700	\$400 \$700	\$130 \$231 \$515	4.4% 4.9%	\$1,050 \$2,200	263% 314%	\$650 \$1,500	0.100	474 706	0.36%	1,599 1,619 1,664	106.5% 109.5%	36.2% 31.9%	13.0% 14.7% 18.1%	\$19,646 \$34,403

		Clearing Price			Pr	ice Cap @ 1-	in-10	Reliability								
Curve 2: Curves tuned to		Average Clearing Price	Standard Deviation	Frequency at Cap	Price	Multiple of Net CONE	Adder to Net CONE	Average LOLE	Average Excess (Deficit) Above Reliability	Average Excess (Deficit) Above Target Reserve	Average EUE	Normalized Portfolio EUE (% of Target)	Frequency Below Reliability	Frequency Below 99% of Reliability Requirement	Average Procurement Cost	
ice Cap and 99%		(\$/MW-d)	(\$/MW-d)	(%)	(\$/MW-d)	(%)	(\$/MW-d)	(\$/MW-d)	Requirement <i>(MW)</i>	Margin (UCAP RR + X %)	(MWh)	(%)	Requirement (%)	(%)	(\$ mln/yr)	
of Reliability	Net CONE = \$150 Net CONE = \$200	\$150 \$200	\$58 \$77	7.9% 11.9%	\$245 \$335	163% 168%	\$95 \$135	0.100 0.100	405 414	0.30% 0.32%	1,593 1,614	104.8% 106.2%	44.2% 35.6%	7.9% 11.9%	\$7,348 \$9,809	
Requirement	Net CONE = \$300 Net CONE = \$400 Net CONE = \$700	\$300 \$400 \$700	\$126 \$177 \$364	13.0% 14.3% 17.6%	\$515 \$695 \$1,280	172% 174% 183%	\$215 \$295 \$580	0.100 0.100 0.100	494 550 783	0.38% 0.42% 0.59%	1,621 1,636 1,681	106.7% 107.6% 110.6%	33.6% 33.5% 32.5%	13.0% 14.3% 17.6%	\$14,728 \$19,643 \$34,410	

Curve 3: Curves tuned to Price Cap and 1.5 × Net CONE

Curv

Price

	Clearing Price Price Cap @ 1-in-10						Reliability										
	Average Clearing Price	Standard Deviation	Frequency at Cap	Pri ce	Multiple of Net CONE	Adder to Net CONE	Ave rage LOLE	Average Excess (Deficit) Above Reliability Requirement	Average Excess (Deficit) Above Target Reserve Margin	Average EUE	Normalized Portfolio EUE (% of Target)	Frequency Below Reliability Requirement	Frequency Below 99% of Reliability Requirement	Average Procurement Cost			
	(\$/MW-d)	(\$/MW-d)	(%)	(\$/MW-d)	(%)	(\$/MW-d)	(\$/MW-d)	(MW)	(UCAP RR + X %)	(MWh)	(%)	(%)	(%)	(\$ mln/yr)			
NetCONE = \$150	\$150	\$55	12.7%	\$225	150%	\$75	0.100	460	0.35%	1,627	107.0%	41.3%	10.2%	\$7,348			
Net CONE = \$200	\$200	\$70	17.3%	\$300	150%	\$100	0.100	469	0.36%	1,638	107.7%	31.1%	13.6%	\$9,809			
NetCONE = \$300	\$300	\$111	20.9%	\$450	150%	\$150	0.100	586	0.44%	1,661	109.3%	28.2%	15.5%	\$14,728			
NetCONE = \$400	\$400	\$154	23.3%	\$600	150%	\$200	0.100	619	0.47%	1,667	109.7%	29.9%	16.3%	\$19,643			
NetCONE =\$700	\$700	\$296	31.4%	\$1,050	150%	\$350	0.100	889	0.67%	1,702	112.0%	31.5%	19.4%	\$34,414			

Contact Information

Dr. Sam Newell

PRINCIPAL | BOSTON

Sam.Newell@brattle.com

+1 (781) 801-2652

Dr. Kathleen Spees

PRINCIPAL | WASHINGTON DC

Kathleen.Spees@brattle.com

+1 (412) 445-2694

Dr. Andrew W. Thompson

ENERGY ASSOCIATE | BOSTON/MADRID

Andrew.Thompson@brattle.com

+34 666 639 197