

Hybrids Phase 3: Manual 10 and 14D Changes

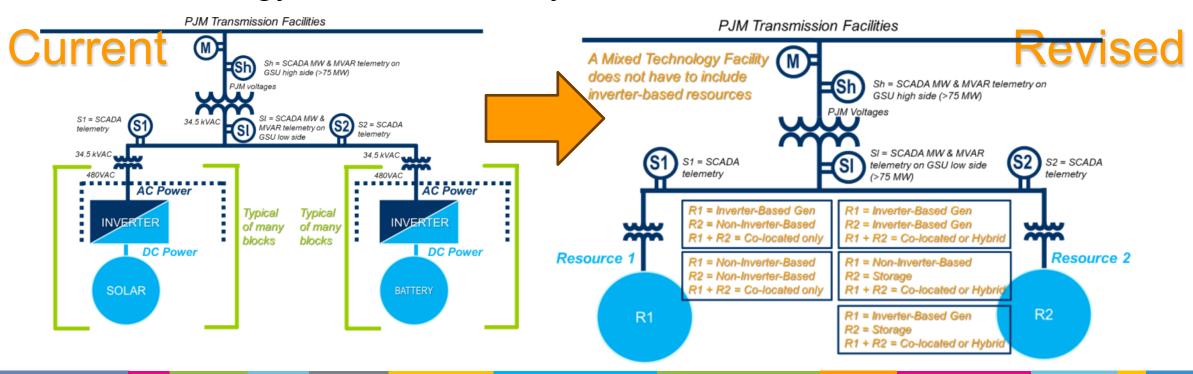
Darrell Frogg
Sr. Lead Engineer,
Department

Generation

Operating Committee June 3, 2025

www.pjm.com | Public PJM © 2025

- Hybrids Phase III filing accepted March 28, 2025
 - FERC Docket #ER25-1095-000
- Changes included allowing more than just inverter-based resources with storage components
- Updated Open-Loop and Closed-Loop classifications of Hybrid Resources


- Section 2.1 Generation Outage Reporting Overview
 - Updated eDART Reportable MW table (Exhibit 3) to include the reportable MW value of non-inverter-based components of Hybrid Resources

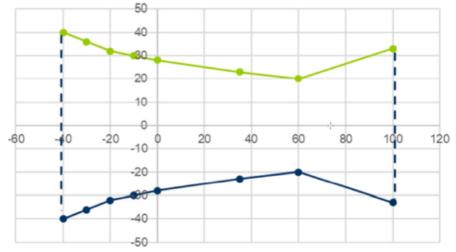
Resource Type	eDART Reportable MW
For the inverter-based component of Hybrid Resource	Based on nameplate MW rating of the component
For the non-inverter-based component of	Total RPM (Owned) iCAP
Hybrid Resource	(Committed + Available) MW

www.pjm.com | Public 9JM © 2025

- Section 4.2 Account Metering
 - Exhibit 7 generalized to include all resource types for Mixed Technology Facilities and Hybrid Resources

- Section 8.2.4 Generator Outage Reporting (Aggregate Turbine availability)
 - Updated language to emphasize wind outage reporting for all types of hybrids that include wind as a technology type
- Section 12.2.4 Generator Outage Reporting Section
 - Updated language to emphasize solar outage reporting for all types of hybrids that include solar as a technology type

- Section 13.1 Marketing and Classification of Mixed Technology Facilities
 - Modified language to broaden eligibility to participate as a Hybrid Resource
 - Clarified classifications of open-loop and closed-loop based on definition changes
 - Updated language and diagram to be inclusive of all eligible resource types for hybrids
 - Updated language to specify when a Mixed Technology Facility must participate as a Hybrid Resource
 - Noted classification of closed-loop for any Hybrid Resource without storage component
 - Clarified that for all Mixed Technology Facilities participation change notifications must be made no later than six (6) months in advance of its initial start in the energy markets.


www.pjm.com | Public PJM © 2025

- Attachment D PJM Generating Unit Reactive Capability Curve Specification and Reporting Procedures
 - Point 10 and Point 11 removed limiting language of inverter-based and non-inverter-based resources

Point 12 clarified language to only refer to Hybrid Resources with a

storage component

Attachment E PJM Generator and Synchronous Condenser Reactive Capability Testing

 Updated table to specify testing requirements specific to Hybrid Resources with a storage component

Manual 14D Changes

UNIT	MW	MVAR	TEST	
TYPE	OUTPUT	OUTPUT	DURATION	
1112	0011-01	0011-01	DURATION	
FOSSIL, HYDRO ELECTRIC,	MAX	MAX LAG	ONE HOUR	
BLACKSTART	MAX	MAX LEAD	WHEN LIMIT REACHED	
	MIN	MAX LAG	WHEN LIMIT REACHED	
	MIN	MAX LEAD	WHEN LIMIT REACHED	
SYNCHRONOUS CONDENSER or	N/A	MAX LAG	ONE HOUR	
GENERATOR THAT OPERATES	N/A	MAX LEAD	WHEN LIMIT REACHED	
IN THE SYNCHRONOUS				
CONDENSING MODE TO				
PROVIDE REACTIVE SUPPORT				
NUCLEAR	MAX	MAX LAG	ONE HOUR	
	MAX	MAX LEAD	WHEN LIMIT REACHED	
VARIABLE (Wind & Solar)	VARIABLE	MAX LAG	WHEN LIMIT REACHED	
(Testing done with at least 90% of	VARIABLE	MAX LEAD	WHEN LIMIT REACHED	
turbines or inverters on line)				
INVERTER-BASED	ZERO	MAX LAG	WHEN LIMIT REACHED	
ENERGY STORAGE RESOURCES	ZERO	MAX LEAD	WHEN LIMIT REACHED	
Max MW Output = fully discharging	MAX	MAX LAG	WHEN LIMIT REACHED	
	MAX		WHEN LIMIT REACHED	
Min MW Output = fully charging	MIN	MAX LAG	WHEN LIMIT REACHED	
	MIN	****	WHEN LIMIT REACHED	
DC-COUPLED INVERTER BASED	ZERO	MAX LAG	WHEN LIMIT REACHED	
STORAGE HYBRID RESOURCES	ZERO		WHEN LIMIT REACHED	
Max MW Output = fully	MAX		WHEN LIMIT REACHED	
discharging/producing	MAX		WHEN LIMIT REACHED	
Min MW Output = fully charging with	MIN		WHEN LIMIT REACHED	
no production (or 0 MW net output if	MIN	MAX LEAD	WHEN LIMIT REACHED	
facility cannot charge from grid)				
AC-COUPLED INVERTER BASED				
STORAGE HYBRID RESOURCES				
Zero net MW point must reflect the most	ZERO		WHEN LIMIT REACHED	
conservative capability at that power level,	ZERO	MAX LEAD	WHEN LIMIT REACHED	
for example with a battery at full charging				
and generation output matching as close				
to battery charge power as practicable.				
Max MW Output =	MAX		WHEN LIMIT REACHED	
fully discharging/producing	MAX		WHEN LIMIT REACHED	
Min MW Output = battery fully charging	MIN		WHEN LIMIT REACHED	
and generation at 0 MW (if facility cannot	MIN	MAX LEAD	WHEN LIMIT REACHED	
charge from grid, om it this point).	MXIOP	MAYLAG	WHEN LIMIT REACHED	
Max inverter operating point(MXIOP)=	MXIOP		WHEN LIMIT REACHED	
generation as close to full output as practicable and battery at full charging.	MXIOP	MAX LEAD	WHEN LIMIT REACHED	
*Additional test points may be required if				
these do not capture the most restrictive				
capability scenarios.				

www.pjm.com | Public 8 PJM © 2025

Manual 10 and 14-D Timeline

	Committee	Apr	Мау	Jun	Jul
	SOS		4/30	5/29	
Manual 10 Rev 46	OC		5/8	6/3	
Manual 14-D Rev 68	MRC			6/18	7/23
	RSCS		5/9		

- First Read
- **★** Endorsement
- O Info Only

Facilitator:

Anita Patel

Anita.Patel@pjm.com

Secretary:

Vy Le

Vy.Le@pjm.com

SME/Presenter:

Darrell Frogg

Darrell.Frogg@pjm.com

Hybrids Phase 3

Manual 10 and 14D Changes

Member Hotline

(610) 666 - 8980

(866) 400 - 8980

custsvc@pjm.com

BE ALERT TO
MALICIOUS PHISHING
EMAILS

Report suspicious email activity to PJM.

Call (610) 666-2244 or email it_ops_ctr_shift@pjm.com