

Market Simulation Update

Market Simulation
Transmission Expansion Advisory Committee
November 4, 2025

2025-2026 Stage 1A ARR 10 Year Analysis Update

- Purpose:
- Ensure the transmission system is capable to support the simultaneous feasibility of Stage 1A ARRs up to 60% of Network Service Peak Load inclusive of the projected ten-year load growth

Annual ARR/FTR market model

- A zonal growth rate was applied to 60% of each zone's NSPL to develop the expected zonal load, years 2 to 10.
- The simultaneous feasibility analysis included all requested Stage 1A ARRs plus additional ARRs to account for the expected 10 years load growth.
- Source pnodes of additional ARRs were from Stage 1 generators which have a historical LMP lower than the historical zonal LMP.
 - Stage 1 generators up to the maximum MW capacity of the resource.
 - Stop scheduling additional ARRs either by the historical LMP of the next highest price resource exceeds the historical zonal LMP or until the expected zonal load was met.

 2025/2026 Stage 1A 10-Year ARR analysis identified violations near Peach Bottom and DOM area.

Upgrades are anticipated under the current RTEP process (see next slide).

Results of 2025/26 Stage 1A ARR 10-year Analysis

Facility Name	Facility Type	First Year of Violation	Upgrade expected to fix infeasibility	Expected in-service date
COOPERPE230 KV COO-GRA I/o L500.Conastone-PeachBottom.5012	LN	1	2022 RTEP Reliability Window 3 for load growth and generation deactivation (b3780, b3800)	2027-2028
COOPERPE230 KV COO-PEA I/o L500.Conastone-PeachBottom.5012	LN	1	2022 RTEP Reliability Window 3 for load growth and generation deactivation (b3780, b3800)	2027-2028
NOTTINGH230 KV 1-3 I/o L500.Conastone- PeachBottom.5012	LN	1	2022 RTEP Reliability Window 3 for load growth and generation deactivation (b3780, b3800)	2027-2028
NOTTINGH230 KV 2-3 I/o L500.Conastone- PeachBottom.5012	LN	1	2022 RTEP Reliability Window 3 for load growth and generation deactivation (b3780, b3800)	2027-2028
NOTTINGH230 KV NOT-PEA I/o L500.Conastone-PeachBottom.5012	LN	1	2022 RTEP Reliability Window 3 for load growth and generation deactivation (b3780, b3800)	2027-2028
CONASTON500 KV CNS-PEA	LN	1	2022 RTEP Reliability Window 3 for load growth and generation deactivation (b3780, b3800)	2027-2028
COLORA 230 KV COL-CON2 I/o L230.Conowingo-Nottingham-220-03	LN	1	2022 RTEP Reliability Window 3 for load growth and generation deactivation (b3780, b3800)	2027-2028
HARWGATE115 KV 100J I/o L500.Carson-Midlothian.563	LN	1	Wreck and rebuild 5.4 miles of 115 kV line #100 Locks- Harrowgate to achieve a minimum summer emergency rating of 393 MVA.	6/1/2026

2025 Annual Acceleration Analysis of RTEP Reliability Projects

- Scope: Determine which reliability upgrades, if any, have an economic benefit if accelerated or modified.
- Study Years: AS-IS and RTEP set of economic input assumptions used to study impacts of approved RTEP projects.
- Process:
 - Compare market congestion for AS-IS vs. RTEP topology.
 - Estimate economic impact of accelerating planned upgrades.

- Completed production cost simulations:
 - 2025 study year with AS-IS and RTEP Topology.
 - 2029 study year with RTEP Topology.
- Identified reliability upgrades responsible for congestion reductions between the AS-IS and RTEP topology cases.
- Checked the feasibility of accelerating project schedules for the identified reliability upgrades.
- Results of analysis included on the following slide.

Congestion Savings of RTEP Enhancements

Constraint (1)	Area	Туре	Simulated 2025 ⁽²⁾ Annual Congestion Savings ⁽³⁾ (\$M)	PJM RTEP Upgrade
AP South Interface	PJM	Interface	147	B4000: 2024W1 Regional Cluster
Straban-Lincoln 115 kV	METED	Line	88	B3800: Build new Hunterstown-Carroll 230 kV circuit
Messick RdRidgeley 138 kV	APS	Line	47	B3800: 2022W3 Western Cluster
Charlottesville-Proffit Rd Del Pt 230 kV	DOM	Line	44	B3800: Rebuild 230 kV line #2054
Haumesser Rd. (R)-W De Kalb Tap (R) 138 kV	CE	Line	28	B3811: Rebuild Haumesser Road to H-452 138 kV
Dumont-Stillwell 345 kV	AEP-NIPSO	Line	27	B3775: Dumont-Stillwell 345 kV sag study
Northwest-Conastone 230 kV	BGE	Line	25	B3771: Reconductor Northwest-Conastone 230 kV circuits
Safe Harbor-Graceton 230 kV	PPL-BGE	Line	24	B3800: 2022W3 Eastern Cluster
Gore-Stonewall 138 kV	APS	Line	16	B3800: 2022W3 Western Cluster
Roxbury-Aspen Road Solar 115 kV	PENELEC	Line	14	B3751, B3752: Rebuild Roxbury-Shade Gap 115 kV
Olive-Univ. Pk. N. 345 kV	AEP-CE	Line	12	B3775: Olive-University Park 345 kV sag study
Saint John-Crete 345 kV	NIPSCO-CE	Line	11	B3775: Reconductor/Rebuild Crete-St John 345 kV

¹⁾ Includes constraints with annual congestion decreases where responsible RTEP upgrades were identified.

For additional congestion details see June TEAC <u>Market Efficiency Update</u>.

^{2) 2025} Market Conditions comprise of load, generation expansion, fuel forecasts, and other fundamental assumptions at levels forecasted for year 2025.

³⁾ Congestion Impact of RTEP Enhancements calculated by comparing market simulations with AS-IS vs. RTEP Topology.

Congestion Savings of RTEP Enhancements (cont.)

Constraint (1)	Area	Туре	Simulated 2025 ⁽²⁾ Annual Congestion Savings ⁽³⁾ (\$M)	PJM RTEP Upgrade
Nottingham Reactor 230 kV	PECO	Reactor	10	B3800: 2022W3 Eastern Cluster
Juniata TR 500/230 kV	PPL	XFMR	9	B3664: Replace station equipment at Juniata 230 kV
North Delphos-East Delphos 69 kV	AEP	Line	9	B3346: Rebuild North Delphos-East Delphos-Elida Road
Clifford-Colleen 138 kV	AEP	Line	8	B4000: 2024W1 Regional Cluster
Remington CT-Marsh Run 230 kV	DOM	Line	4	B4000: 2024W1 Regional Cluster
Fork Union-Bremo 115 kV	DOM	Line	3	B4000: 2024W1 Regional Cluster
Chesterfield 1-Hopewell 230 kV	DOM	Line	2	B3694: Reconductor Hopewell-Chesterfield 230 kV
Shade Gap-Aspen Road Solar 115 kV	PENELEC	Line	2	B3751, B3752: Rebuild Roxbury-Shade Gap 115 kV
Spartan-Stafford 230 kV	DOM	Line	1	B3694: Rebuild Cranes Corner-Stafford 230 kV

For additional congestion details see June TEAC <u>Market Efficiency Update</u>.

¹⁾ Includes constraints with annual congestion decreases where responsible RTEP upgrades were identified.

^{2) 2025} Market Conditions comprise of load, generation expansion, fuel forecasts, and other fundamental assumptions at levels forecasted for year 2025.

³⁾ Congestion Impact of RTEP Enhancements calculated by comparing market simulations with AS-IS vs. RTEP Topology.

Acceleration Analysis Results

- The reliability projects on the previous slides were evaluated for acceleration potential.
- None of these projects will be accelerated for one or more of the following reasons:
 - Project has a near-term in-service date.
 - Project currently in the siting and permitting process and schedules not final.
 - Cost of acceleration is greater than the simulated Market Efficiency benefits.
 - For some projects, PJM and the Transmission Owners are working to coordinate the implementation of project work in order to meet the current expected in-service dates.
 - For some projects, analysis of outage schedule shows no ability to accelerate.

2024/25 Market Efficiency Window 1 Update

2025 Market Efficiency Timeline

Market
Efficiency
Window 1
Opened
April 11, 2025

Preliminary
Results
October 2025

TEAC Second Read December 2025

Market
Efficiency
Window 1
Closed
June 10, 2025

TEAC First Read November 2025

Board Approval February 2026

- 2024/25 Long-Term Market Efficiency Window 1 opened on 4/11/25 and closed 6/10/25.
 - Market Efficiency Base Case, Sensitivity Scenarios, and Congestion Drivers for the window posted on the <u>Market Efficiency secure page</u>.
 - Updated Event Files were posted on the <u>Market Efficiency secure page</u> at the beginning of October.
 - Updated congestion file posted on the <u>Market Efficiency secure page</u>.
- Received 14 proposals from 5 entities.
 - Redacted versions of proposals are posted on the <u>Redacted Proposals page</u>.
 - Proposal descriptions can be found in the <u>Market Efficiency Update</u> presented at August TEAC.
- Analysis completed and preliminary results presented during the <u>Market Efficiency Update</u> at the October TEAC.

- Museville-Smith Mountain 138 kV (AEP)
 - Analysis completed: Proposal 733, reconductor one span of the Museville-Smith Mountain 138 kV line and replace disconnect switches at Smith Mountain station, selected as the preferred solution.
- West Point-Lanexa 115 kV (DOM)
 - Analysis completed: Proposal 525, 230/115 kV switching station at Goalders Creek, selected as the preferred solution.
- Garrett-Garrett Tap 115 kV (APS-PENELEC)
 - Garrett-Garrett Tap 115 kV congestion driver will be addressed in 2025W1 reliability window.
 - Proposed solution presented during the <u>Reliability Analysis Update</u> at the October TEAC.

2024/25 Market Efficiency Window 1 1st Read

- Completed comprehensive analysis considering economic benefits, reliability and operational impacts of the proposals.
- Proposal 733, rebuild one span of the Museville-Smith Mountain 138 kV line and replace disconnect switches at Smith Mountain station, selected as the preferred solution.
 - B/C Ratio: 136.55
 - In-Service Cost: \$1.81 million
 - Addresses the target congestion
 - Passes all PROMOD sensitivity scenarios
 - Reliability analysis has been completed and no reliability violations identified
- PJM staff intends to submit Proposal 733 to be approved by the PJM Board for inclusion in the Regional Transmission Expansion Plan.

1st Read - Museville-Smith Mountain 138 kV (AEP)

Project ID: 2025-ME1-733

Proposed Solution:

Rebuild one span of the Smith Mountain-Museville 138 kV line and replace disconnect switches at Smith Mountain station.

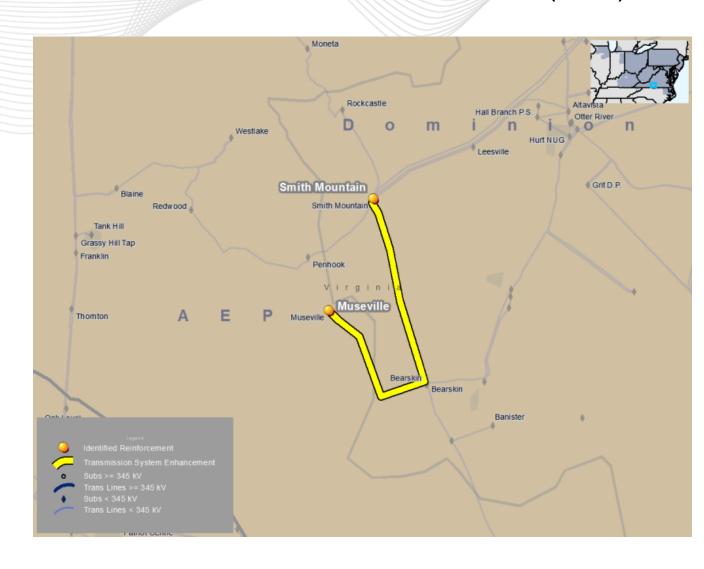
Preliminary Facility Rating (MVA): 409/409/517/517 (SN/SE/WN/WE)

Project Type: Upgrade

kV Level: 138 kV

In-Service Cost (\$M): \$1.81

In-Service Date: June 2027


B/C Ratio: 136.55

Target Zone: AEP

ME Constraints:

Musevillle-Smith Mountain 138 kV

Cost Capping Provision: No

West Point-Lanexa 115 kV (DOM)

- Completed comprehensive analysis considering economic benefits, reliability and operational impacts of the proposals.
 - Proposals 390 and 525 were identified as the most cost-effective solutions.
 - The 3-breaker ring bus design of proposal 525 is more reliable in terms of system protection and operational efficiency.
 - From a constructability viewpoint, proposal 525 has a lower Outage Coordination risk.
- Proposal 525, 230/115 kV switching station at Goalders Creek, selected as the preferred solution.
 - B/C Ratio: 2.71
 - In-Service Cost: \$23.41 million
 - Addresses the target congestion
 - Passes majority of PROMOD sensitivity scenarios
 - Reliability analysis has been completed and no reliability violations identified
- PJM staff intends to submit Proposal 525 to be approved by the PJM Board for inclusion in the Regional Transmission Expansion Plan.

1st Read - West Point-Lanexa 115 kV (DOM)

Project ID: 2025-ME1-733

Proposed Solution:

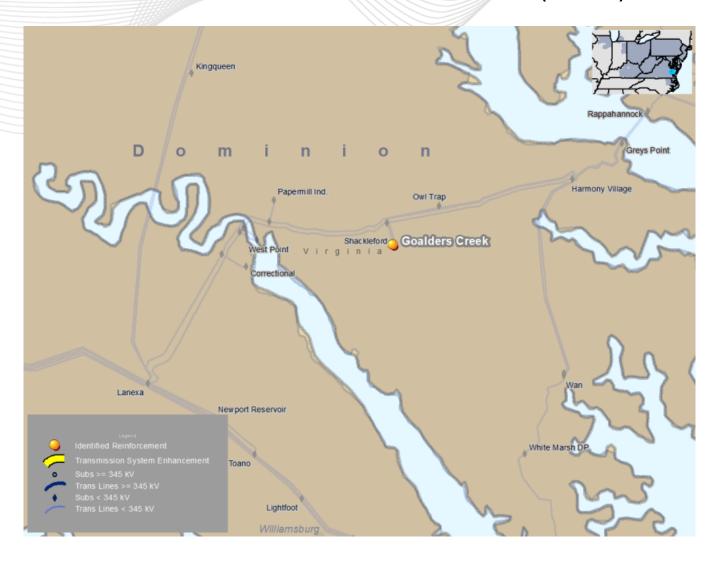
Construct 230/115kV switching station at the future Goalders Creek 115kV substation and install a 299 MVA, 230/115kV transformer. Cut the existing Line #2016 from Lanexa to Harmony Village near the Goalders Creek substation. Install a three-breaker ring bus arrangement on the 230 kV side.

Project Type: Upgrade

kV Level: 230 kV & 115 kV

In-Service Cost (\$M): \$23.41

In-Service Date: January 2029


B/C Ratio: 2.71

Target Zone: DOM

ME Constraints:

West Point-Lanexa 115 kV

Cost Capping Provision: No

Appendix A Informational Only – Sensitivity Results

Museville-Smith Mountain 138 kV - B/C Ratios (Informational Only)

Proposal ID	332	385	717	733	991	993
Project Type	Upgrade	Upgrade	Greenfield	Upgrade	Greenfield	Greenfield
B/C Ratio Metric	Lower Voltage	Lower Voltage	Regional	Lower Voltage	Regional	Lower Voltage
In-Service Cost (\$MM)*	\$86.11	\$131.64	\$1,568.72	\$1.81	\$520.38	\$270.09
Base Case B/C Ratio	20.55	13.44	2.97	136.55	2.68	6.45
High Load B/C Ratio	41.86	27.39	7.41	551.74	13.88	20.63
Low Load B/C Ratio	13.52	8.84	1.88	124.54	1.54	4.73
High Gas B/C Ratio	19.47	12.74	3.09	171.10	3.76	6.50
Low Gas B/C Ratio	14.10	9.24	2.71	118.38	2.54	4.85
Generator Sensitivity B/C Ratio	23.56	3.49	1.99	138.87	1.53	2.29

West Point-Lanexa 115 kV - B/C Ratios (Informational Only)

Proposal ID	50	183	338	390	525	836	910
Project Type	Upgrade						
B/C Ratio Metric	Lower Voltage						
In-Service Cost (\$MM)*	\$83.92	\$221.74	\$28.11	\$21.41	\$23.41	\$62.58	\$90.89
Base Case B/C Ratio	0.26	0.30	0.97	3.05	2.71	0.13	0.55
High Load B/C Ratio	N/A	N/A	1.23	0.06	26.05	0.91	2.17
Low Load B/C Ratio	N/A	N/A	0.31	0.85	2.08	0.07	0.43
High Gas B/C Ratio	N/A	N/A	0.87	0.61	1.40	0.03	0.06
Low Gas B/C Ratio	N/A	N/A	0.38	0.04	0.00	0.11	0.00
Generator Sensitivity B/C Ratio	N/A	N/A	0.57	3.75	4.17	0.18	0.89

Facilitator:

Eric Hsia, Eric.Hsia@pjm.com

Secretary:

Joshua Stephenson, Joshua.Stephenson@pjm.com

SME/Presenters:

Nicolae Dumitriu, Nicolae.Dumitriu@pjm.com

Market Efficiency Update

Member Hotline

(610) 666 - 8980

(866) 400 - 8980

custsvc@pjm.com

V1 – 10/30/2025 – Original slides posted.

