

2025 RTEP

Presented to ISAC March 31, 2025

Materials from March 4, 2025 TEAC

Framing / Timing

2025 RTEP Window 1 - Timeline

Initial 2025 RTEP Modelling Assumptions Nov 2024 – Feb 2025

2025 RTEP Window 1 Opens June 2025 2025 RTEP Window 1 Evaluations Sept. 2025 2025 RTEP
Window 1
Selections
1st and 2nd Read
Dec 2025

2025 RTEP Window 1 – Board Approval Q1 2026

2025 RTEP Window 1 Baseline Studies Mar 2025

2024 RTEP Window 1 Closes Aug 2025 2025 RTEP Window 1 Selections 1st Read Nov 2025 2025 RTEP Window 1 Selections 2nd Read Dec 2025

2025 RTEP Window 1 Load and Generation Assumptions

2025 RTEP Window 1 will utilize the 2025 PJM Load Forecast (Jan 2025);

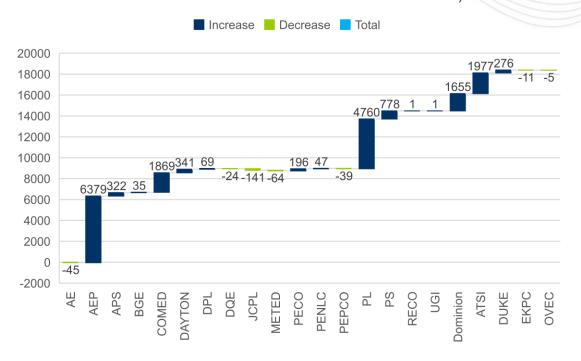
https://www.pjm.com/-/media/DotCom/library/reports-notices/load-forecast/2025-load-report.pdf

- 2030 Load Forecast to increase by 16 GWs approximately (compared to 2024 Load Forecast)
- PJM is currently working on finalizing the initial RTEP Baseline models
 - Planned for completion by early March
- Resource balancing to serve forecasted load is expected be tight;
 - More information related to Resource Assumptions and Sensitivity Scenarios (beyond baseline) in 2025 RTEP Assumption Updates.

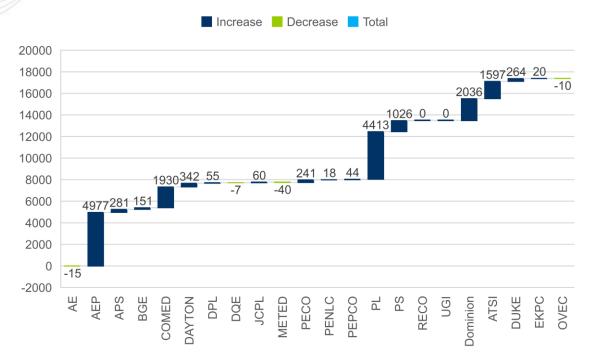
Scenarios

2025 RTEP - Current Scenarios Considered

- 5 Year (2030) Analysis
 - Balance load with: Existing generation, GIA/ISA generation, Suspended ISA generation,
 Fast Lane Queue, CVOW and Chesterfield plants
 - No consideration of a "targeted LOLE"
 - With and without potential delays to OSW in-service
- 7 Year (2032) Analysis
 - Balance load with: Existing generation, GIA/ISA generation, Suspended ISA generation,
 Fast Lane Queue, plus TC1 Queue and TC2 Queue
 - With and without potential delays to OSW in-service
 - TC1 and TC2:
 - Will mount generation for "resource adequacy purposes" EHV Backbone modeling when required
 - Will require reliance on BESS Project's capacity within TC1 and TC2



Assumptions

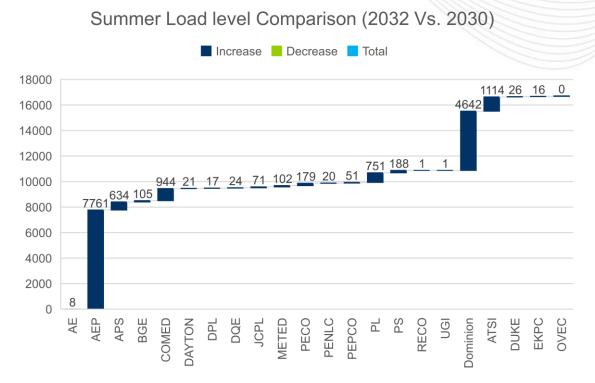


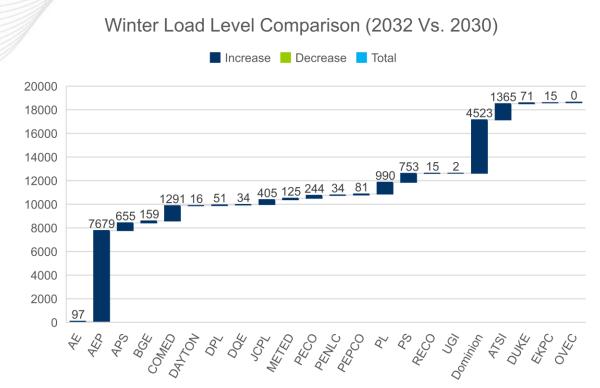
2025 RTEP Generation-Load Balance: 2030 (5 Year)

RTEP Summer Load Level Comparison (2030 in 2025 Load Forecast Vs. 2029 in 2024 Load Forecast)

RTEP Winter Load Level Comparison (2030 in 2025 Load Forecast Vs. 2029 in 2024 Load Forecast)

2030 load levels in 2025 Load Forecast Vs. 2029 load levels in 2024 Load Forecast: Load increases ~18.4GW (10.6%) in summer, ~17.4GW (11.2%) in Winter, mainly in AEP, DOM, PPL, ComEd, PSEG and ATSI areas.


2025 RTEP Generation-Load Balance: 2030 (5 Year)


- The existing and ISA/GIA generation are NOT enough to meet the load, more generation is needed.
- With additional Suspended ISA generation, Fast Lane Queue, CVOW and Chesterfield plants:
 - The peak load can be served. The LOLE is **1.6 days per year**, which is 16 times higher than the 1 in 10 (0.1 days per year)
 - Without NJ OSW (2307.6MW) and Delmarva OSW (255MW), the LOLE is 2.0 days per year, which is 20 times higher than the 1 in 10 (0.1 days per year)
- With additional Suspended ISA generation, Fast Lane Queue, PLUS TC1 Queue and TC2 Queue (For information purpose only. This won't be studied in 2025 RTEP 2030 analysis):
 - The LOLE is 0.095 days per year, which is lower (i.e. "better") than the 1 in 10 (0.1 days per year)
 - Without the large majority of the OSW, The LOLE is 0.18 days per year, which is almost twice the 1 in 10 level (0.1 days per year)

www.pjm.com | Public 9

2025 RTEP Generation-Load Balance – 2032 (7 Year)

 2032, comparing to 2030, the load is further increased by ~16.7GW in summer, ~18.6GW in winter, mainly in AEP, APS, ComEd, PPL, DOM, and ATSI

2025 RTEP Generation-Load Balance – 2032 (7 Year)

- With additional Suspended ISA generation, Fast Lane Queue, TC1 Queue and TC2 Queue:
 - The peak load can be served. The LOLE is 2.3 days per year. This value is 23 times higher than the 1 in 10 (0.1 days per year).

- As part of the 24-month RTEP cycle, <u>a year 7 (2032) base case</u> will be developed and evaluated part of the 2025 RTEP
- The year 7 case will be based on the 2030 Summer case that is developed part of the 2025 RTEP
 - Purpose: To identify and develop longer lead transmission upgrades and right size near-term upgrades with longer term needs.