S&P GlobalCommodity Insights

CI Consulting

Electric Vehicle Charging Power Demand Forecast

PJM Interconnection

Agenda

Executive summary

Methodology

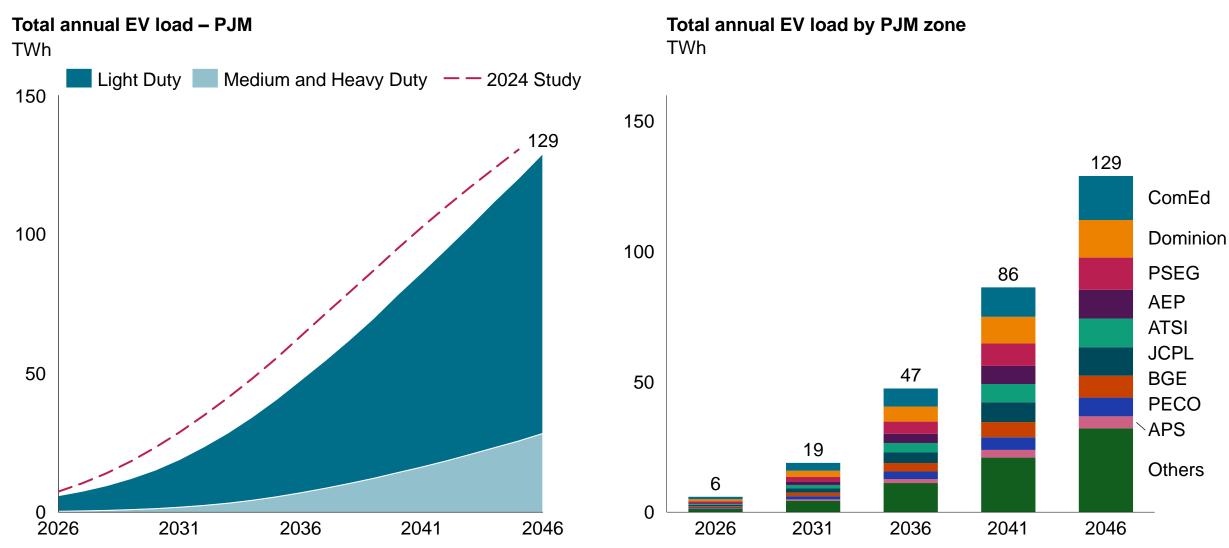
Assumptions and inputs

Electric vehicles

Charging demand

Results

Electric vehicle forecast


Charging demand forecast

Appendix

Total EV load in PJM will increase dramatically; however, the outlook has been revised down compared to 2024 due to slower BEV growth

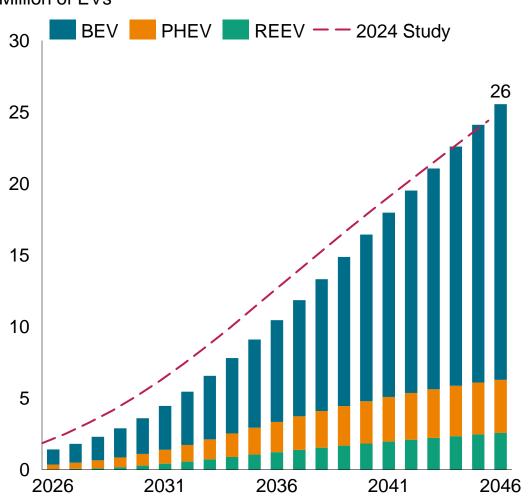
Note: Refer to Appendix for light-, medium- and heavy-duty electric vehicle definition by vehicle class. Source: S&P Global

© 2025 by S&P Global Inc.

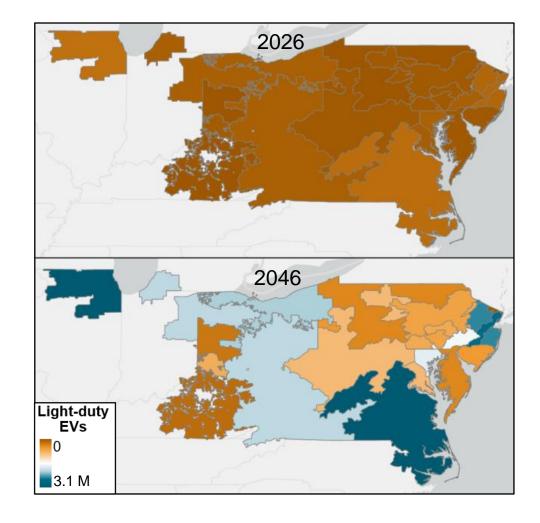
With higher penetration of managed charging and higher access to public charging, load shifts from early evening to morning and midday charging

Total EV hourly load statistics – PJM

Year	Average Load (MW)	Peak Load (MW)	Month of peak	Hour of peak
2026	676	1,462	December	20
2031	2,160	4,302	December	19
2036	5,402	9,653	December	10
2041	9,849	18,120	December	10
2046	14,733	29,095	December	10

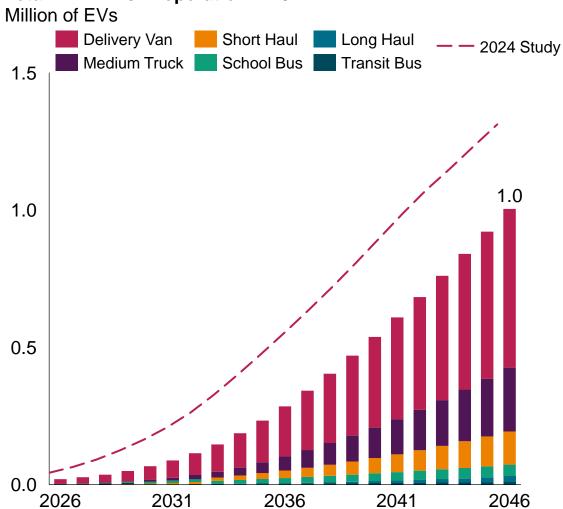

Average total EV load by hour – PJM GW 2026 — 2031 — 2036 — 2041 — 2046 25 20 15 10 8 12 14 16 18 20 22 6

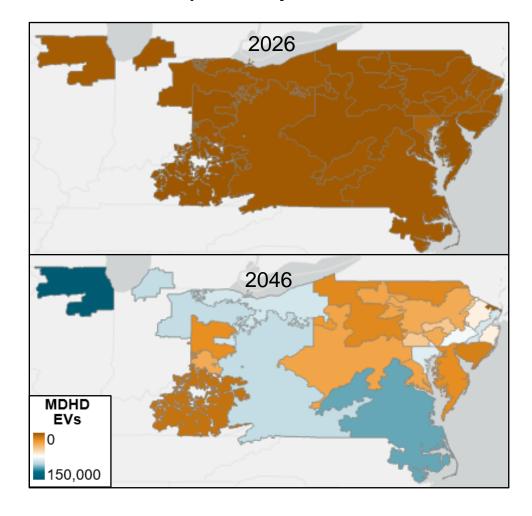
Hour



PJM zones with large urban areas see a higher share of light-duty EVs in operation

Total light-duty EVs in operation – PJM territory Million of EVs


Total light-duty EVs in operation by PJM zone



MHD EV growth spans PJM reaching 1 million vehicles in operation by 2046

Total MHD EVs in operation – PJM

Total MHD EVs in operation by PJM zone

Agenda

Executive summary

Methodology

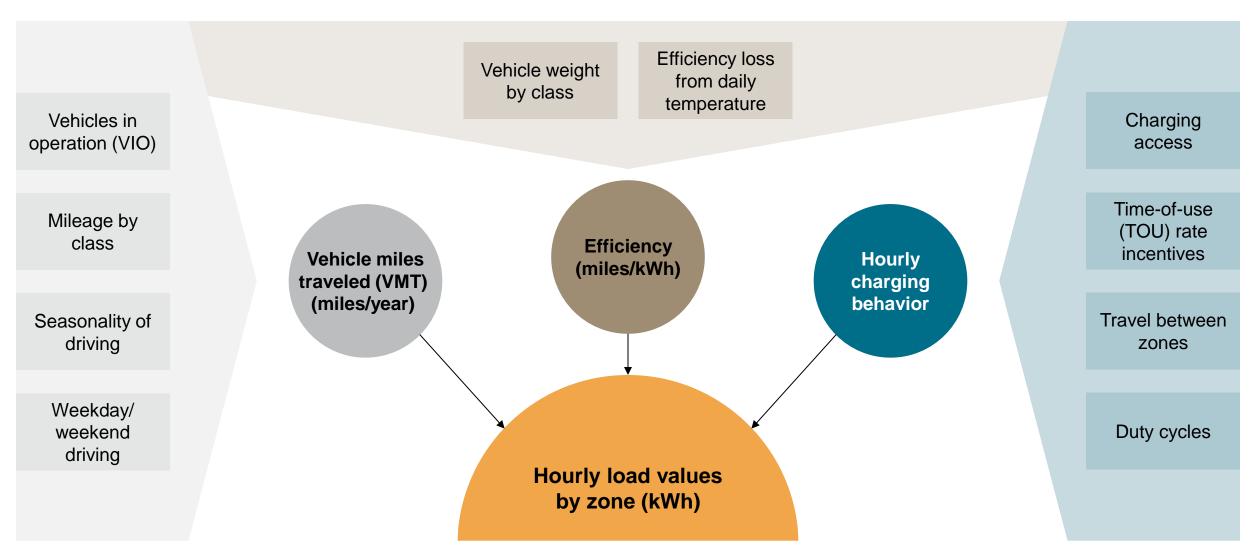
Assumptions and inputs

Electric vehicles

Charging demand

Results

Electric vehicle forecast


Charging demand forecast

Appendix

Hourly load shapes are driven by three key variables: vehicle miles traveled, vehicle efficiency, and charging behavior

Source: S&P Global

VIO, mileage, and efficiency for each vehicle type throughout the study time horizon are calculated based on a mix of field data and assumptions

Variable	Description	Methodology	Sources
Vehicles in Operation (VIO)	The total amount of vehicles that are on the road throughout the year	VIO forecast is created by forecasting yearly BEV sales, applying a scrappage rate by age class, and adding the forecast years together to calculate VIO	S&P Global Mobility
Vehicle Miles Traveled (VMT)	The number of miles driven each year by vehicle type	VMT is calculated by the number of vehicles on the road and their mileage. Average annual mileage per vehicle and vehicle usage patterns are also factored. SPGCI data was also supplemented by California Air Resource Board data.	S&P Global Mobility, California Air Resource Board
Efficiency	The numbers of miles driven per each kWh of charging	Field/manufacturer data is used where available (e.g., Tesla Model 3) to estimate the overall fleet efficiency of the vehicle category. Incremental efficiency improvements are considered through the end of the outlook.	Manufacturer published data, S&P Global Mobility

S&P Global's regularly updated base-case scenario, built on integration of regional and sectoral energy analysis, formed the foundation for this project

Scenario description

- S&P Global Commodity Insights base-case scenario represents the integration of regional and sector analysis from across Commodity Insights, illustrating the pace of change in long-term global energy supply, demand and trade, based on current views and assumptions about markets, policy, consumer behavior and technology.
- This scenario illustrates the challenges and opportunities in the global energy transition. It underscores the complexities of achieving ambitious climate and energy goals in an unpredictable geopolitical landscape. The scenario highlights the critical role of national and multilateral policies, corporate strategies, and public sentiment in shaping the future of energy markets, and despite the hurdles in delivery of targets and goals, paints a picture of gradual but sustained progress.
- For the United States, the scenario incorporates the most recent policies and programs shaping the energy and economic landscape, including the impact of the One Big Beautiful Bill Act on tax policy, inflation, supply chains, and energy markets.
- Key themes of this scenario include:
 - A period of geopolitical instability and economic uncertainty through the earlier years
 - Energy security, geopolitics and climate are inextricably linked
 - Through the medium term there is a multidimensional world focused on national interests. In later years, there is a rejuvenation of multilateral cooperation
 - While ambitious climate and energy transition goals set in the 2010s and early 2020s become increasingly difficult to achieve, there is incremental but sustained progress in global decarbonization and energy transition, even if climate targets are missed

Key indicators (global)

		History			Inflections			
		2023	2024	2025	2030	2035	2040	2045
Real GDP	(Billion 2023 \$)	\$104,899	\$107,593	\$110,403	\$126,288	\$143,553	\$161,887	\$181,769
	Average annual growth	2.8%	2.8%	2.8%	2.7%	2.7%	2.6%	2.5%
		(1990– 2023)	(1990– 2024)	(1990– 2025)	(2025- 2030)	(2025- 2035)	(2025- 2040)	(2025- 2045)
Primary	(mmtoe)	15,183	15,407	15,649	16,162	16,495	16,674	16,861
energy consumption	Average annual growth	1.7%	1.7%	1.7%	0.6%	0.5%	0.4%	0.4%
		(1990– 2023)	(1990– 2024)	(1990– 2025)	(2025- 2030)	(2025- 2035)	(2025- 2040)	(2025- 2045)
US light-duty	Sales	9.4%	10.1%	9.7%	28%	49%	60%	72%
EV penetration ¹	Fleet	1.1%	1.7%	2.3%	8%	19%	31%	45%
Primary energy intensity of GDP	(toe per million 2023 \$)	145	143	142	128	115	103	93

^{1.} Includes battery-electric vehicles (BEVs), plug-in hybrid electric vehicles (PHEVs), range extender electric vehicles (REX or REEV), and fuel-cell electric vehicles (FCEVs) toe: metric ton of oil equivalent; mmtoe: million metric tons of oil equivalent; our assumptions and estimates were further updated based on the anticipated regulatory changes (OBBBA, CAFÉ, EPA, CARB and TARIFF) Source: S&P Global Inflections (2024)

© 2025 by S&P Global Inc.

Demand forecasts are created in 3 layers: top-down (national) and bottom-up (metro) to arrive at state/zone level

An established **multi-factor demand forecast model** integrates sales trends, household growth estimates, customer brand and dealer loyalty, leasing return-to-market, and hundreds of demographic purchase predictor variables, to create an EV adoption prediction at the granular **census tract level** geography. Bottom-up demand analysis at census tracts is then **reconciled** with our industry-leading national and State level forecasts to observe macro-economic boundaries.

National level

Industry-leading Sales-based Powertrain Forecast based on:

- Economic Market Framework
- Federal Legislation, Taxation, Emission Targets, etc.
- OEM Production Forecast and Model Policy Outlook
- Registration Segment Trends

State/zone level

National → State level forecasting based on:

State Legislation, i.e., ZEV States etc.

Metro level

Metro level demand identification based on:

- Demographic Profiles (psychographic household data to identify likely buyers at census tract level)
- Household Growth/Decline (projections at census tract level)
- S&P Loyalty Database (return-to-market potential and loyalty)
- Historic MHDV Area of Use (used sales) vs Area of Sale (Understanding fleet hub and spoke models and distribution patterns)

There is a number of state and regional level key drivers we consider in the EV forecast

National Forecast Drivers

State and Region level:

- Segment preferences
- Brand performance
- Fuel-type share
- State legislation
 - ZEV requirements
 - ICE bans

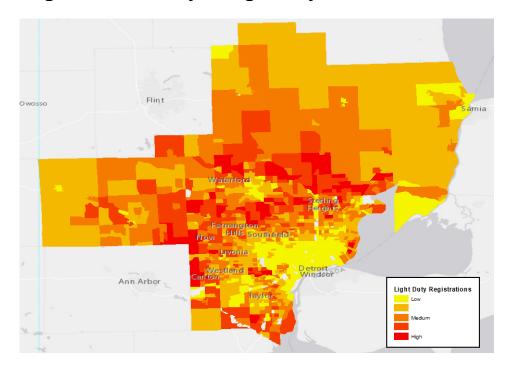
Due to EV affordability issues, EV adoption is expected to remain concentrated in ZEV states until 2035

ZEV States' Share of US ZEV Sales

2018	<u>2024</u>	<u>2035</u>
66%	51%	77%

There are a number of micro-level key drivers we consider in developing the light-duty EV forecast

State/Regional Forecast Drivers



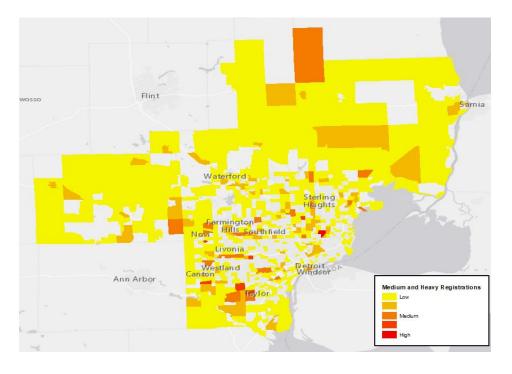
Census Tract level:

- Historical Registrations and Share
- Demographic Growth
 - Household Volume
 - Household Income
- EV Purchase Predictors

Registration density for light-duty vehicles

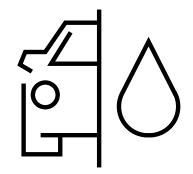
There are a number of micro-level key drivers we consider in developing the medium- and heavy-duty EV forecast

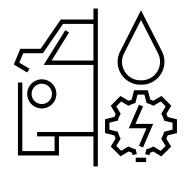
State/Regional Forecast Drivers

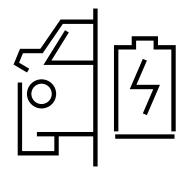


Census Tract level:

- Historical Registrations: segment and fuel type
- MHDV VIO
- Where the vehicle is used vs where the vehicle is sold
- EV-Fleet transition incentives




Registration density for medium- and heavy-duty vehicles



We use purchase predictor drivers such as income and age to forecast household adoption of EVs, Hybrid and ICE vehicles

Internal Combustion HHs

HH Income \$150K+: 43%

Under 55: 46%

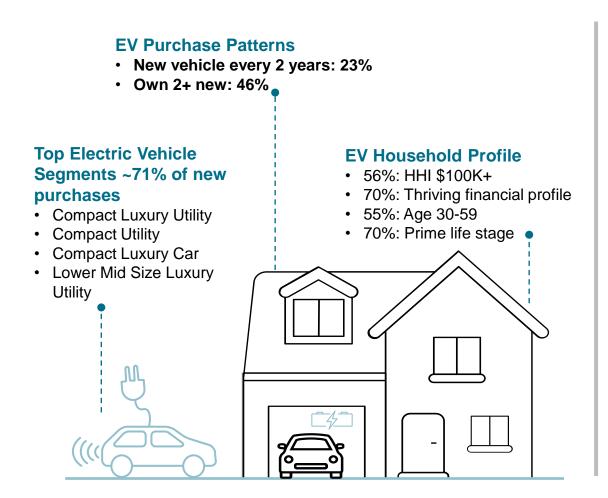
Multicultural: 24%

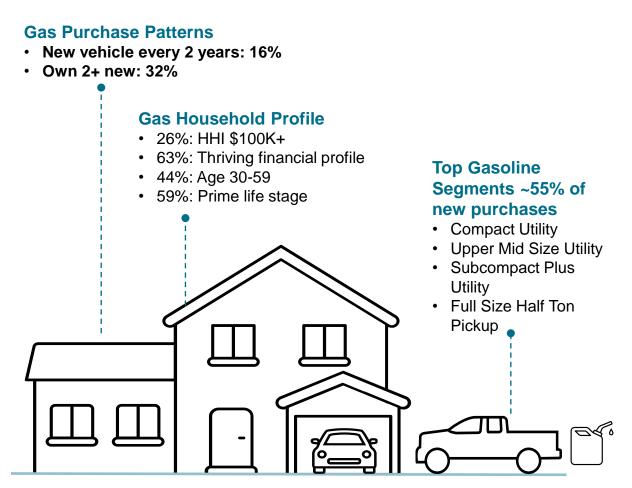
Hybrid HHs

■ HH Income \$150K+: 50%

Under 55: 49%Multicultural: 27%

EV HHs


HH Income \$150K+: 65%


Under 55: 64%

Multicultural: 37%

In contrast to gas vehicle buyers, EV households have much higher incomes and younger age, which limits EV growth potential

© 2025 by S&P Global Inc.

Agenda

Executive summary

Methodology

Assumptions and inputs

Electric vehicles

Charging demand

Results

Electric vehicle forecast

Charging demand forecast

Appendix

We used the following key assumptions to develop a forecast for electric vehicle and charging demand

	Type of EV vehicles	Assumptions and inputs
	Light-duty	EV national "natural demand" and performance based on expected revised CAFE standards, with some sub-national EV targets
Electric vehicles		EPA regulations revision
Electric venicles	Medium and heavy-duty	EV national "natural demand" and performance by class and expected revised sub-national EV targets
		Description of vehicle types by commercial function within classes 2–8
		Miles per kWh (normal operating conditions)
	Light-duty	Miles driven (weekday/weekend)
		Loss in battery efficiency due to temperature
Chausing damand		Charging infrastructure
Charging demand		Charging behavior
		Miles per kWh by class (normal operating conditions)
	Medium and heavy-duty	Miles driven (weekday/weekend) by class
		Loss in battery efficiency due to temperature by class

Agenda

Executive summary

Methodology

Assumptions and inputs

Electric vehicles

Charging demand

Results

Electric vehicle forecast

Charging demand forecast

Appendix

Industry rebalances its BEV ambitions as profitability and consumer demand remain constrained

Regulations

- NHTSA: June 2025 CAFE statement eases viability for more ZEV¹. We are likely to see the MPG goals released in coming months, thus, for this forecast natural demand is now expected through at least CY2030.
- EPA will likely no longer be allowed to pursue a 50% reduction in GHG gases.
- CARB: has lost rights to set their own emission/ZEV ambitions. Unlikely California backs down from an ICE Ban, however legal challenges to federal government likely to delay ICE ban from 2035 to 2038. Here we expect other states to follow: New Jersey, Oregon Massachusetts, and Washington.

Incentives

- IRA passed both houses of Congress in 2023.
- One Big Beautiful Bill Act (reconciliation bill) eliminates the federal ZEV purchase incentives (30D and 45W) for both light duty and medium & heavy-duty vehicles. These are phased out by September 30, 2025 and natural demand is expected to drive the market. The IRA Advanced Manufacturing Credit (45X) on battery/cell assembly remains and will help to ease some of the cost pressures.

OEM

- Assumptions on BEV profitability have been re-evaluated due to cost, strong price competition, and supplier volume shortfall claims.
- Ford and GM have reduced and/or postponed EV investments.
- Openness to REX (Range extenders) likely to come with product development by the likes of VW, Hyundai, Ford and Stellantis.
- Toyota, Honda double on their HEV aspirations with Toyota offering only an HEV version for some of its best-selling models.

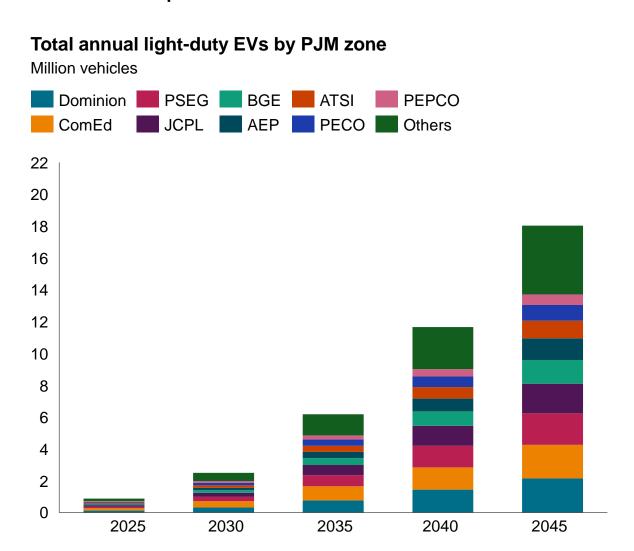

Customer readiness

- BEV growth slows down under consumer affordability concerns.
- Consumer is stating concerns on range, charging and pricing for ZEVs.
- NACS plug standardization will improve charging access over time
- Reduced disposable income driven by inflation and high interest rates creates an economic challenge for consumers.
- HEV gains further leadership as affordability remains key.
- Medium and heavy-duty fleet owners increasingly shifting from a public to private charging infrastructure, increasing associated CAPEX requirements.

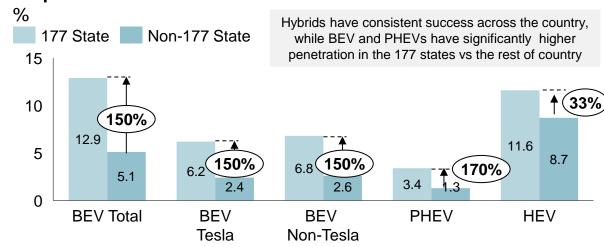
Forecast consequence: More powertrain flexibility and delay of BEV trajectory by roughly 5 years

1. The CAFE update by NHTSA signals a clear intention to ease demands for Zero Emission Vehicles, new MPG goals likely to follow. Source: S&P Global Mobility Sales-based Powertrain Forecast (August 2025)

© 2025 by S&P Global Inc.



Light-duty and medium- and heavy-duty vehicle assumptions: Policy and regulations

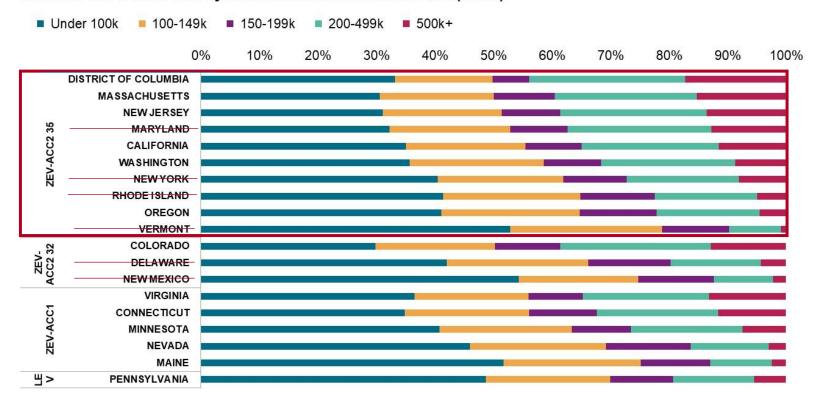

Type of vehicle applicability	Assumptions and inputs	Value	Sources
Light-duty	EV national ambitions abandoned, and CAFE is revised starting MY2028	Goal: Revised CAFE standards (MPG) starting MY2028 ~1% minimum BEV sales requirement S&P Global Forecast for ~20% sales to be BEV in 2030	S&P Global Mobility
Light-duty	EPA regulations	Pressure removed through ~2030 but possible return to pursuit of carbon neutral by 2050	S&P Global Mobility
Medium and heavy- duty	Sub-national "aspirational" likely to lead short term	Primarily driven by California's ACT with a 75% ZEV target for MDT sales in 2035 and 40% ZEV target for HDT sales. Waiver removal likely means a three-year delay. California is highly likely to continue pursuing ZEV ambitions. MA, NJ, OR and WA likely to follow.	S&P Global Mobility
Medium and heavy- duty	Vehicle types by function	Delivery van: 45% by 2035, 83% by 2045 School bus: 52% by 2035, 81% by 2045 Transit bus: 27% by 2035, 59% by 2045 Medium truck: 20% by 2035, 59% by 2045 Short haul truck: 20% by 2035, 59% by 2045 Long haul truck: 6% by 2035, 29% by 2045	S&P Global Mobility

California/ACCII waiver eliminated, challenged in court. S&P now expects a three-year delay for ACCII; push back from 2026-2035 to 2029-2038. NJ stays, all other states drop.

EV penetration for section 177 states and non-177 states¹

State	Incentive type - status	2025 ZEV program	Remains on ZEV
NJ	Rebate – Yes	ACC II	Yes
MD	Tax credit – Yes	ACC II	ACC I
VA	Rebate – Not funded	ACC I	ACC I
DE	Rebate – Yes	ACC II (till 2032)	ACC I
PA	Rebate – Yes	_	_
IL	Rebate – Yes	_	_

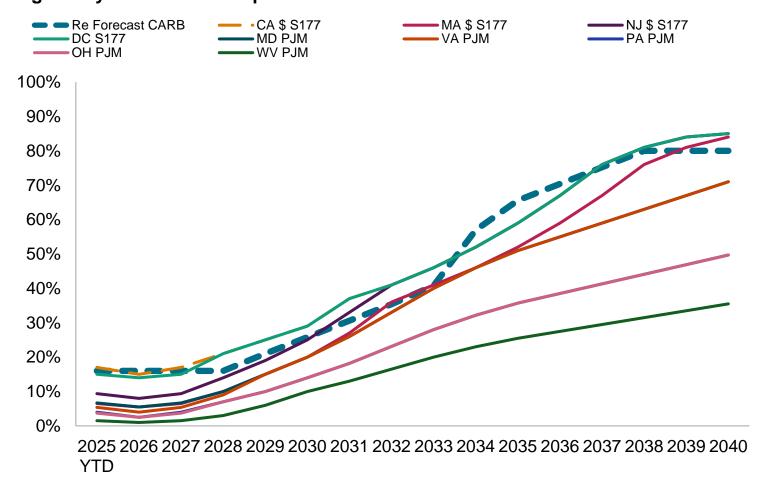
© 2025 by S&P Global Inc.


^{1. 177} States are those that have adopted California's Low-Emissions Vehicle (LEV) criteria pollutant and greenhouse gas emissions regulation and Zero-Emission Vehicle (ZEV) regulations under Section 177 of the Clean Air Act. Source: S&P Global

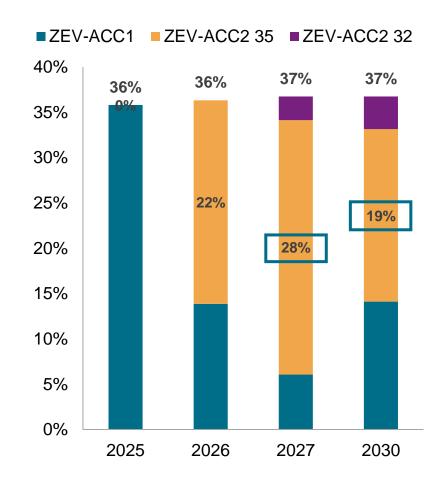
Federal government has removed the California waiver for ACCII; this will be challenged in court and is likely to delay the ICE ban from 2035 to 2038

Light-duty EV sales by income

US New Car Owner VIO by Household Income and State (S177)

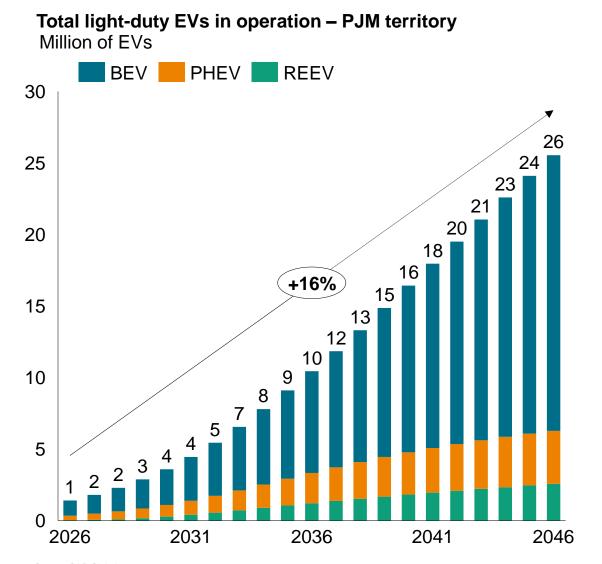

Potential re-write of CARB ZEV aspiration

- The California ACCII 2035 ICE ban is under pressure, as Federal government has taken the waiver away.
- California aspiration is likely delayed, but not derailed, we expect a push of ACCII from CY2026-2035 to CY2029-2038. This, as CA challenges the Federal government in courts.
- Further magnified as registrations of BEVs are dropping YTD in California and many of the other ACCII states.
- The situation is even more dire for 177 States, all of which have a lower electrification rate than that of CA.
- California will still aim for an ICE ban albeit delayed.
- We now expect a smaller ACCII cohort with only Massachusetts, New Jersey, Oregon and Washington remaining.

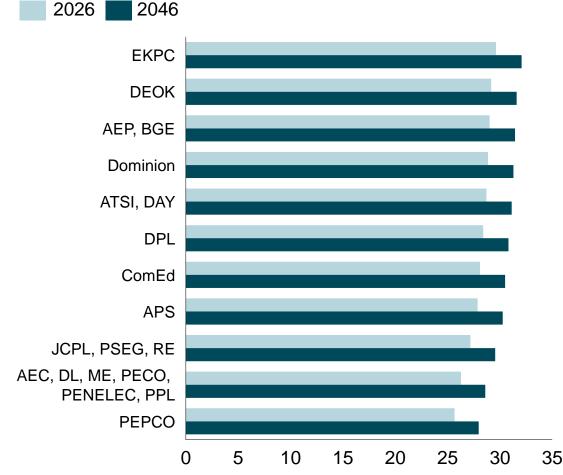


Projected PJM zone BEV take rates by state (also featuring CA and other 177 States)

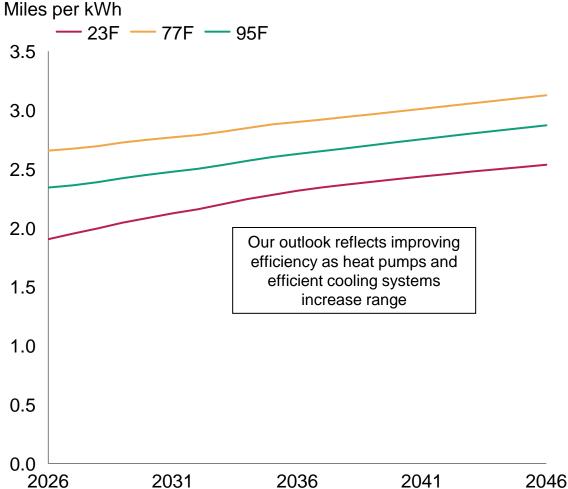
Light-duty BEV rate assumption for CA and PJM territories

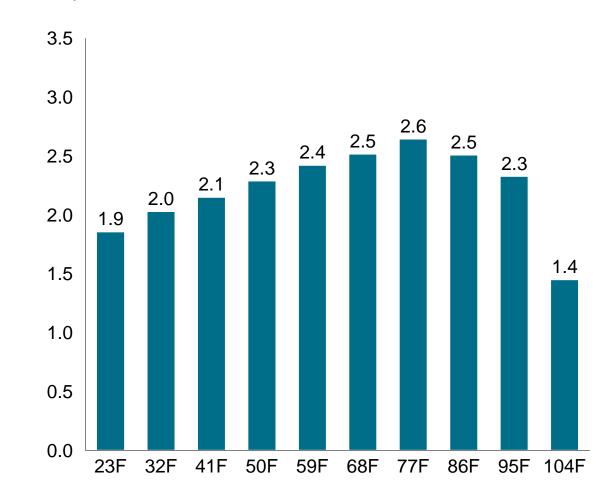


S177 states share of US LV sales



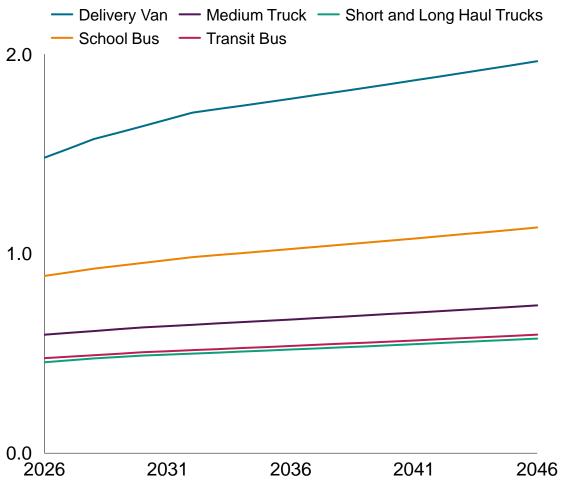
This year we introduced range extenders as a distinct EV category and incorporated vehicle miles traveled data at the zonal level

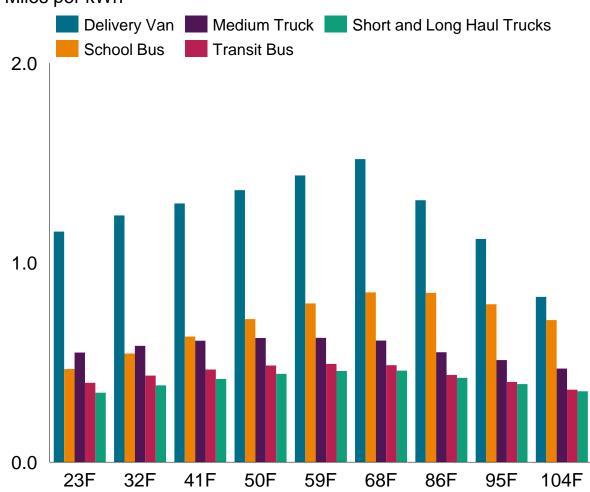

Light-duty EVs vehicle miles traveled by PJM zone Average daily vehicle miles traveled


0 4 0

Daily temperatures outside the optimal range lower light-duty EV efficiency and raise charging needs

Light-duty EV vehicle efficiency at different daily temperatures


Light-duty EV vehicle efficiency at different daily temperatures Miles per kWh



Vehicle efficiency varies among MHDV classes, with delivery vans performing best

MHD EVs vehicle efficiency in optimal temperature conditions¹ Miles per kWh

MHD EVs vehicle efficiency at different daily temperatures Miles per kWh

^{1.} Optimal temperature conditions are estimated at 77 Fahrenheit Source: S&P Global Mobility, NREL, CALSTART © 2025 by S&P Global Inc.

Agenda

Executive summary

Methodology

Assumptions and inputs

Electric vehicles

Charging demand

Results

Electric vehicle forecast

Charging demand forecast

Appendix

Light-duty vehicle assumptions: Electric vehicle utilization

Sources
2046)
S&P Global Mobility
MODILITY

Light-duty vehicle assumptions: Electric vehicle efficiency

Type of vehicle applicability	Assumptions and inputs	Value	Sources	
Links dos.	Miles per kWh ¹	2026: 2.7 miles/kWh	S&P Global Mobility	
Light-duty	(normal operating conditions ²)	2046: 3.1 miles/kWh		
		43% additional energy at 23 Fahrenheit (heating)		
Light-duty	Loss in battery efficiency due to temperature fluctuations	5% additional energy at 86 Fahrenheit (cooling)	S&P Global Mobility, National Oceanic and Atmospheric	
		Temperature assumed for the study is a 10-year historical average on a daily basis	Administration	

Source: S&P Global

© 2025 by S&P Global Inc.

^{1.} Accounts for real-world performance, not EPA lab test; includes weighted average performance of car parc

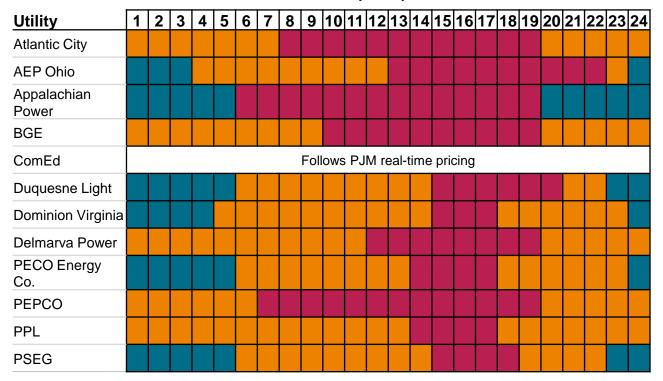
^{2.} Normal operating conditions are assumed at 77 Fahrenheit

Light-duty vehicle assumptions: Charging infrastructure

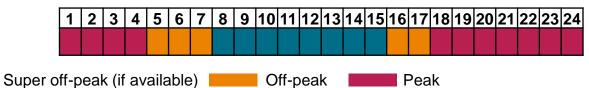
Type of vehicle applicability	Assumptions and inputs	Value	Sources
Light-duty	Access to home and workplace charging	2026: 81% access to home charging 2046: 66% access to home charging	S&P Global Mobility – Charging Infrastructure
Light-duty	Type of home charging (Level 2 vs Level 1)	80% Level 2 charging	S&P Global Mobility – Charging Infrastructure
Light-duty	Charging strategy (for drivers with access to home charging)	2026: 94% Immediate / 6% Delayed 2046: 65% Immediate / 35% Delayed	S&P Global Commodity Insights

Light-duty vehicle assumptions: Charging behavior

The light duty charging shapes are a combination of different charging strategies					
Charging strategy	Home charging	Description	Preferred charging time	Type of charger	
Immediate	Yes	Starts to charge as soon as gets home, regardless of cost	Evening	Level 2: 80% Level 1: 20%	
TOU – As soon as possible (ASAP)	Yes	Starts to charge as soon as on-peak pricing ends	Dynamic based on pricing	Level 2	
TOU – As cheap as possible (ACAP)	Yes	Charges during super off-peak hours	Dynamic based on pricing	Level 2	
Work and public charger	No	Relies on public and workplace charging, starts to charge as soon as arrives to work	Morning through midday	Mostly Level 2 and DCFC	
Ride hailing	50%	Typically relies on public charging, charges throughout the day	Middle of the day	Mostly Level 2 and DCFC	

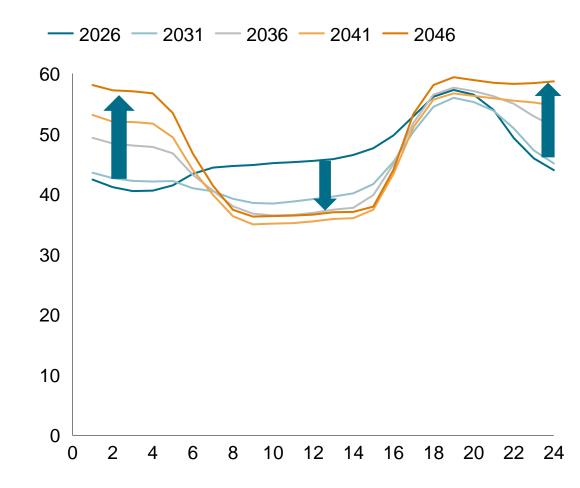


Summary of key changes in the approach to the light-duty vehicle analysis as compared to last year's analysis


Assumption	Description	Magnitude of change	Impact on load
Vehicles in Operation (VIO)	US EV penetration reaches 14% by 2035 and 39% by 2045 (compared to 50% by 2045 previously). This is a response to expected revisions to EPA and CAFE rules for MY2028-2032 as well as the challenges with the Advanced Clean Cars and Advanced Clean Trucks rules, resulting in the delay in the targets as well as some states leaving the California rule.	High	
Efficiency and temperature losses	 Updated vehicle efficiency based on latest update of S&P Global Vehicle Performance and Compliance Database (VPaC). Efficiency losses for cold/hot weather temperatures based on data from real-world driving performance and S&P Global vehicle simulation datasets. Incorporated relevant S&P Global technology forecasts (heat pump and refrigerant medium) to account for improvements in vehicle thermal management. 	Medium	
Vehicles Miles Traveled (VMT)	VMT data expanded to reflect differences in PJM zones based out of state-level data. National VMT is expected to increase at a pace of about 0.5% per year from a present 11,000 miles per year to 12,000 miles per year by 2046, with MaaS (Mobility as a Service) increasing from a present 35,000 miles per year to 40,000 miles per year.	Medium	
Access to home charging	 Increased long-term access to home charging to 66% in 2046 (previously 50% in 2045) based on new data on housing structure (single v. multi family), home ownership/rental, vehicles per household, electrical access by housing type, and BEV adoption within housing categories. 	Low	
Charging behavior	 Adjusted the share of immediate charging during weekdays/weekends to 65% in 2046 (previously 50% on weekdays and 90% on weekends in 2045). Replaced the ALAP (as-late-as-possible) category with ACAP (as-cheap-as-possible) within the delayed charging strategy and revised the allocation between ASAP and ACAP charging according to projected on- and off-peak times. 	Medium	

Utilities currently incentivize charging during the night and early morning; going forward, TOU rates will evolve to incentivize EV charging during the day to due to solar penetration

Selected PJM utilities with time-of-use (TOU) rate structure - 2025



Expected time-of-use (TOU) rate structure in PJM utilities - 2046

Average hourly PJM East wholesale prices

Real 2024 \$/MWh

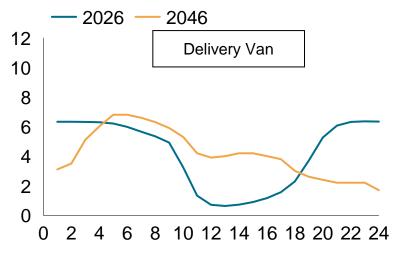
Medium and heavy-duty assumptions: EV utilization and efficiency

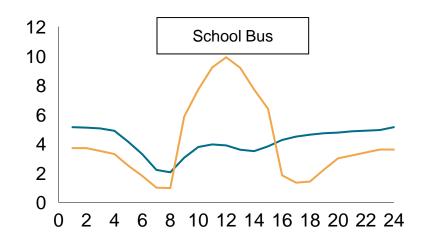
Type of vehicle applicability	Assumptions and inputs	Value	Sources
Medium and heavy-duty	Miles driven (weekday/weekend)	Delivery van: 19,345 miles/year (2026) to 28,288 miles/year (2046); 96% of miles driven during weekdays	S&P Global Mobility
		School bus: 11,680 miles/year (2026) to 12,045 miles/year (2046); 96% of miles driven during weekdays	
		Transit bus: 41,975 miles/year (2046) to 44,530 miles/year (2046); 88% of miles driven during weekdays	
		Medium truck: 21,535 miles/year (2026) to 22,630 miles/year (2046); 71% of miles driven during weekdays	
		Short-haul truck: 35,040 miles/year (2026) to 37,230 miles/year (2046); 96% of miles driven during weekdays	
		Long-haul truck: 85,410 miles/year (2026) to 90,520 miles/year (2046); 88% of miles driven during weekdays	
Medium and heavy-duty	Miles per kWh (normal operating conditions ¹)	Delivery van: 1.48 miles/kWh (2026) to 1.96 miles/kWh (2046)	S&P Global Mobility
		School bus: 0.89 miles/kWh (2026) to 1.13 miles/kWh (2046)	
		Transit bus: 0.48 miles/kWh (2026) to 0.59 miles/kWh (2046)	
		Medium truck: 0.59 miles/kWh (2026) to 0.74 miles/kWh (2046)	
		Short-haul truck: 0.46 miles/kWh (2026) to 0.57 miles/kWh (2046)	
		Long-haul truck: 0.46 miles/kWh (2026) to 0.57 miles/kWh (2046)	
Medium and heavy-duty	Loss in battery efficiency due to temperature fluctuations	Additional energy at 23 Fahrenheit (heating): 24% (delivery vans), 17% (transit buses), 87% (school buses), 6% (medium trucks), 28% (short-haul and long-haul trucks)	S&P Global Mobility, National Renewable Energy Laboratory,
		Additional energy at 86 Fahrenheit (cooling): 9% (delivery vans), 7% (transit buses), 3% (school buses), 6% (medium trucks), 6% (short-haul and long-haul trucks)	CALSTART MHD EV Deployment Data

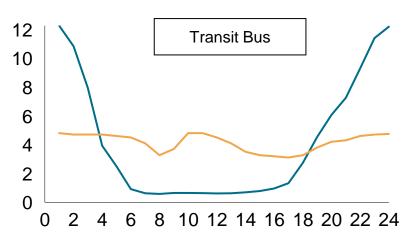
^{1.} Normal operating conditions are assumed at 77 Fahrenheit

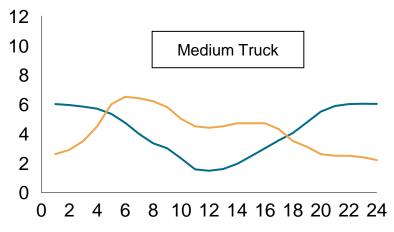
© 2025 by S&P Global Inc.

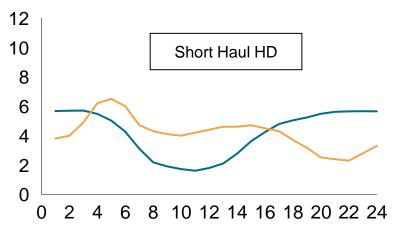
Summary of key changes in the approach to the medium and heavy-duty vehicles as compared to last year's analysis

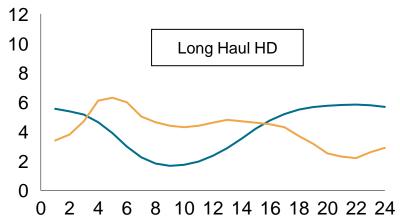

Assumption	Description	Magnitude of change	Impact on load
Vehicles in Operation (VIO)	 Similar to LV we have revised HDTs down drastically as a result of legislation, we now have a BEV VIO of 2% in 2035 and 14% in 2045 for Class 8 (we previously had 6.4% in 2035 and 24% in 2045). Similarly for Class 4-7 we have BEV VIOs of 5% in 2035 and 27% in 2045 (we previously had 12% for 2035 and 43% for 2045). For Commercial Vans BEV VIO of 13% in 2035 and 45% in 2045 (previously 27% in 2035 and 70% in 2045). 	High	
Vehicle Miles Traveled (VMT)	Updated vehicle miles travelled data for delivery vans based on latest S&P Global Mobility Reinventing the Truck study (Dec 2024), as well as latest trends in last mile delivery operations that led to an increase of daily miles travelled from 30 miles to 53 miles in 2026 and from 32 miles to 70 miles in 2045.	Low	
Charging shapes	 Updated unmanaged charging load shapes for MHDV vehicles by class based on NREL Depot-Based MHD EV Charging Data. Refined managed charging load curves based on the evolution of time-of-use (TOU) rates. 	Medium	




MHDV charging shapes are specific to the types of vehicles and their duty cycle; going forward, load shapes will react to higher managed charging penetration and electricity prices


Medium and heavy-duty charging profile


Percentage of daily charging (%)



Agenda

Executive summary

Methodology

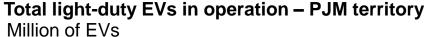
Assumptions and inputs

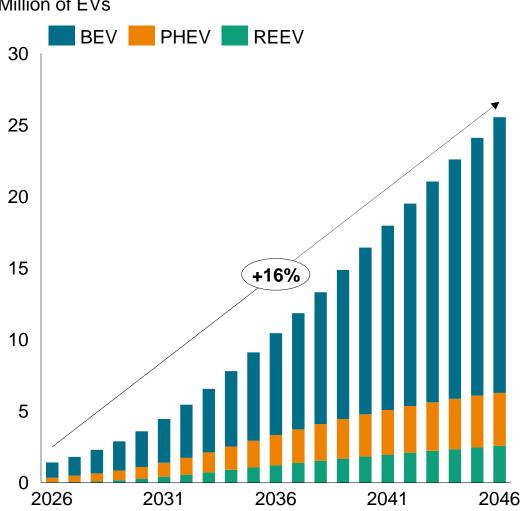
Electric vehicles

Charging demand

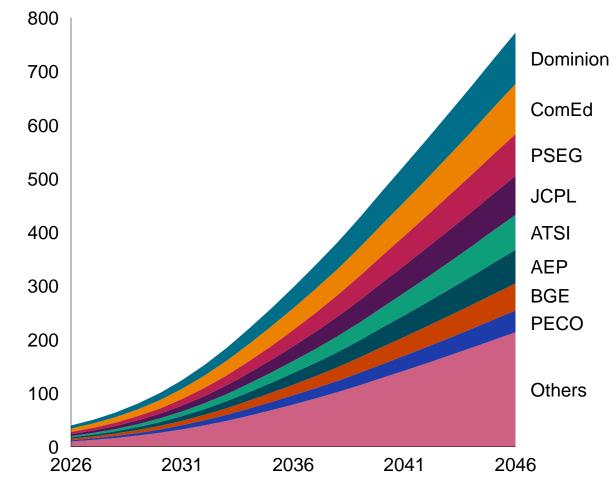
Results

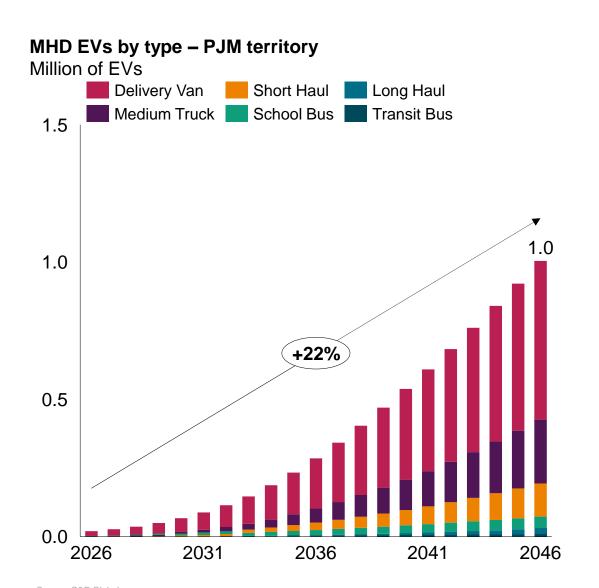
Electric vehicle forecast

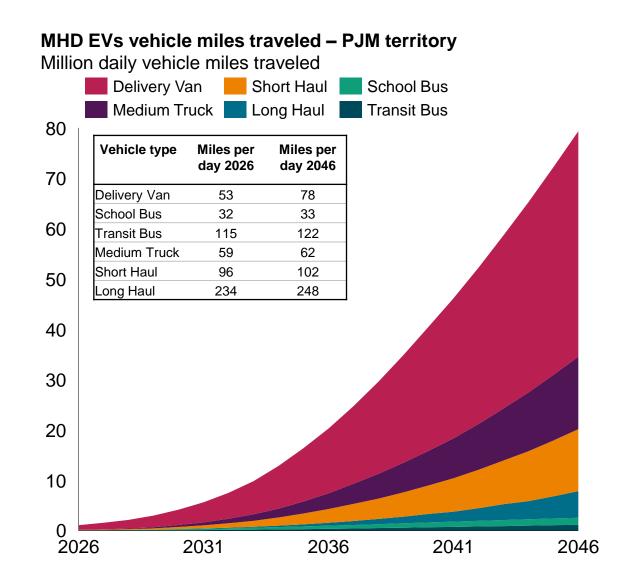

Charging demand forecast


Appendix

0 4 0


Light-duty EV fleet will reach nearly 26 million vehicles 2046, with BEVs accounting for 75% of the total


Light-duty EVs daily vehicle miles traveled – PJM territory



Vehicle adoption and usage vary sharply by MHDV class

Agenda

Executive summary

Methodology

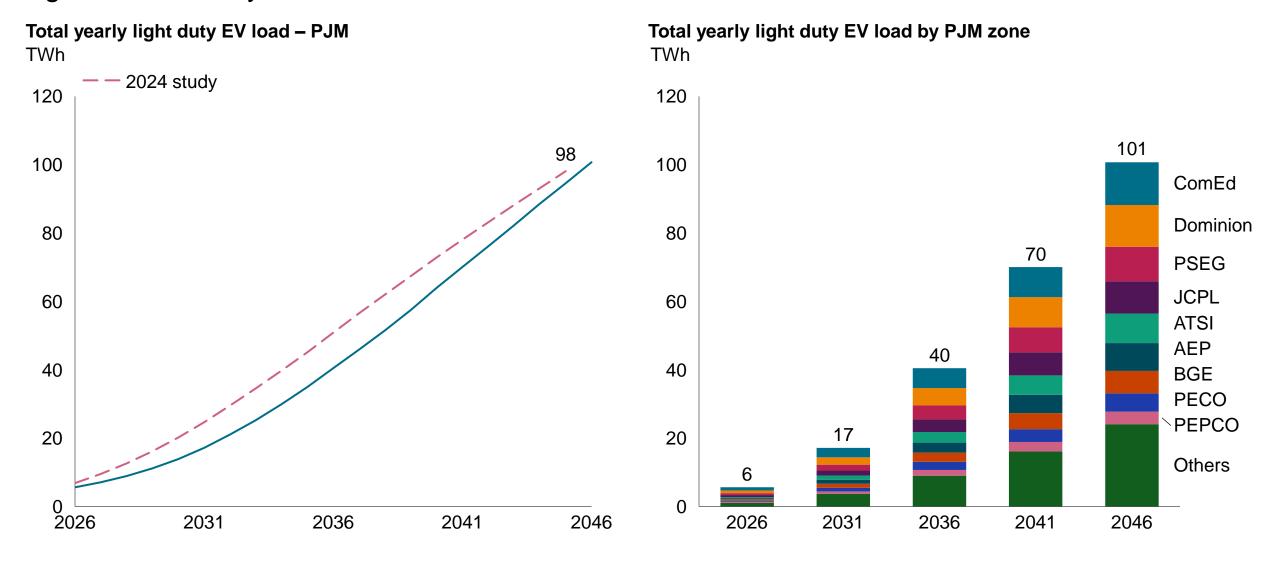
Assumptions and inputs

Electric vehicles

Charging demand

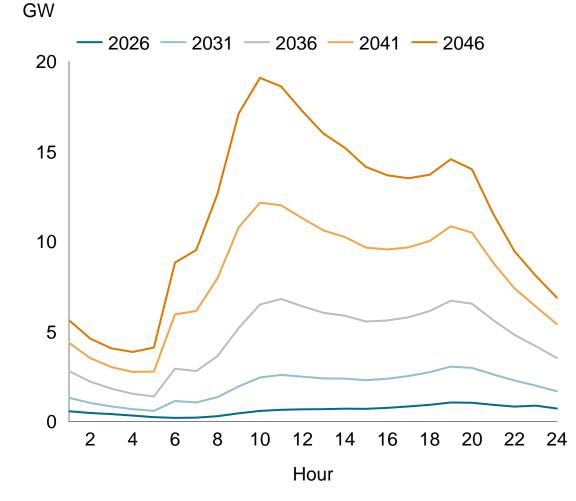
Results

Electric vehicle forecast


Charging demand forecast

Appendix

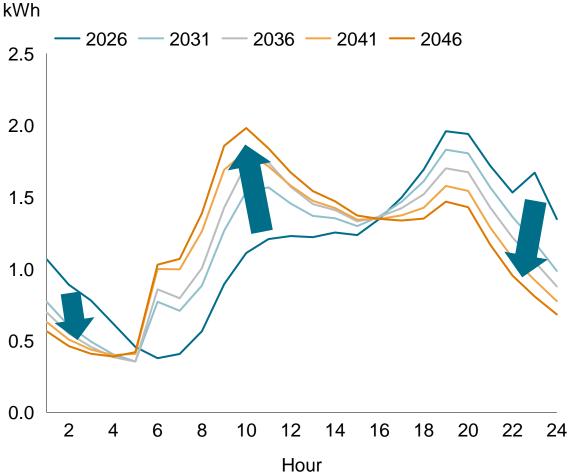
Load from light-duty vehicles is forecasted to surpass 100 TWh by 2046, led by zones with high urban density



We developed 8760 load shapes for the next 20 years for each zone based on the light-duty EV forecast

Light-duty EV hourly load statistics – PJM

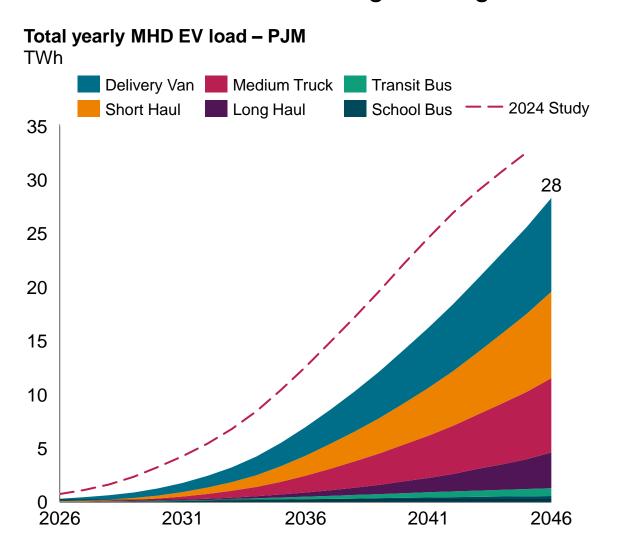
Year	Average load (MW)	Peak load (MW)	Month of peak	Hour of peak
2026	641	1,403	December	19
2031	1,955	3,997	December	19
2036	4,605	8,628	December	11
2041	7,993	15,346	December	10
2046	11,498	23,732	December	10

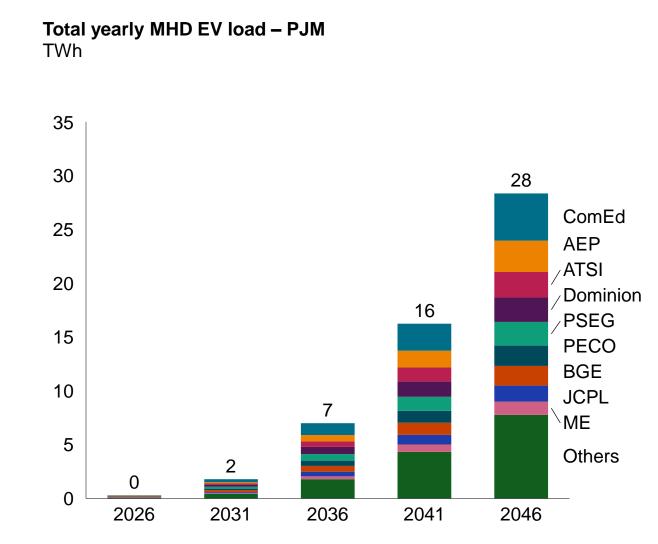

Average hourly light-duty EV load – PJM

As charging behavior evolves, EVs will charge less during the evening and more in the morning and middle of the day

Light duty EV average weekday charging profile

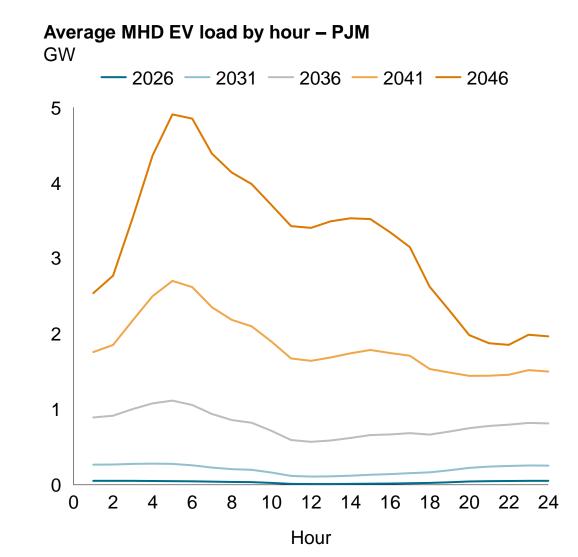
Key trends impacting the load shape


- Due to lower access to home charging as a share of total, EV owners will increase charging during work hours at the workplace/public chargers
- Evolution of time-of-use rates will nudge people to not charge immediately as they get home in the evening
- As more people adopt managed charging, they will increase charging in the morning or midday to take advantage of low-cost electricity resulting from higher solar penetration


Note: Assuming 28 miles per day driven and no mileage loss from temperature Source: S&P Global

© 2025 by S&P Global Inc.

Load from MHDV is forecasted to reach 28 TWh by 2046, with delivery vans, short-haul and medium trucks contributing the largest shares



We developed 8760 load shapes for the next 20 years for each zone based on the MHD EV forecast

MHD EV hourly load statistics – PJM

Year	Average load (MW)	Peak load (MW)	Month of peak	Hour of peak
2026	35	87	December	1
2031	204	443	December	4
2036	796	1,705	December	5
2041	1,855	3,999	December	5
2046	3,235	7,176	December	5

Agenda

Executive summary

Methodology

Assumptions and inputs

Electric vehicles

Charging demand

Results

Electric vehicle forecast

Charging demand forecast

Appendix

Vehicle classification

Type of EV vehicle	Definition
Medium- and heavy-duty trucks (MHDT)	MHDTs refer to, with some regional nuance, vehicles in the US Department of Transportation's gross vehicle weight rating (GVWR) categories 4-8 (more than 14,001 lb)
Medium-duty trucks (MDTs)	Medium or medium-duty vehicles refer to those in GVWR categories 4-7 (14,001-33,000 lb)
Heavy-duty trucks (HDTs)	Heavy or heavy-duty vehicles refer to those in GVWR category 8 (more than 33,001 lb)
Long-haul HDTs	HDT with a sleeper cab, not requiring to return to depot at the end of the day
Short-haul HDTs	HDT with a day cab for regional transportation
Transit Buses	Medium/Heavy Duty vehicles for the transportation of people in transit systems (incl. inter-city coaches)
School Buses	Medium/Heavy Duty vehicles for the transportation of pupils and students to educational facilities
Delivery Vans	Commercial vans for transporting goods (all GVWR categories, primarily Class 2, 3 and 4)
Light Duty Vehicles (LDV)	Passenger vehicles including SUVs and pickup trucks (GVWR categories 2-3, up to 14,000 lb)

Acronyms

ACC: Advanced Clear Car

ACT: Advanced Clean Truck

BEV: Battery Electric Vehicle

CAFE: Corporate Average Fuel Economy

CARB: California Air Resources Board

DCFC: Direct Current Fast Charging

EPA: Environmental Protection Agency

EV: Electric Vehicle

GHG: Greenhouse Gas

HEV: Hybrid Electric Vehicle

ICE: Internal Combustion Engine

IRA: Inflation Reduction Act

kWh: Kilowatt Hour

LDV: Light Duty Vehicle

NACS: North American Charging Standard

NHTSA: National Highway Traffic Safety Administration

MaaS: Mobility as a Service

MHD/MHDV: Medium and Heavy Duty Vehicle

PHEV: Plug in Hybrid Electric Vehicle

MPG: Miles per Gallon

MWh: Megawatt Hour

S-177 States: 177 states that choose to pursue California legislation as opposed to

national

REX/REEV: Range Extender Electric Vehicle

TOU: Time of Use

VIO: Vehicles in operation

VMT: Vehicle miles traveled

ZEV: Zero Emission Vehicle

© 2025 by S&P Global Inc.

Disclaimer

S&P Global Commodity Insights is a business division of S&P Global Inc. ("SPGCI"). The reports, data, and information referenced in this document ("Deliverables") are the copyrighted property of SPGCI and represent data, research, opinions, or viewpoints of SPGCI. SPGCI prepared the Deliverables using reasonable skill and care in accordance with normal industry practice. The Deliverables speak to the original publication date of the Deliverables. The information and opinions expressed in the Deliverables are subject to change without notice and SPGCI has no duty or responsibility to update the Deliverables (unless SPGCI has expressly agreed to update the Deliverables). Forecasts are inherently uncertain because of events or combinations of events that cannot reasonably be foreseen including the actions of government, individuals, third parties and competitors. The Deliverables are from sources considered by SPGCI (in its professional opinion) to be reliable, but SPGCI does not assume responsibility for the accuracy or completeness thereof, nor is their accuracy or completeness or the opinions and analyses based upon them warranted.

To the extent permitted by law, SPGCI shall not be liable for any errors or omissions or any loss, damage, or expense incurred by reliance on the Deliverables or any statement contained therein, or resulting from any omission. THE DELIVERABLES ARE PROVIDED "AS IS" AND TO THE MAXIMUM EXTENT ALLOWED BY LAW, NEITHER SPGCI, ITS AFFILIATES NOR ANY THIRD-PARTY PROVIDERS MAKES ANY REPRESENTATION, WARRANTY, CONDITION, OR UNDERTAKING, WHETHER EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, RELATING TO THE DELIVERABLES OR THE RESULTS OBTAINED IN USING THEM; INCLUDING: A) THEIR MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE; OR B) THEIR CONTINUITY, ACCURACY, TIMELINESS OR COMPLETENESS. The Deliverables are supplied without obligation and on the understanding that any recipient who acts upon the Deliverables or otherwise changes its position in reliance thereon does so entirely at its own risk.

The Deliverables should not be construed as financial, investment, legal, or tax advice or any advice regarding any recipient's corporate or legal structure, assets or, liabilities, financial capital or debt structure, current or potential credit rating or advice directed at improving any recipient's creditworthiness nor should they be regarded as an offer, recommendation, or as a solicitation of an offer to buy, sell or otherwise deal in any investment or securities or make any other investment decisions. The Deliverables should not be relied on by Client in making any investment or other decision and should not in any way serve as a substitute for other enquiries or procedures which may be appropriate. The Deliverables should not be used as the basis of or input for any ESG rating, score, opinion, or evaluation. The Deliverables should not be reproduced or made available to any other person without SPGCl's prior written consent. Client may not use the Deliverables to transmit, undertake or encourage any unauthorised investment advice or financial promotions, or to generate any advice, recommendations, guidance, publications or alerts made available to its own customers or any other third-parties. Nothing in the Deliverables constitutes a solicitation by SPGCl or its Affiliates of the purchase or sale of any loans, securities or investments. SPGCl Personnel are not providing legal advice or acting in the capacity of lawyers under any jurisdiction in the performance of Services or delivery of Deliverables. SPGCl is not a registered lobbyist and cannot advocate on anyone's behalf to government officials regarding specific policies. The Deliverables contain the results of SPGCl's independent research and analysis and are intended for general informational purposes only. The Deliverables are not intended, and may not be used, to promote, directly or indirectly, the supply or use of any product or business interest, including, but not limited to, the benefits of any product, business, or business activity, and shou

S&P Global Inc. also has the following divisions: S&P Dow Jones Indices, S&P Global Market Intelligence, S&P Global Mobility, and S&P Global Ratings, each of which provides different products and services. S&P Global keeps the activities of its business divisions separate from each other in order to preserve the independence and objectivity of their activities. SPGCI publishes commodity information, including price assessments and indices and maintains clear structural and operational separation between SPGCI's price assessment activities and the other activities carried out by SPGCI and the other business divisions of S&P Global Inc. to safeguard the quality, independence and integrity of its price assessments and indices and ensure they are free from any actual or perceived conflicts of interest. The Deliverables should not be construed or regarded as a recommendation of any specific price assessment or benchmark.

Unless SPGCI has expressly agreed otherwise, the Deliverables are not works-made-for-hire and SPGCI shall own all right, title, and interest in and to the Deliverables, including all intellectual property rights which subsist in the Deliverables. Use of the Deliverables is subject to any licence terms and restrictions agreed between SPGCI and the commissioning Client. The SPGCI name(s) and logo(s) and other trademarks appearing in the Deliverables are the property of S&P Global Inc., or their respective owners.

CI Consulting

S&P Global

Commodity Insights