

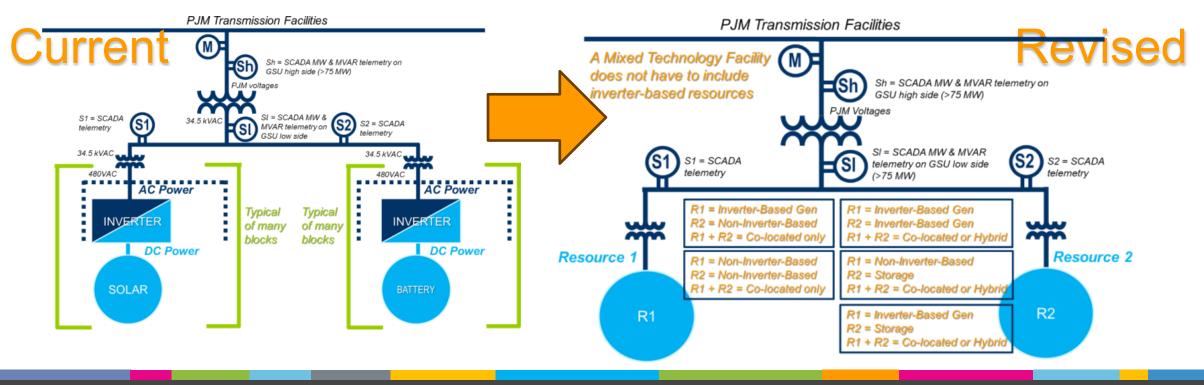
Hybrids Phase III: Manual 10 and 14D Changes

Maria Belenky Lead Market Design Specialist, Market Design

System Operations Subcommittee May 29, 2025

Hybrids Filing

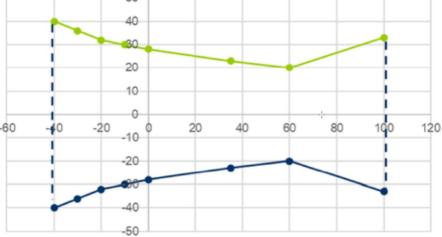
- Hybrids Phase III filing accepted March 28, 2025
 - FERC Docket #ER25-1095-000
- Changes included allowing more than just inverter-based resources with storage components
- Updated Open-Loop and Closed-Loop classifications of Hybrid Resources



- Section 2.1 Generation Outage Reporting Overview
 - Updated eDART Reportable MW table (Exhibit 3) to include the reportable MW value of non-inverter-based components of Hybrid Resources

Resource Type	eDART Reportable MW
For the inverter-based component of Hybrid	Based on nameplate MW rating of the
Resource	component
For the non-inverter-based component of	Total RPM (Owned) iCAP
Hybrid Resource	(Committed + Available) MW

- Section 4.2 Account Metering
 - Exhibit 7 generalized to include all resource types for Mixed Technology Facilities and Hybrid Resources


- Section 8.2.4 Generator Outage Reporting (Aggregate Turbine availability)
 - Updated language to emphasize wind outage reporting for all types of hybrids that include wind as a technology type
- Section 12.2.4 Generator Outage Reporting Section
 - Updated language to emphasize solar outage reporting for all types of hybrids that include solar as a technology type

- Section 13.1 Marketing and Classification of Mixed Technology Facilities
 - Modified language to broaden eligibility to participate as a Hybrid Resource
 - Clarified classifications of open-loop and closed-loop based on definition changes
 - Updated language and diagram to be inclusive of all eligible resource types for hybrids
 - Updated language to specify when a Mixed Technology Facility must participate as a Hybrid Resource
 - Noted classification of closed-loop for any Hybrid Resource without storage component
 - Clarified that for all Mixed Technology Facilities participation change notifications must be made no later than six (6) months in advance of its initial start in the energy markets.

- Attachment D PJM Generating Unit Reactive Capability Curve Specification and Reporting Procedures
 - Point 10 and Point 11 removed limiting language of inverter-based and non-inverter-based resources
 - Point 12 clarified language to only refer to Hybrid Resources with a storage component

- Attachment E PJM Generator and Synchronous Condenser Reactive Capability Testing
 - Updated table to specify testing requirements specific to Hybrid Resources with a storage component

UNIT	MW	MVAR	TEST
TYPE	OUTPUT	OUTPUT	DURATION
FOSSIL, HYDRO ELECTRIC,	MAX	MAX LAG	ONE HOUR
BLACKSTART	MAX	MAX LEAD	WHEN LIMIT REACHED
	MIN	MAX LAG	WHEN LIMIT REACHED
	MIN	MAX LEAD	WHEN LIMIT REACHED
SYNCHRONOUS CONDENSER or	N/A	MAX LAG	ONE HOUR
GENERATOR THAT OPERATES	N/A	MAX LEAD	WHEN LIMIT REACHED
IN THE SYNCHRONOUS			
CONDENSING MODE TO			
PROVIDE REACTIVE SUPPORT			
NUCLEAR	MAX	MAX LAG	ONE HOUR
	MAX	MAX LEAD	WHEN LIMIT REACHED
VARIABLE (Wind & Solar)	VARIABLE	MAX LAG	WHEN LIMIT REACHED
(Testing done with at least 90% of	VARIABLE	MAX LEAD	WHEN LIMIT REACHED
turbines or inverters on line)			
INVERTER-BASED	ZERO	MAX LAG	WHEN LIMIT REACHED
ENERGY STORAGE RESOURCES	ZERO		WHEN LIMIT REACHED
Max MW Output = fully discharging	MAX	MAX LAG	WHEN LIMIT REACHED
	MAX	MAX LEAD	WHEN LIMIT REACHED
Min MWOutput = fully charging	MIN	MAX LAG	WHEN LIMIT REACHED
	MIN		WHEN LIMIT REACHED
DC-COUPLED INVERTER BASED	ZERO	MAX LAG	WHEN LIMIT REACHED
STORAGE HYBRID RESOURCES	ZERO		WHEN LIMIT REACHED
Max MW Output = fully	MAX	MAX LAG	WHEN LIMIT REACHED
discharging/producing	MAX		WHEN LIMIT REACHED
Min MWOutput = fully charging with	MIN		WHEN LIMIT REACHED
no production (or 0 MW net output if	MIN	MAX LEAD	WHEN LIMIT REACHED
facility cannot charge from grid)			
AC-COUPLED INVERTER BASED			
STORAGE HYBRID RESOURCES			
Zero net MW point must reflect the most	ZERO		WHEN LIMIT REACHED
conservative capability at that power level,	ZERO	MAX LEAD	WHEN LIMIT REACHED
for example with a battery at full charging			
and generation output matching as close			
to battery charge power as practicable.			
Max MW Output =	MAX		WHEN LIMIT REACHED
fully discharging/producing	MAX	MAX LEAD	WHEN LIMIT REACHED WHEN LIMIT REACHED
Min MW Output = battery fully charging			
and generation at 0 MW (if facility cannot	MIN	MAX LEAD	WHEN LIMIT REACHED
charge from grid, om it this point). Max inverter operating point(MXIOP)=	MXIOP	MAXING	WHEN LIMIT REACHED
generation as close to full output as	MXIOP		WHEN LIMIT REACHED
generation as close to full output as practicable and battery at full charging.	MAIOP	IMAX LEAD	WHEN LIMIT REACHED
practicable and battery at full charging.			
*Additional test points may be required if			
these do not capture the most restrictive			

Manual 10 and 14-D Timeline

	Committee	Apr	Мау	Jun	Jul
	SOS		4/30	5/29	
Manual 10 Rev 46	OC		5/8	6/5	
Manual 14-D Rev 68	MRC			6/18	7/23
	RSCS		5/9		
					• First Read

First Read
★ Endorsement
O Info Only

Facilitator: **Kevin Hatch** Kevin.Hatch@pjm.com Secretary: Matt Wharton Matthew.Wharton@pjm.com SME/Presenter: Maria Belenky Maria.Belenky@pjm.com **Darrell Frogg** Darrell.Frogg@pim.com

Hybrids Phase 3 Manual 10 and 14D Changes

