# Brandon Shores Retirement Analysis Project Update

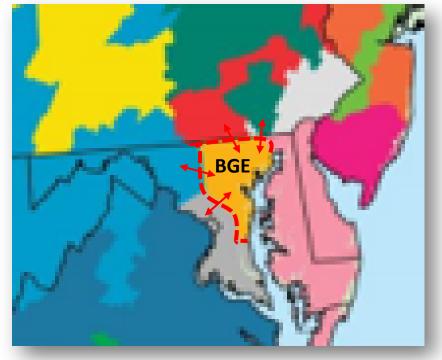
February 2024



## Agenda

- 1. Overview of Brandon Shores Retirement Analysis
- 2. Proposed Alternative Technical Feasibility
- 3. Proposed Alternative Cost Feasibility
- 4. Summary
- 5. Technical Appendix



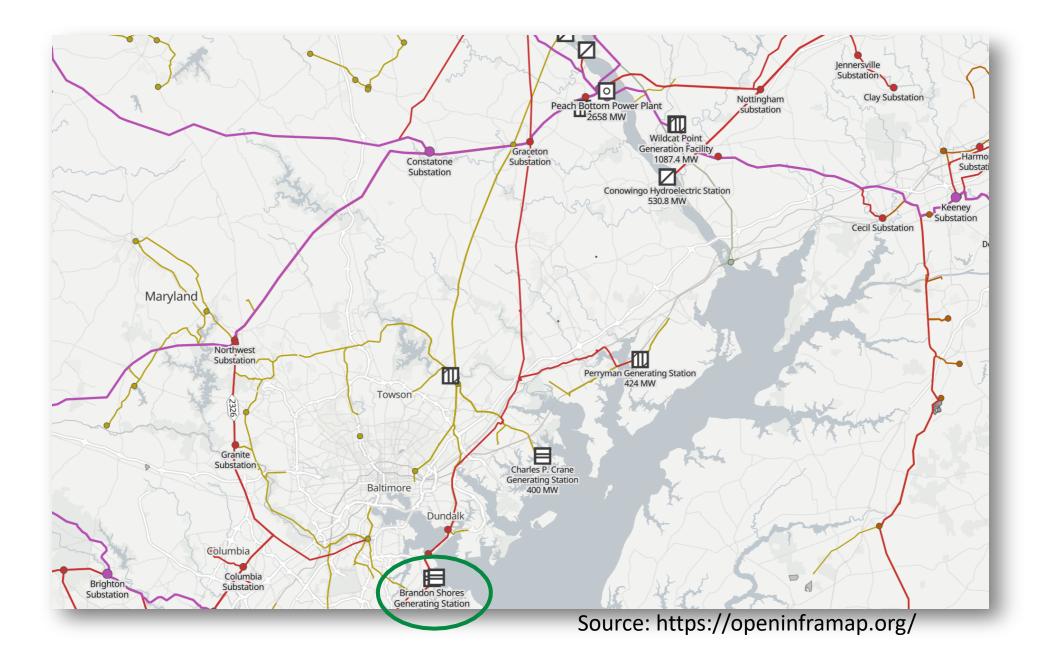

# Overview of Brandon Shores Retirement Analysis

## **Overview of Analyses**

PJM's results found issues with:

- Load Deliverability (LD) A thermal analysis to check the ability to transfer power into a load pocket under stressed conditions (coincident high demand)
- Generator Deliverability (GD) A thermal analysis to check the ability to transfer power out of a generation pocket under stressed conditions (coincident high generation dispatch)
- N-1-1 Contingencies An analysis to evaluate thermal and voltage violations under a planned maintenance outage plus an unplanned contingency (outage of a transmission line or generator)

#### BGE and Transmission Transfer Paths




## **PJM'S Recommended Reinforcements**

\* Operating measures are not available

- To address these issues, PJM proposed a \$780 million package of new transmission including
  - Two new high-voltage (500kV and 230 kV) transmission lines
  - Three new high voltage substations, and two substation expansions
  - Several voltage support devices ("STATCOMs" and "Capacitors")
- PJM is forecasting these upgrades will not be completed until **December 31, 2028**
- Until all upgrades are completed, PJM proposes to retain Brandon Shores from 3.5 years past its requested retirement date (June 1, 2025), under a reliability-must-run agreement (RMR).





## **RMR Risks**

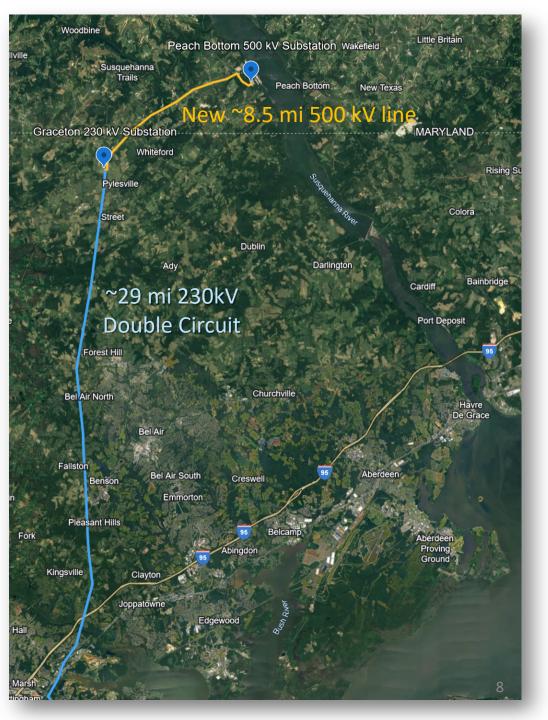
- A Brandon Shores RMR could cost **\$258 million per year.**
- Which could total **\$900 million in RMR costs** by the end of 2028.
- Meanwhile, region remains reliant on 33 40-year-old resources

This table was prepared by the Independent Market Monitor for PJM. The IMM confirmed the data with PJM.

|                                       |                                                       |                                        |                     |               | Initial Filin | ng            | Actual     |               |          |
|---------------------------------------|-------------------------------------------------------|----------------------------------------|---------------------|---------------|---------------|---------------|------------|---------------|----------|
|                                       |                                                       |                                        |                     |               |               |               | Cost per   |               | Cost per |
| Unit Names                            | Owner                                                 | ICAP (MW) Cost Recovery Method         | Docket Numbers      | Start of Term | End of Term   | Total Cost    | MW-day     | Total Cost    | MW-day   |
| Indian River 4                        | NRG Power Marketing LLC                               | 410.0 Cost of Service Recovery Rate    | ER22-1539           | 01-Jun-22     | 31-Dec-26     | \$357,065,662 | \$520.25   | \$111,081,790 | \$556.33 |
| B.L. England 2                        | RC Cape May Holdings, LLC                             | 150.0 Cost of Service Recovery Rate    | ER17-1083           | 01-May-17     | 01-May-19     | \$35,953,561  | \$328.34   | \$51,779,892  | \$472.88 |
| Yorktown 1                            | Dominion Virginia Power                               | 159.0 Deactivation Avoidable Cost Rate | ER17-750            | 06-Jan-17     | 13-Mar-18     | \$9,739,434   | \$142.12   | \$8,427,011   | \$122.97 |
| Yorktown 2                            | Dominion Virginia Power                               | 164.0 Deactivation Avoidable Cost Rate | ER17-750            | 06-Jan-17     | 13-Mar-18     | \$10,045,705  | \$142.12   | \$9,529,149   | \$134.81 |
| B.L. England 3                        | RC Cape May Holdings, LLC                             | 148.0 Cost of Service Recovery Rate    | ER17-1083           | 01-May-17     | 24-Jan-18     | \$28,710,481  | \$723.84   | \$10,058,665  | \$253.60 |
| Ashtabula                             | FirstEnergy Service Company                           | 210.0 Deactivation Avoidable Cost Rate | ER12-2710           | 01-Sep-12     | 11-Apr-15     | \$35,236,541  | \$176.25   | \$25,177,042  | \$125.94 |
| Eastlake 1                            | FirstEnergy Service Company                           | 109.0 Deactivation Avoidable Cost Rate | ER12-2710           | 01-Sep-12     | 15-Sep-14     | \$20,842,416  | \$257.01   | \$18,484,399  | \$227.93 |
| Eastlake 2                            | FirstEnergy Service Company                           | 109.0 Deactivation Avoidable Cost Rate | ER12-2710           | 01-Sep-12     | 15-Sep-14     | \$20,182,025  | \$248.87   | \$17,683,994  | \$218.06 |
| Eastlake 3                            | FirstEnergy Service Company                           | 109.0 Deactivation Avoidable Cost Rate | ER12-2710           | 01-Sep-12     | 15-Sep-14     | \$20,192,938  | \$249.00   | \$17,391,797  | \$214.46 |
| Lakeshore                             | FirstEnergy Service Company                           | 190.0 Deactivation Avoidable Cost Rate | ER12-2710           | 01-Sep-12     | 15-Sep-14     | \$33,993,468  | \$240.47   | \$20,532,969  | \$145.25 |
| Elrama 4                              | GenOn Power Midwest, LP                               | 171.0 Cost of Service Recovery Rate    | ER12-1901           | 01-Jun-12     | 01-Oct-12     | \$15,435,472  | \$739.88   | \$7,576,435   | \$363.17 |
| Niles 1                               | GenOn Power Midwest, LP                               | 109.0 Cost of Service Recovery Rate    | ER12-1901           | 01-Jun-12     | 01-Oct-12     | \$9,510,580   | \$715.19   | \$4,829,423   | \$363.17 |
| Cromby 2 and Diesel                   | Exelon Generation Company, LLC                        | 203.7 Cost of Service Recovery Rate    | ER10-1418           | 01-Jun-11     | 01-Jan-12     | \$20,213,406  | \$463.70   | \$17,776,658  | \$407.80 |
| Eddystone 2                           | Exelon Generation Company, LLC                        | 309.0 Cost of Service Recovery Rate    | ER10-1418           | 01-Jun-11     | 01-Jun-12     | \$165,993,135 | \$1,467.74 | \$85,364,570  | \$754.81 |
| Brunot Island CT2A, CT2B, CT3 and CC4 | Orion Power MidWest, L.P.                             | 244.0 Cost of Service Recovery Rate    | ER06-993            | 16-May-06     | 05-Jul-07     | \$60,933,986  | \$601.76   | \$23,507,795  | \$232.15 |
| Hudson 1                              | PSEG Energy Resources & Trade LLC and PSEG Fossil LLC | 355.0 Cost of Service Recovery Rate    | ER05-644, ER11-2688 | 25-Feb-05     | 08-Dec-11     | \$28,934,341  | \$32.90    | \$62,364,359  | \$70.92  |
| Sewaren 1-4                           | PSEG Energy Resources & Trade LLC and PSEG Fossil LLC | 453.0 Cost of Service Recovery Rate    | ER05-644            | 25-Feb-05     | 01-Sep-08     | \$47,633,115  | \$81.89    | \$79,580,435  | \$136.82 |

### Table 1 Part V reliability service summary<sup>1 2 3 4</sup>

## **Transmission Line Schedule Risks**


Can these new transmission lines be permitted, designed, and built in less than 4 years?

#### Example 500 kV structure



Existing 230 kV corridor





## **Risks in PJM's Transmission Upgrade Package Schedule**

"PJM does not have the authority or ability to assess the local impacts of these routes" – 2022 RTEP Window 3 FAQ

"There are currently long lead times of <u>two to three years</u> for all circuit breakers above 115 kV." – PJM RTEP Window 3 Constructability & Financial Analysis Report

STATCOMs being quoted with a **<u>three-year</u>** lead time based on transformer availability

500/230kV Transformers can take three to four years to deliver

# Proposed Alternative

**Technical Feasibility** 

# **Our Approach**

- **Objective:** Identify a set of mitigations to enable the <u>fastest retirement of Brandon Shores</u> (<u>shortest duration of RMR, lowest RMR cost</u>)
- Evaluate a set of models ("cases") representing summer and winter peak demand to understand the grid impact of the Brandon Shores retirement
- Consider the impact of potential alternative mitigations or combinations, including
  - Transmission reinforcements (including, but not limited to PJM's planned upgrades)
  - Synchronous condenser (MVAr only helps with voltage violations only)
  - Battery energy storage (MVAr and MW helps with voltage and thermal violations)
  - Long-duration capacity resources
- Evaluate costs of alternative mitigations that could reduce the duration of the Brandon Shores RMR

# **Key Findings**

- Telos, in consultation with PJM, was able to create similar models to PJM and has confirmed that retiring Brandon Shores without mitigations <u>does cause reliability risks</u>
- The worst scenario in terms of <u>transmission line</u> <u>overloads</u> was summer peak conditions combined with a maintenance outage and unplanned outage (N-1-1)
- The worst scenario in terms of <u>voltage collapse</u> was an extended winter peak condition (Winter Storm Elliot) combined with generation outages

### Thermal Violations - BGE, APS and PEPCO Transmission Owner Areas

Problem Statement: Generation Deliverability, N-1-1 Violations – Brandon Shores 1 and 2, 1282 MW • Contingency: N-1-1, N-1

- BGE
- Five Rock Rock Ridge 1 115kV
- Five Rock Rock Ridge 2 115kV
- Rock Ridge Colonial Pipeline 1 115kV
- Rock Ridge Colonial Pipeline 2 115kV
- Colonial Pipeline Glenarm 1 115kV
   Colonial Pipeline Glenarm 2 115kV
- Colonial Pipeline Glenarm 2 115kV
   Chestnut Hill 7 Frederick Road 7 115kV
- Chestnut Hill 7 Frederick Road 7 115kV
   Chestnut Hill 8 Frederick Road 8 115kV
- · APS
- Doubs Transformer 3 500/230 kV
- Bethel Riverton 138kV
- PEPCO
- Dickerson Dickerson H 230kV





#### Voltage Violations - Multiple Transmission Owner Areas

#### Problem Statement: N-1-1 and Load Deliverability Voltage Violations – Brandon Shores Deactivations, 1282 MW

- · Voltage violations: Multiple Transmission owner areas
- Contingency: N-1-1, N-1

Reliability tests indicate wide spread voltage deviation violations upon Brandon Shores' deactivations

- Impacted areas :
- BGE
- PEPCO
- Dominior
- PECO
   APS
- MPS - ME
- PPL



| Scenario<br>(Brandon Shores Retired)                  | Type of Analysis                                                                                                                             | Problem Identified                                                                                                                     | Alternative Solution                                                                                                                       |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Summer Peak Load                                      | Load Deliverability<br>(An analysis to check the ability to<br>transfer power into a load pocket under<br>stressed conditions)               | • ~430 MW of capacity shortfall                                                                                                        | ~600 MW x 4hr battery at Brandon<br>Shores                                                                                                 |
| Summer Peak Load                                      | Generation Deliverability<br>(An analysis to check the ability to<br>transfer power out of a generation<br>pocket under stressed conditions) | <ul> <li>The power flowing through<br/>several 115-230 kV lines<br/>exceed rating (&lt;10%)</li> </ul>                                 | Reconductor affected lines                                                                                                                 |
| Summer Peak Load                                      | N-1-1 Analysis<br>(a planned maintenance outage plus an<br>additional unplanned outage)                                                      | <ul> <li>The power flowing through<br/>several 115kV lines exceed<br/>rating (&lt;10%)</li> <li>Moderate voltage violations</li> </ul> | <b>Reconductor</b> affected lines<br>Utilize the proposed 600 MW<br>battery at Brandon Shores for<br>simultaneous voltage support          |
| Extended Winter Peak<br>Load<br>(Winter Storm Elliot) | N-1-1 Analysis<br>(a planned maintenance outage plus an<br>additional unplanned outage)                                                      | <ul> <li>Large voltage<br/>violations/voltage collapse<br/>when battery is depleted</li> </ul>                                         | Add voltage support approved by<br>PJM <b>(Capacitors and STATCOMS)</b> &<br>utilize Wagner 3&4 RMR and the<br>600 MW battery as a STATCOM |
| Extended Winter Peak<br>Load<br>(Winter Storm Elliot) | Generation Deliverability<br>(An analysis to check the ability to transfer<br>power out of a generation pocket under<br>stressed conditions) | <ul> <li>Thermal violations when<br/>battery is depleted</li> </ul>                                                                    | Extended (100+ hour generation) Wagner 3&4 RMR                                                                                             |

## **PJM Current Solution**

• RMR for entire Brandon Shores plant until \$780 million package is complete

• Install voltage support (STATCOMs & Capacitors)

## **Proposed Alternative**

- RMR for entire Brandon Shores plant until battery, reconductor, and voltage support projects are complete
- New <u>600 MW x 4 hr battery</u> at Brandon Shores (20year life)
- Reconductor lines forecasted to overload
- Install voltage support (STATCOMs & Capacitors)

- Construct new 500kV line
- Construct 500 kV and 230 kV system upgrades
- Construct new 500kV line as load forecast requires
- Construct 500kV and 230 kV line and system upgrades as load and generation forecast requires

Which option is the lowest <u>cost</u> to customers? Which option is the <u>quickest</u> to retire Brandon Shores?

# Proposed Alternative Cost Feasibility

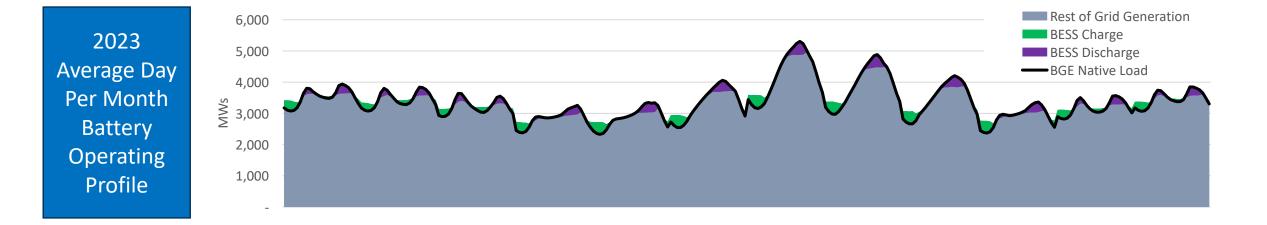
## **Proposed Portfolio**

### Transmission

| Prioritized Transmission Upgrades                            | Approved<br>by PJM? | Estimated Cost<br>(\$MM) |
|--------------------------------------------------------------|---------------------|--------------------------|
| BGE - Five Forks – Rock Ridge 1 115kV (GD + N-1-1)           | No                  | \$8.6                    |
| BGE - Five Forks – Rock Ridge 2 115kV (GD + N-1-1)           | No                  | \$8.6                    |
| BGE - Chestnut Hill 7 – Frederick Road 7 115kV (GD + N-1-1)  | No                  | \$4.0                    |
| BGE - Chestnut Hill 8 – Frederick Road 8 115kV (GD + N-1-1)  | No                  | \$4.0                    |
| APS - Bethel – Riverton 138kV (GD + N-1-1)                   | No                  | \$5.6                    |
| APS - Line drops to Doubs Transformer 3 (GD + N-1-1)         | Yes                 | \$0.8                    |
| PECO - New Conastone Capacitor (N-1-1 Voltage)               | Yes                 | \$15.0                   |
| PEPCO - Brighton Statcom + Capacitor (N-1-1 Voltage)         | Yes                 | \$63.0                   |
| PEPCO - Burchess Hill Cap (N-1-1 Voltage)                    | Yes                 | \$15.0                   |
| BGE - Build Solley Road Substation + Statcom (N-1-1 Voltage) | Yes                 | \$109.0                  |
| BGE - Build Granite Substation + Statcom (N-1-1 Voltage)     | Yes                 | \$91.0                   |

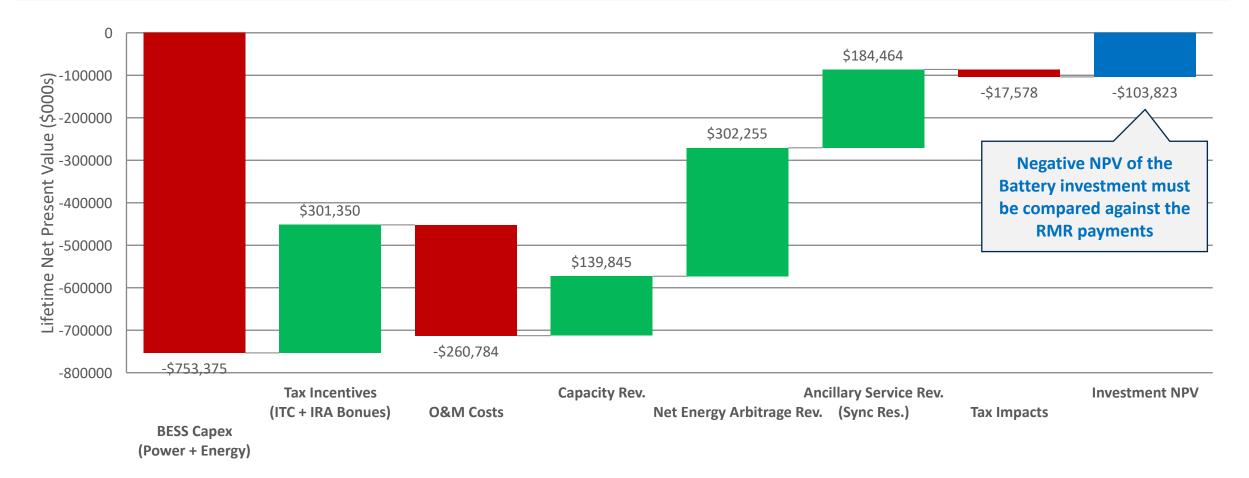
### Battery

- Battery connected at the Brandon Shores POI (230kV)
- Power Rating: 600 MW / 300 MVAr (670 MVA inverters at 0.90 PF)
- Energy Rating: Assumed 4h


### \$31MM "New" / Incremental Upgrades

\$294MM Short Lead-Time Upgrades already approved by PJM

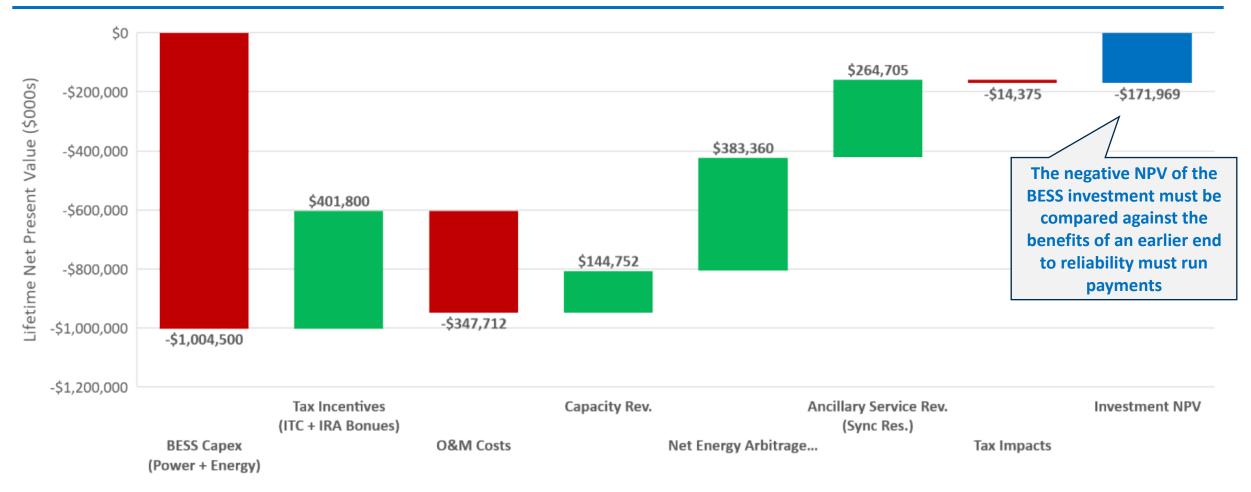
\$753 million (before ITC, revenues etc.) Revenues detailed in the next slides


## **Battery Operations: Optimized for BGE Peak Shaving**

- Battery operations were optimized daily to shave BGE's peak loads this analysis was performed using BGE's 2023 hourly loads
- This process generated charge, discharge and state of charge (SoC) parameters for the Battery which were used to estimate revenues relating to energy arbitrage and reserve provisions



## 600 MW x 4-hour Battery Investment Net Present Value (NPV) Waterfall ELCC Capacity Credit 78% = <u>468 MW</u>


#### **NPV of BESS Investment**



## 800 MW x 4-hour Battery Investment Net Present Value (NPV) Waterfall ELCC Capacity Credit 59% = <u>472 MW</u>

#### **NPV of Standalone BESS Investment**

(\$ in Thousands)



## **PJM Current Solution**

## **Proposed Alternative**

| Item                             | <b>Estimated Cost</b> | ltem                                      | Estimated Cost            |
|----------------------------------|-----------------------|-------------------------------------------|---------------------------|
| Brandon Shores RMR cost per year | \$250 million         | Targeted Reconductoring                   | \$31 million              |
|                                  |                       | Battery (Capex – Tax Credits)             | \$452 - \$603 million     |
|                                  |                       | 20-Year Net Revenues (O&M cost - Revenue) | (-) \$348 – \$431 million |
|                                  |                       | Total                                     | \$135 - \$203 million     |

If the battery alternative can be installed on or before the start date of the RMR, it could solve the problem for  $\frac{1/6 - 1/4 \text{ of the cost}}{1}$ 

If the battery alternative can **offset 6 - 12 months of RMR** it could be a cost-effective alternative

The <u>current RMR is forecasted to be 3.5 years long</u>, so the sooner the alternative solution can be constructed, the more savings



## **Summary**

- PJM Reliability Risks were confirmed
- Team studied an alternative solution including:
  - Targeted transmission line reconductoring
  - Installation of a 600 or 800 MW/4 hr. battery (Depending on ELCC Updates)
  - Construction of voltage support projects in RTEP Window 3 projects
- The proposed alternative is technically and highly cost effective

# Thank you!

## Storage Developers are interested in interconnecting in the area

Storage projects with active interconnection applications, but awaiting study

| Project/OASIS ID<br>Search | Name<br>brandon shores        | State 🗢 | Status 🔻 | Transmission Owner     Search | MFO ≑ | MW Energy ≑ | MW Capacity 🗢 |
|----------------------------|-------------------------------|---------|----------|-------------------------------|-------|-------------|---------------|
| AG2-207                    | Brandon Shores 230 kV         | MD      | Active   | BGE                           | 275   | 275         | 110           |
| AG2-319                    | Brandon Shores 230 kV         | MD      | Active   | BGE                           | 150   | 150         | 150           |
| AG2-225                    | Wagner 115 kV                 | MD      | Active   | BGE                           | 135   | 115         | 46            |
| AH2-162                    | Northeast-CP Crane 115kV      | MD      | Active   | BGE                           | 200   | 200         | 200           |
| Al1-130                    | Northeast-CP Crane 115kV      | MD      | Active   | BGE                           | 75    | 75          | 75            |
| Al1-189                    | Northeast - Windy Edge 115 kV | MD      | Active   | BGE                           | 110   | 110         | 110           |
| AJ1-037                    | Northeast - CP Crane 115 kV   | MD      | Active   | BGE                           | 500   | 300         | 300           |

# Glossary

- MW Megawatt, a unit of electric power. ~1,350 horsepower
- MWh Megawatt-hour, a unit of electric energy. 1 MW delivered for one hour
- Capacitor A device typically installed inside a substation that provides voltage support
- **STATCOM** A static synchronous compensator (STATCOM) reactive compensation device used on transmission networks. It uses power electronics to support voltage
- Synchronous Condenser A synchronous condenser (also called a synchronous capacitor or synchronous compensator) is a large rotating generator whose shaft is not attached to any driving equipment. This device supports voltage on the transmission system
- **BESS** Battery Energy Storage System