

Power Couples March 2025

PJM Co-Located Load Show Cause Order Workshop

Power Couples add clean energy alongside new load* Wind Local grid Solar Surplus interconnection enables rapid generation 12222 deployment 44 Interconnection AAAAAAAAA Existing plant can only serve load after grid Gas plant obligations are met New load 0 GWh RMI – Energy. Transformed.

*without impacting other customore

Example Power Couple serving 250 MW of load

- Indicative PPA price of \$63/MWh for 30 years
- 86% of load served by hourly matched clean
- Incumbent fossil emissions 10% below historical
- Load + RE use 11% of suitable land

PJM region has the second-highest potential for Power Couples, which could serve over 10 GW of large loads in

RMI – Energy. Transformed.

Thank you!

Alex Engel Manager aengel@rmi.org Uday Varadarajan Senior Principal uvaradarajan@rmi.org

Appendix Regulatory outlook

Region focus: PJM

Regulatory outlook	
Expedited Interconnection	New surplus interconnection rule supports fast generator interconnection, load interconnection process less clear
Ownership allowance & franchise rules	Dependent on owner of existing generator and state franchise and retail rules
Tx costs & export revenue	Overall economics depend on load treatment (ie is it network load) and whether load can have subordinate use of the existing generator

PJM supply curve

Appendix Hourly dispatch

RMI – Energy. Transformed.

Appendix Analytical approach

The analysis has three parts that together configure the system and measure its impact

Defining project design requirements as constraints

 $\operatorname{renew}_t + \operatorname{discharge}_t - \operatorname{charge}_t + \operatorname{gas} \operatorname{for} \operatorname{load}_t - \operatorname{clean} \operatorname{export}_t - \operatorname{curtailment}_t = \operatorname{load}_t \quad \forall t \in \mathcal{T}$

- The gas capacity must serve the grid first
 - Maintain baseline exports

gas for $export_t + clean export_t \ge baseline export_t \quad \forall t \in \mathcal{T}$

• Load must be served by new clean during critical hours

 $\operatorname{renew}_t + \operatorname{discharge}_t - \operatorname{charge}_t \geq \operatorname{load}_t \quad \forall t \in \mathcal{C}ritical$

- Gas can only serve a specified fraction of load $\sum_{\mathcal{T}} \text{gas for } \text{load}_t \leq \rho \sum_{\mathcal{T}} \text{load}_t$
- Gas generation must not exceed a fraction of its historical value

$$\sum_{\mathcal{T}} (\text{gas for load}_t + \text{gas for export}_t) \le \varepsilon \sum_{\mathcal{T}} \text{historical export}_t$$