

Name and address of the entity including a point of contact

PPL Electric Utilities Corporation and PPL TransLink, Inc.

PPL Electric Utilities Corporation (PPL EU)

827 Hausman Road

Allentown, PA 18104

PPL TransLink, Inc. (PPL TransLink) 827 Hausman Road Allentown, PA 18104

Kevin Dion

Director of Transmission Development

Email: KADion@pplweb.com PPL Services Corporation

Laura Yovanovich

Sr. Regulatory Policy Specialist - Transmission

Email: LYovanovich@pplweb.com

PPL Services Corporation

Janell Fabiano

Manager of RTO & Federal Regulatory Policy

Email: JLFabiano@pplweb.com

PPL Services Corporation

KADion@pplweb.com, LYovanovich@pplweb.com, JLFabiano@pplweb.com

i. Technical and engineering qualifications of the entity or its affiliate, partner or parent company

PPL Electric Utilities Corporation (PPL EU) relies on its own experience and qualifications to provide technical and engineering expertise. PPL TransLink, Inc. (PPL TransLink) relies on the experience and qualifications of its affiliate, PPL EU, to provide technical and engineering expertise. Refer to Appendix I for list of recent transmission projects executed by PPL EU and Appendix II for more info on PPL EU's engineering and other capabilities.

Due to changes in organizational structure, some employees who were formerly direct employees of PPL EU were transitioned to an affiliate organization, PPL Services Corporation, while continuing in their roles. All projects referenced herein were completed by or on behalf of PPL EU.

ii. Demonstrated experience of the entity or its affiliate, partner or parent company to develop, construct, maintain and operate transmission facilities, including a list or other evidence of transmission facilities previously developed regarding construction, maintenance or operation of transmission facilities both inside and outside the PJM region Refer to attached file.

PPLTO 1

iii. Previous record of the entity or its affiliate, partner or parent company to adhere to construction, maintenance and operating standards

Refer to attached file.

iv. Capability of the entity or its affiliate, partner or parent company to adhere to standardized construction, maintenance and operating practices

Refer to previous question response above, Appendix I and Appendix II.

v. Financial statements of the entity or its affiliate, partner or parent company for the most recent fiscal quarter, as well as the most recent three fiscal years, or the period of the entity's existence, if shorter, or such other evidence demonstrating an entity's or its affiliates, partner's or parent company's current and expected financial capability acceptable to PJM

Refer to attached file.

vi. Commitment by the entity to execute the Consolidated Transmission Owners Agreement, if the entity becomes a Designated Entity

PPL Electric Utilities Corporation (PPL EU) is already a signatory to the Consolidated Transmission Owners Agreement.

PPL TransLink, Inc. (PPL TransLink) commits to execute the Consolidated Transmission Owners Agreement if PPL TransLink becomes a Designated Entity.

vii. Evidence demonstrating the ability of the entity or its affiliate, partner or parent company to address and timely remedy failure of facilities

Refer to "Storm/Outage Response and Restoration Plan" section of Appendix II.

viii. Description of the experience of the entity or its affiliate, partner or parent company in acquiring rights of way Refer to "Routing and Surveying" section of Appendix II.

ix. Any other supporting information the PJM requires to determine the entity's pre-qualification status including but not limited to the execution of a Non-Disclosure Agreement to protect sensitive discussions as may occur between proposing entities and PJM

Refer to attached file.

PPLTO 2

Uploaded Document

Demonstrated experience of the entity or its affiliate, partner or parent company to develop, construct, maintain and operate transmission facilities, including a list or other evidence of transmission facilities previously developed regarding construction, maintenance or operation of transmission facilities both inside and outside the PJM region

Demonstrated experience of the entity or its affiliate, partner, or parent company to develop, construct, maintain, and operate transmission facilities, including a list or other evidence of transmission facilities previously developed regarding construction, maintenance, or operation of transmission facilities both inside and outside of the PJM region

PPL EU is a Pennsylvania corporation and a wholly owned subsidiary of PPL Corporation (PPL). PPL EU is headquartered in Allentown, Pennsylvania, and is an owner of transmission facilities in PJM Interconnection, L.L.C. (PJM). PPL EU distributes electricity to all retail customers within its service territory in central eastern Pennsylvania. PPL EU is a load-serving entity in PJM and a signatory to the PJM Consolidated Transmission Owners Agreement and the Reliability Assurance Agreement.

PPL TransLink is also a wholly owned subsidiary of PPL and an affiliate of PPL EU. PPL TransLink is also headquartered in Allentown, Pennsylvania.

PPL EU relies on its own experience in developing, constructing, maintaining, and operating transmission facilities. PPL TransLink relies on the demonstrated experience of its affiliate, PPL EU, to develop, construct, maintain, and operate transmission facilities.

PPL EU is currently engaged in a significant number of transmission projects across its service territory with a 5-year annual capital transmission investment of approximately \$5B. These projects have encompassed new and upgraded substations, capacitor bank installations, replacement of degraded line structures, control cubicle and transformer replacements, and new line installations ranging from 69kV to 500kV. Completing these projects requires extensive technical expertise, effective project management capabilities at both the project and portfolio levels, the ability to work with numerous stakeholders and sometimes other transmission owning partners, and effective cost controls over the capital being deployed.

This section contains descriptions of four transmission projects that were recently completed. These examples illustrate the types of projects PPL EU encounters and the range of capabilities it can deploy to successfully complete them.

Project Case Study #1 - Susquehanna - Roseland

In 2007, PJM directed the construction of a new 145-mile, 500kV transmission line between the Susquehanna substation in Pennsylvania and the Roseland substation in New Jersey that it identified as essential to the long-term reliability of the Mid-Atlantic electrical grid. The line was energized in May 2015. PJM determined that the line was needed to prevent potential overloads that could occur on several existing transmission lines in the interconnected PJM system. PJM directed PPL EU to construct the portion of the Susquehanna – Roseland (SR) line in Pennsylvania and the Public Service Electric & Gas Company (PSE&G) to construct the portion of the line in New Jersey. The route crosses the Delaware Water Gap National Recreation Area using a utility corridor already occupied by a high-voltage power line. The existing line and the

rights to use the corridor are owned by PPL EU and PSE&G. Figure 1 illustrates the portion of the line that PPL EU is responsible for constructing.

Figure 1: PPL EU Portion of the Susquehanna - Roseland Transmission Line

PPL EU and PSE&G cooperated closely on the design, siting and other aspects of the project, and formed a joint team to accomplish construction of a four-mile segment that passes through three National Park Service units that lie in both Pennsylvania and New Jersey. The line was energized in May 2015, and the large scale of the SR project provided an opportunity to renew and enhance PPL EU's development expertise through invaluable learning experiences that uniquely position PPL EU for success with future development projects.

One of the key success factors for the PPL EU SR project was the structure of the internal PPL EU team, which allowed for flexibility and coordination. PPL EU chose to place internal SR project management subject matter experts (SMEs) in the various business units rather than solely in a central project team, which improved communication and raised the visibility of the project. In addition, the SMEs were easily able to leverage internal and external stakeholder relationships as needed. In addition to the internal team resources, PPL EU relied on contractors for most of the project management, engineering and construction work, which is a best practice for large-scale development projects.

Throughout the course of the planning, engineering and design phases, PPL EU was able to successfully overcome major hurdles, including significant challenges associated with the Environmental Impact Study required under the National Environmental Policy Act performed by the National Park Service. PPL EU also leveraged strong political relationships to work with the

Federal Aviation Administration (FAA) toward a solution that eliminated an FAA concern with tower heights by decommissioning a Doppler radar system.

Throughout the SR project, PPL EU has also demonstrated its experience with extensive public outreach processes to help address public concerns. For this project, PPL EU employed an outreach process that included frequent targeted communications by letter, e-mail, door-to-door visits, public open houses, special websites and dedicated toll-free phone lines. This process also included a two-way component to log and track comments as well as company responses to these comments. PPL EU intends to use these industry-leading processes and designs in any future transmission development opportunities, which creates a distinct advantage over other organizations.

Project Case Study #2 - Glenbrook 230/69kV Substation New Build

In 2019, studies conducted for PPL EU's Electric transmission system revealed several transmission line thermal overload and voltage violations to the 230kV system serving the Berwick area in Luzerne County, PA.

To resolve the NERC Standard Reliability Criteria and PJM reliability violations, PPL EU proposed and successfully constructed the Glenbrook substation in the Brecknock Township, Luzerne County, Pennsylvania, west of the Susquehanna Steam Electric Station and the Moxie Freedom Generation Plant. This new substation also provided a new 69kV source to the area. A failure to complete this project would have resulted in a violation of both NERC Standard Reliability Criteria, PJM Reliability Criteria and PPL EU's Reliability Criteria and could have led to catastrophic long duration power outages in the Berwick, PA area.

Figure 2: Glenbrook 230/69kV Substation

During the pre-construction phase, PPL EU performed a siting study focused on placing the substation near the intersection of the existing 69kV and 230kV transmission infrastructure and worked closely with local landowners to determine the best overall location. The construction phase involved the installation of a new 230/69 kV substation which included extensive earthwork and site preparation, installation of new transformers and circuit breakers, a new control house, and security fence. New 230kV and 69kV tap lines were constructed to tie the new substation into the transmission network. The Glenbrook 230/69kV substation project was completed and put into service in 2022.

Project Case Study #3 – Frackville 230/69kV Substation Expansion

In 2020, PPL EU identified needed security fence, relay upgrades, reliability risk due to non-standard bus design, and aging equipment at the 230-69kV Frackville substation. To resolve these concerns PPL EU initiated, developed, sited, engineered, constructed and placed into service the Frackville 230/69kV substation expansion. The Frackville substation provides a 230kV backbone source that is central to the load it serves in central Pennsylvania. Consequences of not completing

this project were increased potential for catastrophically long outages and potential interference due to vandalism or purposeful destruction.

In Development, PPL EU evaluated several options to alleviate the potential issue which included multiple new substation installations and substantially more line mile additions. The PPL EU team found these alternative options to be more costly and complex, and the Frackville 230/69kV substation was found to be the least cost, best-value long-range alternative.

Figure 3: Frackville 230/69kV Substation Before Expansion

During the pre-construction phase, PPL EU performed a siting study and ultimately was able to utilize its own fee owned property. The construction phase involved the substantial earthwork to support the substation expansion, a new security fence, new relays, a new control cubicle, new bus bar, new circuit breakers, and AOS. The Frackville substation project was completed and put into service in 2024.

Figure 4: Frackville 230/69kV Substation After Expansion

Project Case Study #4 - Breinigsville-Alburtis 500kV Double Circuit Rebuild

In 2019, PPL EU identified large voltage drops on the 138 and 69kV transmission lines supplied at the Wescosville and Breinigsville substations under certain N-1-1 events. The Breinigsville-Alburtis 500kV double circuit rebuild project was initiated as part of a greater suite of solutions to alleviate these concerns. Consequences of not completing this project are the potential for thousands of customers to be without power.

In Development, PPL EU evaluated several options to solve the criteria violations which included multiple new or rebuilt transmission lines. The PPL EU team ultimately developed the Northern Lehigh Reliability Project (NLRP), which consisted of a suite of transmission line rebuilds, new fiber connections, and substation upgrades to reinforce the grid in the western Lehigh Valley.

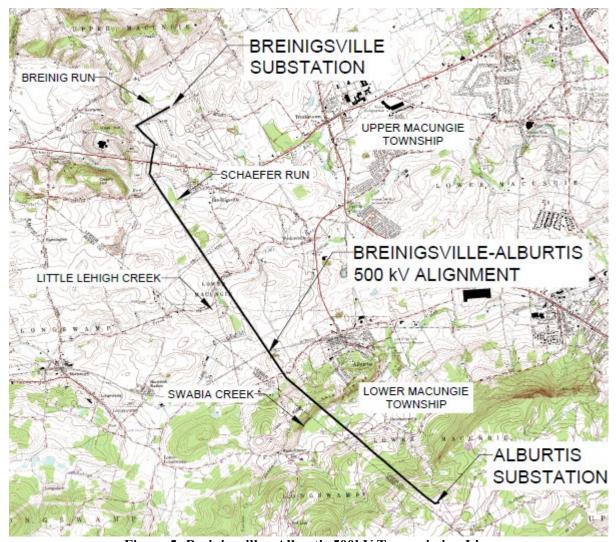


Figure 5: Breinigsville - Alburtis 500kV Transmission Line

During the pre-construction phase, PPL EU performed a siting study and was able to use its existing ROW, complemented by the acquisition of several temporary construction entrances. The construction phase involved the rebuild of six miles of a double circuit 500kV transmission line. The Breinigsville-Alburtis double circuit 500kV rebuild project was completed and put into service in 2021.

Uploaded Document
Previous record of the entity or its affiliate, partner or parent company to adhere to construction, maintenance and operating standards

Previous record of the entity or its affiliate, partner, or parent company to adhere to standardized construction, maintenance and operating practices

Refer to Appendix I for a list of the recent transmission projects executed by PPL EU.

There are over 5,000 miles of transmission lines on over 50,000 transmission structures, spanning the 10,000 square miles of the PPL EU service territory. These transmission lines carry voltages ranging from 69 kilovolts to 500 kilovolts. PPL EU operates more than 1,300 miles of 230- and 500-kilovolt transmission line rights of way. These lines are the backbone of the nation's electric grid and are vital to security, safety and commerce.

In order to operate and maintain the transmission grid reliably, PPL EU manages a Transmission Control Center 365 days, 24 hours a day in the Lehigh Valley. The control center is secure and has redundant data and communication at both the Operations Center and the Disaster Recovery Site that are independent of each other and meet all ReliabilityFirst and NERC Reliability Standard criteria.

Our electric delivery system includes roughly 900,000 utility poles that carry conductors, cross-arms, insulators, transformers, circuit breakers, lightning arrestors, and other equipment. Additionally, PPL EU delivers power along 6,500 miles of underground lines, mainly in cities. These lines run through hundreds of manholes and underground vaults, which are inspected, tested and repaired on condition and/or time-based cycle as part of a comprehensive maintenance plan.

Inspections of distribution lines and poles are also done periodically based on a schedule and circuit performance to identify the weak links in the system so that damaged or deteriorated equipment can be repaired or replaced. Each year PPL EU performs thermography inspections on about 6,000 miles of distribution circuits, where infrared cameras are used to identify problems before an outage occurs.

Routine helicopter patrols of all transmission lines are conducted every year, as well as comprehensive aerial inspections on a four-year cycle. From helicopter patrols, PPL EU uses LiDAR to measure the distances between transmission power lines and any obstructions, like trees.

PPL EU performs ground patrols of about 1,500 miles of transmission lines annually. PPL EU has installed and is continuing to install animal guards at substations to prevent birds, squirrels, and other animals from entering the electrical facilities resulting in outages.

Refer to Appendix II for more information on PPL EU's Engineering, Project Management, Operation, Maintenance and other capabilities.

Figure 6: PPL EU Service Territory

Uploaded Document

Financial statements of the entity or its affiliate, partner or parent company for the most recent fiscal quarter, as well as the most recent three fiscal years, or the period of the entity's existence, if shorter, or such other evidence demonstrating an entity's or its affiliates, partner's or parent company's current and expected financial capability acceptable to PJM

Financial statements of the entity or its affiliate, partner, or parent company. Please provide the most recent fiscal quarter, as well as the most recent three fiscal years, or the period of existence of the entity, if shorter, or such other evidence demonstrating an entity's current and expected financial capability acceptable to the Office of the Interconnection

PPL TransLink will rely on its parent, PPL, as well as certain subsidiaries of PPL, to assist with financing. PPL EU also has publicly available financial statements within the links included below. PPL EU and PPL TransLink are different from a financing perspective. While PPL EU has access to its own source of liquidity and external financing, PPL TransLink solely depends on its affiliate PPL Capital Funding for liquidity and financing.

Annual audited financial statements for the most recent three calendar years for PPL are included in the links below in Form 10-K's filed by PPL with the Securities and Exchange Commission (SEC):

- 2022 Form 10-K: XBRL Viewer
- 2023 Form 10-K:
 - 2023 I OIIII IO I
 - XBRL Viewer
- 2024 Form 10-K: XBRL Viewer

PPL's most recent quarterly financial statements are included in the link below in the Form 10-Q filed with the SEC for the quarterly period ended June 30, 2025:

• 2025 Second Quarter 10-Q: ppl-20250630

Uploaded Document

Any other supporting information the PJM requires to determine the entity's pre-qualification status including but not limited to the execution of a Non-Disclosure Agreement to protect sensitive discussions as may occur between proposing entities and PJM

PJM Developer Pre-Qualification Application of PPL Electric Utilities Corporation PPL TransLink, Inc. September 2025

1) Name and address of the entity including a point of contact

PPL Electric Utilities Corporation (PPL EU) 827 Hausman Road Allentown, PA 18104

PPL TransLink, Inc. (PPL TransLink) 827 Hausman Road Allentown, PA 18104

Kevin Dion
Director of Transmission Development
Email: KADion@pplweb.com
PPL Services Corporation

Laura Yovanovich
Sr. Regulatory Policy Specialist – Transmission
Email: LYovanovich@pplweb.com
PPL Services Corporation

Janell Fabiano
Manager of RTO & Federal Regulatory Policy
Email: JLFabiano@pplweb.com
PPL Services Corporation

2) Technical and engineering qualifications of the entity or its affiliate, partner, or parent company

PPL EU relies on its own experience and qualifications to provide technical and engineering expertise. PPL TransLink relies on the experience and qualifications of its affiliate, PPL EU, to provide technical and engineering expertise. Refer to Appendix I for a list of recent transmission projects executed by PPL EU and Appendix II for more information on PPL EU's engineering and other capabilities.

3) Demonstrated experience of the entity or its affiliate, partner, or parent company to develop, construct, maintain, and operate transmission facilities, including a list or other evidence of transmission facilities previously developed regarding construction, maintenance, or operation of transmission facilities both inside and outside of the PJM region

¹ Due to changes in organizational structure, some employees who were formerly direct employees of PPL EU were transitioned to an affiliate organization, PPL Services Corporation, while continuing in their roles. All projects referenced herein were completed by or on behalf of PPL EU.

PPL EU is a Pennsylvania corporation and a wholly owned subsidiary of PPL Corporation (PPL). PPL EU is headquartered in Allentown, Pennsylvania, and is an owner of transmission facilities in PJM Interconnection, L.L.C. (PJM). PPL EU distributes electricity to all retail customers within its service territory in central eastern Pennsylvania. PPL EU is a load-serving entity in PJM and a signatory to the PJM Consolidated Transmission Owners Agreement and the Reliability Assurance Agreement.

PPL TransLink is also a wholly owned subsidiary of PPL and an affiliate of PPL EU. PPL TransLink is also headquartered in Allentown, Pennsylvania.

PPL EU relies on its own experience in developing, constructing, maintaining, and operating transmission facilities. PPL TransLink relies on the demonstrated experience of its affiliate, PPL EU, to develop, construct, maintain, and operate transmission facilities.

PPL EU is currently engaged in a significant number of transmission projects across its service territory with a 5-year annual capital transmission investment of approximately \$5B. These projects have encompassed new and upgraded substations, capacitor bank installations, replacement of degraded line structures, control cubicle and transformer replacements, and new line installations ranging from 69kV to 500kV. Completing these projects requires extensive technical expertise, effective project management capabilities at both the project and portfolio levels, the ability to work with numerous stakeholders and sometimes other transmission owning partners, and effective cost controls over the capital being deployed.

This section contains descriptions of four transmission projects that were recently completed. These examples illustrate the types of projects PPL EU encounters and the range of capabilities it can deploy to successfully complete them.

Project Case Study #1 - Susquehanna - Roseland

In 2007, PJM directed the construction of a new 145-mile, 500kV transmission line between the Susquehanna substation in Pennsylvania and the Roseland substation in New Jersey that it identified as essential to the long-term reliability of the Mid-Atlantic electrical grid. The line was energized in May 2015. PJM determined that the line was needed to prevent potential overloads that could occur on several existing transmission lines in the interconnected PJM system. PJM directed PPL EU to construct the portion of the Susquehanna – Roseland (SR) line in Pennsylvania and the Public Service Electric & Gas Company (PSE&G) to construct the portion of the line in New Jersey. The route crosses the Delaware Water Gap National Recreation Area using a utility corridor already occupied by a high-voltage power line. The existing line and the rights to use the corridor are owned by PPL EU and PSE&G. Figure 1 illustrates the portion of the line that PPL EU is responsible for constructing.

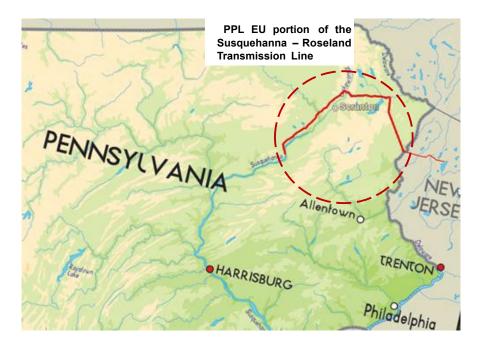


Figure 1: PPL EU Portion of the Susquehanna - Roseland Transmission Line

PPL EU and PSE&G cooperated closely on the design, siting and other aspects of the project, and formed a joint team to accomplish construction of a four-mile segment that passes through three National Park Service units that lie in both Pennsylvania and New Jersey. The line was energized in May 2015, and the large scale of the SR project provided an opportunity to renew and enhance PPL EU's development expertise through invaluable learning experiences that uniquely position PPL EU for success with future development projects.

One of the key success factors for the PPL EU SR project was the structure of the internal PPL EU team, which allowed for flexibility and coordination. PPL EU chose to place internal SR project management subject matter experts (SMEs) in the various business units rather than solely in a central project team, which improved communication and raised the visibility of the project. In addition, the SMEs were easily able to leverage internal and external stakeholder relationships as needed. In addition to the internal team resources, PPL EU relied on contractors for most of the project management, engineering and construction work, which is a best practice for large-scale development projects.

Throughout the course of the planning, engineering and design phases, PPL EU was able to successfully overcome major hurdles, including significant challenges associated with the Environmental Impact Study required under the National Environmental Policy Act performed by the National Park Service. PPL EU also leveraged strong political relationships to work with the Federal Aviation Administration (FAA) toward a solution that eliminated an FAA concern with tower heights by decommissioning a Doppler radar system.

Throughout the SR project, PPL EU has also demonstrated its experience with extensive public outreach processes to help address public concerns. For this project, PPL EU employed an outreach process that included frequent targeted communications by letter, e-mail, door-to-door visits, public open houses, special websites and dedicated toll-free phone lines. This process also included a two-way component to log and track comments as well as company responses to these comments. PPL EU intends to use these industry-leading processes and designs in any future transmission development opportunities, which creates a distinct advantage over other organizations.

Project Case Study #2 - Glenbrook 230/69kV Substation New Build

In 2019, studies conducted for PPL EU's Electric transmission system revealed several transmission line thermal overload and voltage violations to the 230kV system serving the Berwick area in Luzerne County, PA.

To resolve the NERC Standard Reliability Criteria and PJM reliability violations, PPL EU proposed and successfully constructed the Glenbrook substation in the Brecknock Township, Luzerne County, Pennsylvania, west of the Susquehanna Steam Electric Station and the Moxie Freedom Generation Plant. This new substation also provided a new 69kV source to the area. A failure to complete this project would have resulted in a violation of both NERC Standard Reliability Criteria, PJM Reliability Criteria and PPL EU's Reliability Criteria and could have led to catastrophic long duration power outages in the Berwick, PA area.

Figure 2: Glenbrook 230/69kV Substation

During the pre-construction phase, PPL EU performed a siting study focused on placing the substation near the intersection of the existing 69kV and 230kV transmission infrastructure and worked closely with local landowners to determine the best overall location. The construction phase involved the installation of a new 230/69 kV substation which included extensive earthwork and site preparation, installation of new transformers and circuit breakers, a new control house, and security fence. New 230kV and 69kV tap lines were constructed to tie the new substation into the transmission network. The Glenbrook 230/69kV substation project was completed and put into service in 2022.

Project Case Study #3 – Frackville 230/69kV Substation Expansion

In 2020, PPL EU identified needed security fence, relay upgrades, reliability risk due to non-standard bus design, and aging equipment at the 230-69kV Frackville substation. To resolve these concerns PPL EU initiated, developed, sited, engineered, constructed and placed into service the Frackville 230/69kV substation expansion. The Frackville substation provides a 230kV backbone source that is central to the load it serves in central Pennsylvania. Consequences of not completing

this project were increased potential for catastrophically long outages and potential interference due to vandalism or purposeful destruction.

In Development, PPL EU evaluated several options to alleviate the potential issue which included multiple new substation installations and substantially more line mile additions. The PPL EU team found these alternative options to be more costly and complex, and the Frackville 230/69kV substation was found to be the least cost, best-value long-range alternative.

Figure 3: Frackville 230/69kV Substation Before Expansion

During the pre-construction phase, PPL EU performed a siting study and ultimately was able to utilize its own fee owned property. The construction phase involved the substantial earthwork to support the substation expansion, a new security fence, new relays, a new control cubicle, new bus bar, new circuit breakers, and AOS. The Frackville substation project was completed and put into service in 2024.

Figure 4: Frackville 230/69kV Substation After Expansion

Project Case Study #4 - Breinigsville-Alburtis 500kV Double Circuit Rebuild

In 2019, PPL EU identified large voltage drops on the 138 and 69kV transmission lines supplied at the Wescosville and Breinigsville substations under certain N-1-1 events. The Breinigsville-Alburtis 500kV double circuit rebuild project was initiated as part of a greater suite of solutions to alleviate these concerns. Consequences of not completing this project are the potential for thousands of customers to be without power.

In Development, PPL EU evaluated several options to solve the criteria violations which included multiple new or rebuilt transmission lines. The PPL EU team ultimately developed the Northern Lehigh Reliability Project (NLRP), which consisted of a suite of transmission line rebuilds, new fiber connections, and substation upgrades to reinforce the grid in the western Lehigh Valley.

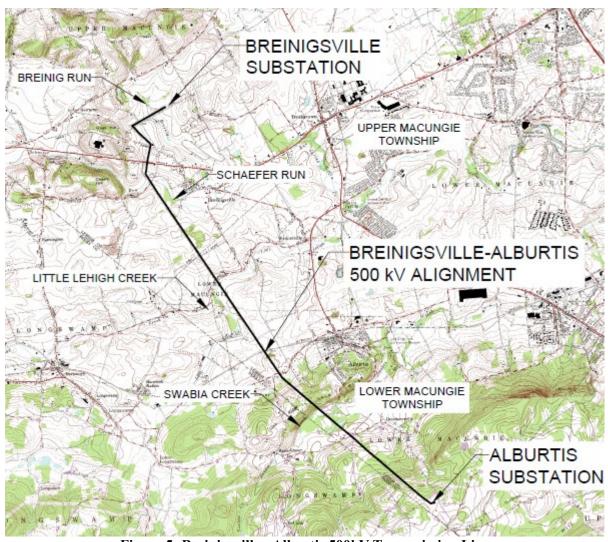


Figure 5: Breinigsville - Alburtis 500kV Transmission Line

During the pre-construction phase, PPL EU performed a siting study and was able to use its existing ROW, complemented by the acquisition of several temporary construction entrances. The construction phase involved the rebuild of six miles of a double circuit 500kV transmission line. The Breinigsville-Alburtis double circuit 500kV rebuild project was completed and put into service in 2021.

4) Previous record of the entity or its affiliate, partner, or parent company to adhere to standardized construction, maintenance and operating practices

Refer to Appendix I for a list of the recent transmission projects executed by PPL EU.

There are over 5,000 miles of transmission lines on over 50,000 transmission structures, spanning the 10,000 square miles of the PPL EU service territory. These transmission lines carry voltages

ranging from 69 kilovolts to 500 kilovolts. PPL EU operates more than 1,300 miles of 230- and 500-kilovolt transmission line rights of way. These lines are the backbone of the nation's electric grid and are vital to security, safety and commerce.

In order to operate and maintain the transmission grid reliably, PPL EU manages a Transmission Control Center 365 days, 24 hours a day in the Lehigh Valley. The control center is secure and has redundant data and communication at both the Operations Center and the Disaster Recovery Site that are independent of each other and meet all ReliabilityFirst and NERC Reliability Standard criteria.

Our electric delivery system includes roughly 900,000 utility poles that carry conductors, cross-arms, insulators, transformers, circuit breakers, lightning arrestors, and other equipment. Additionally, PPL EU delivers power along 6,500 miles of underground lines, mainly in cities. These lines run through hundreds of manholes and underground vaults, which are inspected, tested and repaired on condition and/or time-based cycle as part of a comprehensive maintenance plan.

Inspections of distribution lines and poles are also done periodically based on a schedule and circuit performance to identify the weak links in the system so that damaged or deteriorated equipment can be repaired or replaced. Each year PPL EU performs thermography inspections on about 6,000 miles of distribution circuits, where infrared cameras are used to identify problems before an outage occurs.

Routine helicopter patrols of all transmission lines are conducted every year, as well as comprehensive aerial inspections on a four-year cycle. From helicopter patrols, PPL EU uses LiDAR to measure the distances between transmission power lines and any obstructions, like trees.

PPL EU performs ground patrols of about 1,500 miles of transmission lines annually. PPL EU has installed and is continuing to install animal guards at substations to prevent birds, squirrels, and other animals from entering the electrical facilities resulting in outages.

Refer to Appendix II for more information on PPL EU's Engineering, Project Management, Operation, Maintenance and other capabilities.

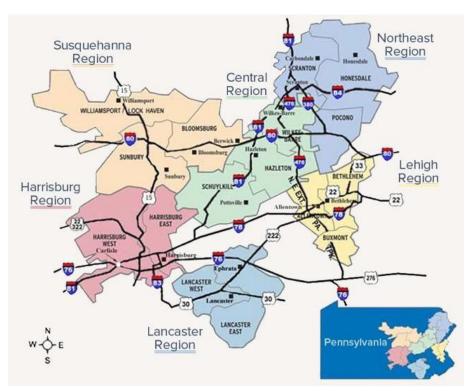


Figure 6: PPL EU Service Territory

5) Capability of the entity or its affiliate, partner, or parent company to adhere to standardized construction, maintenance and operating practices

Refer to question 4 response, Appendix I and Appendix II.

6) Financial statements of the entity or its affiliate, partner, or parent company. Please provide the most recent fiscal quarter, as well as the most recent three fiscal years, or the period of existence of the entity, if shorter, or such other evidence demonstrating an entity's current and expected financial capability acceptable to the Office of the Interconnection

PPL TransLink will rely on its parent, PPL, as well as certain subsidiaries of PPL, to assist with financing. PPL EU and PPL TransLink are different from a financing perspective. While PPL EU has access to its own source of liquidity and external financing, PPL TransLink solely depends on its affiliate PPL Capital Funding for liquidity and financing. Publicly available financial statements for PPL EU are included within the links below.

Annual audited financial statements for the most recent three calendar years for PPL are included in the links below in Form 10-K's filed by PPL with the Securities and Exchange Commission (SEC):

• 2022 Form 10-K: XBRL Viewer

• 2023 Form 10-K:

XBRL Viewer

• 2024 Form 10-K:

XBRL Viewer

PPL's most recent quarterly financial statements are included in the link below in the Form 10-Q filed with the SEC for the quarterly period ended June 30, 2025:

• 2025 Second Quarter 10-Q: ppl-20250630

7) Commitment by the entity to execute the Consolidated Transmission Owners Agreement, if the entity becomes a Designated Entity

PPL EU is already a signatory to the Consolidated Transmission Owners Agreement.

PPL TransLink commits to executing the Consolidated Transmission Owners Agreement if PPL TransLink becomes a Designated Entity.

8) Evidence demonstrating the ability of the entity to address and timely remedy failure of facilities

Refer to the "Storm / Outage Response and Restoration Plan" section of Appendix II.

9) Description of the experience of the entity in acquiring rights of way

Refer to the "Routing and Surveying" section of Appendix II.

Appendix I: List of Recent Transmission Capital Projects

The following list contains several of the large transmission capital budget projects placed in-service or under construction:

Breinigsville-Alburtis Double Circuit 500 kV (approximately 6 miles) 1. Rebuild the 7 bay Alburtis 230/69kV Substation. Susquehanna-Roseland Double Circuit 500 kV (approximately 101 miles) Chanceford Double Circuit 500kV transmission line (approximately 12 miles) Chanceford 500kV Switchyard 6. South Akron-Millwood 230 kV transmission rebuild (approximately 20 miles) Seigfried-East Palmerton-Harwood 230 kV transmission rebuild (approximately 38 miles) 7. Clinton-Saegers-Elimsport 230 kV transmission rebuild (approximately 8 miles) 9. Stanton-Summit 230 kV transmission rebuild (approximately 8 miles) 10. Summit-Lackawanna 230 kV transmission rebuild (approximately 5 miles) 11. Manor-Millwood 230 kV transmission rebuild (approximately 6 miles) 12. Sunbury-Milton 230 kV transmission rebuild (approximately 5 miles) 13. Susquehanna - Jenkins 230kV transmission rebuild (approximately 26 miles). 14. Acahela - Pocono 230kV transmission rebuild (approximately 20 miles). 15. Build a new 7 bay Summit 230/69kV substation. 16. Build a new 9 bay Lauschtown 500/230/69kV substation. 17. Dalmatia - Richfield 69kV transmission rebuild (approximately 12 miles). 18. Lycoming - Lock Haven 69kV transmission rebuild (approximately 12 miles). 19. Build a new 4 bay Lock Haven 69kV Switchyard. Build a new 8 bay Siegfried 230/69kV substation adjacent to the existing substation. 21. Build a new 5 bay Williams Grove 230/69KV Substation. 22. Rebuild 5 bay Sunbury 230/69kV substation. Lake Naomi 69kV Tap transmission line second circuit (approximately 24 miles). 24. Macungie – Emmaus 69 kV greenfield transmission (approximately 3 miles) 25. Cumberland - W. Shore 69kV transmission rebuild (approximately 2 miles). 26. Install a new transformer at the Sunbury 500/230kV substation. 27. Install a protection system at the Cumberland 230/69kV substation complete with both passive and active security measures.

Appendix II: Additional Information

Engineering

PPL EU's Engineering organization is responsible for the project design and engineering of both Transmission Lines and Substation Design and Protection. The Engineering group provides conceptual and detailed design services for projects and technical input into project cost estimates. Specifically, engineering develops design packages, specifications for engineered equipment and minor material and specification of design and construction standards. The Engineering departments also provide technical support to the Operations, Construction, Maintenance and Testing organizations. Overviews of PPL EU's transmission and substation & protection engineering capabilities are shown in Figures 1 and 2, respectively.

Figure 1: Transmission Engineering Overview

Discipline Illustrative Capabilities

S	urveying	Aerial (LiDAR)Survey
	Civil	Structure Placement, Foundation, Guy & Anchor Design
Env	rironmental	Environmental Effects, Access Roads Design
Geo	-Technical	Soil Investigation, Earth Resistivity
s	tructural	Structural Loading, Component and Hardware Analysis
Me	echanical	Conductor Sag/Tension Design
E	lectrical	Grounding, clearances analysis, Insulation Design, Lightning Performance
	elecomm- nication	Fiber Optics Design (OPGW & ADSS)

Figure 2: Substation & Protection Engineering Overview

Discipline Illustrative Capabilities Physical arrangement and key plans Surveying Foundation, Earth Resistivity, Ground Grid Design, Water and Water Retention Designs Civil / Lattice, Box Beam and Tubular Structure Analyses and Design, Control and Equipment Structura Buildings, Sound-walls and Firewalls Environmental Effects, Access Roads Design, Spill Response, SPCC Plans Environmental Equipment Standards, Procurement, Factory Acceptance Testing, Equipment Ratings, Equipment Insulation Ratings Specs Physical Arrangement, Plan and Detail Section Views; Insulation / Coordination, Single Line & Physical Three Line Development Electrica Legacy Electromechanical and Microprocessor Based Relays, Control and Protection Logic, Relay & Zones of Protection, Sequence of Events, Fault Recorders, Alarming Control Short circuit studies, fault analysis Protection Relay coordination settings and Real-Time Event Analysis Telecomm- Fiber Optics Design (Pilot and Differential Schemes, Communications Equipment) unication

Increased Transmission Investments

As a result of PPL EU's commitment to increase infrastructure investments, the Engineering department has gained a broad mix of recent design experience including both new capacity additions and upgrades to the existing system for both transmission lines and substations. Through this increase in project volume, the Engineering team has improved its constructability criteria, undergone robust process refinement, upgraded standards to achieve high level performance and adopted stronger QA/QC standards. Another byproduct of the recent PPL EU investment that sets PPL EU Engineering organization apart from peers is the exposure and experience gained as a result of the varied electrical

system, weather and geographic topography in the PPL EU footprint. This experience will be an extremely valuable skill when developing future transmission projects.

Contractor Management

PPL EU's Engineering group has extensive experience with in-house designing as well as managing contracted engineered services. The Engineering department has deep expertise with the contracting and bidding process as well as the management and performance improvement of contractors.

Design Standards

PPL EU's Transmission and Substation Standards are designed to incorporate best in class standards for reliability and cost efficiency. PPL standards works to provide innovative solutions while meeting all applicable industry standards. PPL EU has engineering, material, and construction standards requirements and specifications for transmission line and substation systems. PPL Standards are designed to meet NERC requirements and facilitate testing requirements. PPL EU has also deployed a fully digital drawing and standard management tool, which can be used to quickly deploy designs to the field while also ensuring a seamless process when working with standard drawings.

Transmission line standards include but are not limited to electrical clearances, structures, civil, insulation, grounding, lightning, fiber optics, switches and conductors.

Substation standards included but are not limited to electrical clearances, buses, transformers, circuit breakers, switches, conductors, power cables, controls cables, structures and capacitor banks, shunt reactors, control houses, protection relays, communication, fiber and monitoring equipment.

Technology Enhancements

The Transmission Engineering group has seen major efficiencies and improvements as a result of a new state-of-the-art Power Line Computer Aided tool called PLS – CADD that acts as a centralized tool for designing and drafting. The tool enables the group to develop "seed" files that retains data and updates directly from LiDAR surveys which can be used as the foundation for future designs. The PLS – CADD program, and the "seed" files specifically, provides for a more reliable and robust process that enables quick field response.

In addition to the standard AutoCAD 2D tool, the Substation Engineering group is currently utilizing AutoCAD Inventor 3D and AutoCAD Electrical design programs, that use the latest and most efficient designs, generating error free engineering deliverables. The substation Engineering group is also in the process of leveraging the technology of Augmented Reality and Virtual Reality (AR/VR) to help optimize and streamline the engineering and construction activities throughout the life cycle of the project.

Dynamic Line Rating (DLR) technology offers real time information to calculate the varying line rating of a transmission line due to changes in weather conditions and the energy it is carrying. This information provides data about the line to maximize load based on environmental conditions without compromising safety, reliability, or compliance. DLR sensors also provide asset health data that allows utilities to make the best investment decisions of when to perform maintenance and/or replace conductors.

PPL Electric has successfully been using DLR since October 2022, with the technology installed on eight lines in PJM. DLR technology was able to supplant an expensive rebuild project and is now being

leveraged within the PJM reliability and market day-ahead processes. PPL Electric will continue to evaluate lines on its transmission system for additional DLR deployment.

Permitting and Environmental

PPL EU Permitting department has a track record of successfully obtaining the necessary local, state and federal government permits and licenses for proposed transmission projects. PPL EU is cognizant of the need to constantly adapt and strategically plan for the replacement of its T&S infrastructure as land becomes more fragmented and populations increase. The PPL EU Permitting department is successful because of strong agency relationships and tools to increase accountability, which are discussed below:

Maintain Strong Agency Relationships

PPL EU's strong agency relationships, political engagement and vigorous outreach to landowners is critical to the permit and license acquisition strategy. PPL EU's strong relationships and coordinating experience with several local, state and federal agencies provide key advantages in transmission project development. See Figure 3 for a listing of relevant regulatory agencies and the types of permits and licenses that they provide.

Figure 3: Regulatory Agencies and Permit/License Types

	Agency	License or Permit Type
Local	Local County Conservation Districts	Erosion & Sediment Control Plan, Post Construction Stormwater Management Plan, NPDES Application, BMP Compliance
	Pennsylvania Department of Environmental Protection	GP-5, GP-7, GP-8, GP-11, NPDES, Erosion & Sediment Control Plan, Post Construction Stormwater Management Plan
	Pennsylvania Game Commission	License for ROW, Special Use Permit, Post Construction Stormwater Management Plan
	Pennsylvania Fish & Boat Commission	License for Land Use, PNDI clearance letter for fish, reptiles, amphibians
State	Pennsylvania Department of Conservation and Natural Resources Bureau of Forestry & Bureau of State Parks	License for ROW, Letter of Authorization, Road Use Agreements, Certificate of Survey
	Pennsylvania Turnpike	Line Crossing Agreements / Alterations, Access Road and Restoration Agreements
	Pennsylvania Department of Transportation	Minimum Use Driveway, Limited Access, HOP, Aviation Obstruction Review
	Pennsylvania Historical and Museum Commission	Consultation for Phase I, II, II studies, Section 106 viewshed evaluation and report, clearance letter
	U.S. Fish & Wildlife Service	Incidental Take Permits, Rare, Threatened & Endangered Species, Avian Protection Plan
Federal	U.S. Army Corps of Engineers	Water Obstruction and Encroachment Permits, Section 404 Permits
	Federal Aviation Administration (FAA)	Notifications
	National Parks Service	Special Use Permits, NEPA Compliance

Real-Time Communication

One of the key drivers of PPL EU's strong external relationships is PPL EU's "real-time communication commitment", which includes same-day inquiry responses and one-on-one meetings with stakeholders.

The project development timeline relies on the success of the Permitting department, so this commitment to direct communication adds significant value to PPL EU.

Permitting and Licensing Tools

Other tools that PPL EU utilizes for successful acquisition of permits and licenses include a robust licensing and permitting accountability model, permitting plans, metrics for tracking successes and risks, and robust permitting tracking tools. The Permitting team consistently reviews its processes for possible improvement, which has resulted in improved tracking, transparency and accountability for the organization.

Figure 4 shows a sample listing of projects and the corresponding permits and/or licenses that have recently been acquired to construct transmission projects:

Figure 4: Example of Recent Permits / Licenses Acquired

Project Name Pe	rmit / License Acquired
Blooming Grove - Honesdale	PADEP - Individual NPDES Permit, GP-5, GP-8, Submerged Lands License Agreement
West Shore-Harrisburg	USACE/PADEP - Joint Permit for Water Obstruction and Encroachment, Railroad Occupancy Permit
Columbia - Danville	PADEP - General NPDES, Submerged Lands License Agreement
Harwood-East Palmerton	PADEP - Individual NPDES Permit, GP-8, Submerged Lands License Agreement
Harwood-East Palmerton	PA Turnpike Commission - Utility Crossing License, PA DCNR License Agreement
East Palmerton-Siegfried	PennDOT - Highway Occupancy Permit (HOP)
Chanceford 500kV	PA DCNR endangered plant survey clearance, PA Game Commission Bog Turtle investigations and clearance
East Palmerton-Siegfried	National Park Service - Special Use Permit
Sunbury - Dauphin	PADEP - Individual NPDES Permit, GP-11, Submerged Lands License Agreement

Within the PPL EU organization, Right of Way, Real Estate, Permitting and Licensing is one cohesive group. In peer utilities, these groups often function independently. PPL EU chooses to combine these organizations to promote synergies, reduce redundancies, increase checks and balances and allow for enhanced budget and schedule accountability.

Equipment and Material Procurement

Supply Chain Management is centralized and works closely with Transmission Project Management to secure materials and services utilizing competitive processes that ensure a fair and competitive outcome, while minimizing company risk and delivering materials and equipment according to project schedule. The Supply Chain organization is set up to deliver materials and services successfully for future transmission projects through its organizational and operating structure, established relationships and recent large-scale project experience.

Supply Chain Structure

While a centralized supply chain organization provides the benefits of scale and process efficiency, the Transmission organization benefits from Transmission Project Specialists that have long-standing relationships with many key suppliers. The Supply Chain organization is split into Sourcing and Logistics functions, which both interact directly with Project Managers.

See Figure 5 for a visual representation of the Sourcing process that PPL EU follows.

Figure 5: PPL EU Sourcing Process

Prelimmary Project Management Planning

- Provide budgetary quotes
- Develop estimated lead times
- •Gather commodity intelligence for use during negotiations

Procurement Package Development

- Generate procurement schedule
- Develop procurement strategy, which includes quotes, Contractors of Choice and sole sources
- Identify list of potential suppliers
- Create requisition

Request for Proposal Process

•Develop Request for Proposal, which includes Bidders Instructions, Scope of Work and specifications, Pricing Sheets, Bid Forms and a Proposed Contract

Pre-Bid Meeting

- Organize a pre-bid meeting with bidders
- Review Request for Proposal in detail and facilitate Q&A with bidders

Evaluation Process

Contract and

Management

Supplier

- •Develop appropriate evaluation criteria and weighting (bid tab)
- Conduct evaluation meetings
- •Identify short list of suppliers
- Create negotiation strategy
- Conduct negotiations until contract execution
- •Complete Vendor Risk Questionnaire (VRQ) and evaulate short-list vendors
- \bullet Manage the change order process
- Validate outside contract scope of work
- Ensure QA/QC
- Negotiate final value
- Resolve contractual issues
- Release materials for construction crews if required
- •Invoice review and payments

Established Relationships with Key Vendors

The Sourcing department has relationships with vendors nationwide, creating a strong network across the PPL EU footprint. The Sourcing organization has developed an extensive RFP process that comprehensively vets potential contractors for safety, performance, quality, EMR, DART Rates and safety incidents. The process also involves interviews of personnel and relevant clients to confirm compatibility and the ability to deliver. PPL EU is confident that due to the significant volume of projects it executes and the emphasis it places on supplier relationships and sourcing effectiveness, it receives preferred customer prices that are equal to or better than its peers and can also secure supply when others in the industry are unable to find needed resources and/or materials.

Susquehanna – Roseland Project Experience

PPL EU has significant sourcing and logistics experience as evidenced by the Susquehanna – Roseland 500 kV project. PPL EU found that embedding a Sourcing Manager into the Susquehanna – Roseland project team allowed for greater project success. This setup enabled the Susquehanna – Roseland sourcing manager to better communicate with other internal project stakeholders, which is helpful during sourcing negotiations. The Sourcing department was responsible for the procurement of all materials and services for the project, with the exception of \$6 million small-scale items like connectors and fuses.

Contract Management

The Contract Management organization develops the overall contract strategy and is responsible for initiating, developing, negotiating, administering, and managing the performance of contracts involving the use of contractors for all PPL EU construction, design, engineering, and miscellaneous services work in accordance with PPL Corporation's Supply Chain policies.

Contractor Relationships

The Contract Management department is responsible for identifying and vetting potential contractors, maintaining contractor relationships, understanding contractor capabilities, managing Request for Proposals (RFPs) and contracting processes, and matching contractor capabilities with business requirements. PPL EU has established a preferred set of contractors, Contractors of Choice (COC), through an extensive, formal RFP process. The Contract Management team has established relationships with contractors nationwide, which creates a strong ability to effectively source the best contractor(s) for each piece of work required by PPL EU. This contracting process delivers a best practice contracting approach that generally complies with the National Contract Management Association standards and processes. The team also looks to champion continuous improvement and innovation and employ balanced negotiation practices to improve business results.

Contracting Strategy

The Contract Management organization is responsible for developing, managing and administering the Contracting Strategy for PPL EU. The team serves as the single point of contact for obtaining contracting reviews and approvals for the use of contractors for work across PPL EU system. Contract Management works with other teams to develop a final scope for contracting all types of miscellaneous physical work as well as engineering and construction work. The Contract Management team contracts PPL EU work related to transmission, distribution, substation, and vegetation management services.

Communication with External Contractors

The Contract Management department maintains and requires frequent communication with external contractors throughout the project lifecycle. The PPL EU team holds regular quarterly meetings with all contractors to share and receive feedback, with more frequent meetings held as necessary. PPL EU also holds monthly Environmental, Health and Safety (EHS) meetings with all contractors to educate contractors on new requirements and regulations, share concerns, discuss best practices and gather feedback. Our Contract Management team believes that this open, two-way communication loop improves the work of both the contractors and our internal Contract Management team and is extremely beneficial for current and future projects.

Project Management

The PPL EU Project Management department manages projects from approval to closeout using industry-accepted project management methodologies and standards. The PPL EU Project Controls team works closely with the Project Management team, which provides for more effective execution and follow-up of projects.

Project Management

The PPL EU Project Management team ensures that project activities are completed to scope, schedule and budget, to facilitate the business objectives and requirements that are outlined in the project plan using best-in-class Project Management Institute (PMI) practices. The Project Management team remains connected to projects throughout the entire development lifecycle, which starts with a specific Project Manager being assigned to a project in the early stages of Project Planning and Design. The Project Management team has experience managing projects across the service territory and across all types and sizes of projects. Depending on the size and scope of a particular project, Project Managers are responsible for managing and overseeing anywhere from one to fifteen projects at the same time. For the largest and most complex projects PPL EU will assign our most experienced Project Managers to ensure that the project is handled in the most efficient and effective method possible.

Relationships with External Stakeholders

The team interacts directly with key stakeholders to facilitate completion of project activities and provide them with timely communication. The Project Management department utilizes key performance metrics and indicators to measure progress and outcomes as they relate to project and key stakeholder goals as well as to align project execution with strategy. For the vast majority of projects, PPL EU handles all project management activities internally; however, PPL EU also has experience managing external project management resources when work volumes exceed our internal capacity. Our experience of vetting and engaging external resources allows us to quickly and efficiently accommodate significant increases in project activity.

Project Controls

PPL EU's Project Controls group is tightly integrated with the Project Management department within a single organization, which facilitates communication and increases efficiency. The Project Controls group provides financial and scheduling support throughout the life cycle of PPL EU's transmission projects utilizing guidelines established by the Project Management Institute (PMI). This includes developing project baseline budgets, maintaining project schedules, tracking resource usage and project progress, identifying potential problems and using advanced analytical tools such as earned value metrics and

reporting. Additionally, this position prepares overall capital project forecasts and cash flows for the PPL EU business plan.

Cost Analyses

The Project Controls group works alongside Project Managers and project teams to assess and address resource and cost-related risks during the project life cycle, including the analysis of costs related to open contract items such as claims for out-of-scope work billed by contractors. The Project Controls group supports Project Managers in performing specialized analyses of corrective action plans to determine the most effective means of addressing potential problems. For example, the Project Controls group would be responsible for assessing the cost of schedule slippage versus a variety of alternatives including the cost of hiring additional contractors and/or the cost of using internal resources at overtime rates.

Performance Management

The Project Controls department implements process controls for the governance of project schedules and budgets, ensures adherence to Generally Accepted Accounting Principles (GAAP) guidelines and compliance to Federal Energy Regulatory Commission (FERC) and Sarbanes-Oxley Act of 2002 (OSX) regulations. The department objective is to ensure projects meet their intended goals while adhering to schedule and budget projections. The Project Controls Department is managed by the Manager, Portfolio Management, & Project Controls and is supported by Project Control Leader(s) and Senior Accountant(s).

Construction

The PPL EU Construction Management department is directly responsible for ensuring that contracted work for PPL EU is completed on time, within budget, to specified quality levels and that PPL EU policy and procedures are understood and followed by contractors.

Strategic Goals

The Construction Management department uses a Strategic Framework that translates cascaded strategic goals into meaningful objectives.

Field Representatives

The PPL EU Construction Management team acts as the field representative on project teams. Due to the recent increase in transmission investments, and subsequent rise in construction work volume, the PPL EU Construction Management team has gained valuable experience that sets us apart from peer utilities. The team is responsible for participating in constructability assessments and the development of project plans, which include project risk assessments. Once construction has begun, the team continues to manage construction throughout the lifecycle of the project until construction completion.

Construction Liaison

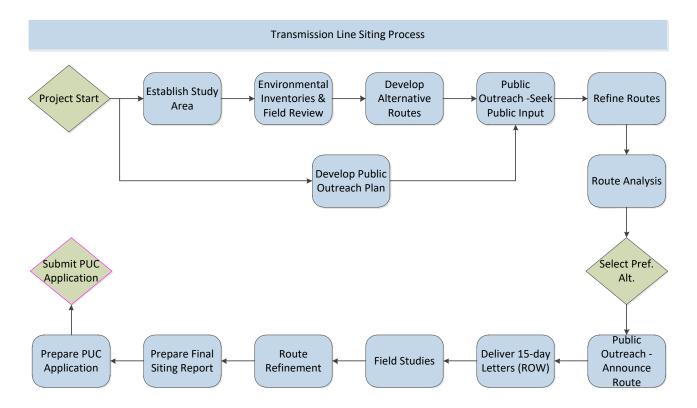
The Construction Management team is responsible for ensuring that contractors review the work plans, understand the scope and requirements for performing the work and understand the General Safety Procedure requirements. The Construction Management team ensures timely receipt of materials and has experience coordinating construction resources when multiple contractors or PPL EU crews are involved

with a project, outage, specialty equipment, and / or material staging / lay down areas. At the beginning of construction, the Construction Management team sets priorities across the project construction timeline to ensure timely task completion and clear accountability. Throughout the construction process, the Construction Management team directly manages the change order process for contract claims, particularly for work that is not in scope. As a result, the team has experience participating in claims dispute resolution sessions as well as negotiating changes to the project scope. The team is responsible for ensuring quality workmanship before accepting the finished product and verifying all contractor invoices.

Adherence to Project Costs and Budgets

The Construction Management team develops and implements policies and procedures for budget/cost tracking, corrective actions, and schedule changes as cost deviations are detected. Construction Management provides regular project status reports to the Project Managers and Project Controls group including corrective actions taken to keep projects on track. This high level of coordination and communication between Project Management and Construction provides a distinct advantage to PPL EU in transmission project development and execution.

Commissioning of New Facilities


PPL EU has an established Acceptance of Facility process for newly installed equipment to ensure that all equipment performs as intended when subjected to real world operating conditions. Standardized equipment and relay tests are specified and conducted, reviewed and approved by T&S Commissioning Engineering prior to energizing the equipment. Real world system voltage is also methodically tested against all equipment before applying customer load.

Pre-Commissioning activities such as programming relay settings, relay testing, trip testing, wiring validation and testing for shorts and grounds are performed by relay technicians, substation design engineers and contractors to ensure projects are ready for demonstration testing at the time of commissioning. Test results are then recorded on the Acceptance of Facility forms and approved by T&S Commissioning Engineering prior to being placed in service.

Routing and Surveying

PPL EU's Siting department is an integral part of the transmission project lifecycle for both the Bulk Electric System (BES) and the non-Bulk Electric System (non-BES). The Siting team becomes involved during the early stages of the project development lifecycle during the Concept phase and manages key functions such as route determination, PA PUC application development and community outreach. See Figure 6 for a visual representation of the Siting Process.

Figure 6: Siting Process

The main responsibilities of the Siting team are outlined below:

Study Area Development

One of the team's first tasks is to define the Project Study Area. The Study Area encompasses the source and destination points. Man-made or natural barriers that would restrict line construction determine lateral boundaries. Absent such barriers, boundaries are set at a location beyond which the length and/or costs of line construction become unreasonable. Defining the Study Area is important because it sets limits on the amount of information to be collected.

Environmental Inventories

In the early phases of the project lifecycle, the Siting team conducts comprehensive Environmental Inventories necessary to make informed facility siting decisions. The organization utilizes robust processes to analyze land use and environmental conditions to get a detailed understanding of the area in which the facilities may ultimately be situated. The Environmental Inventory consists of gathering baseline environmental, land use, and natural features data for the study area.

Proactive Community Outreach

PPL EU understands the right and the need for residents in and around the project study area to be notified, informed, and to provide feedback to the Siting team on proposed PPL EU facilities. To facilitate this exchange of information, the Siting team is responsible for developing and implementing a Public Involvement Plan and a Communications Plan. The Public Involvement Plan is the blueprint that is followed to ensure the public is involved in the decision-making process as appropriate for new PPL EU's Electric substations and new or relocated transmission lines.

Alternative Development/Selection of the Preferred Route

Based upon all the information gathered and input received, alternative line routes are developed. The Siting team evaluates and documents the environmental and land use impacts of each alternative. Costs for each alternative are also developed. The Siting team ranks the alternatives based upon their environmental and land use impacts, public and governmental input, and costs. The Siting team evaluates the social, environmental, constructability and cost impacts for each alternative route to determine the optimal route for facilities.

Preferred Route Development

After the preferred route has been chosen based on impacts analyses, public input and input from the internal team, the Siting team coordinates the initial environmental surveys, including wetlands, threatened and endangered species and cultural resources for the preferred route. In addition, the Siting team also begins to communicate and coordinate with the Right of Way team about mapping and initial property surveys. Early coordination with the Right of Way team sets PPL EU apart from other utilities and creates cohesion in the early stages of project development.

Historically, the internal Siting team has conducted most site and route selection work in-house, but PPL EU has established relationships with several siting and environmental firms which allows for easy scaling based on the volume, size and complexities of projects being undertaken. The external contractors are also able to provide supplemental environmental assessment reports on plants, wildlife, threatened and endangered species, cultural / historical resources, and land use impacts.

Right-of-Way and Real Estate Acquisition

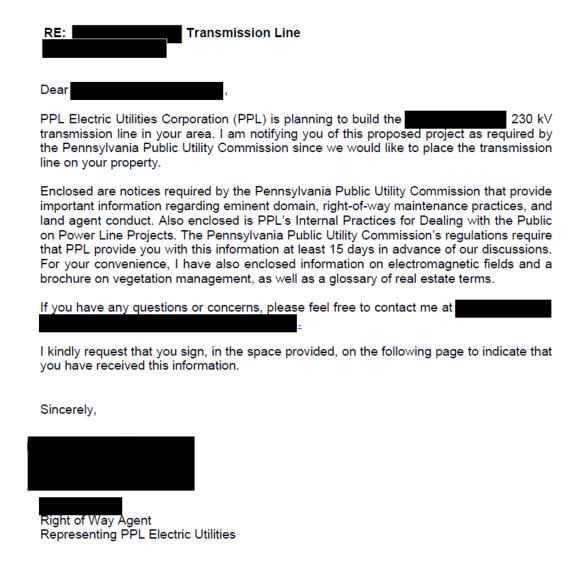
The PPL EU's Right of Way, Real Estate and Permitting team is heavily integrated with the Siting team, which provides benefits such as increased community outreach and greater consensus on route development. The Right of Way team is involved in a variety of functions that largely involve external stakeholders, which can be seen below:

Route Selection Assistance

The Right of Way team assists in route siting and selection, largely through extensive community outreach. The Siting team utilizes input from the Right of Way team to determine community preferences, which can ultimately impact route determination.

Market Studies

Once the preferred route has been identified, the Right of Way team conducts a market study, which can be completed internally or by an external appraisal firm, to determine property values, estimate Right of Way costs and determine the appropriate timing for acquisition. The team will also attend open houses to facilitate the Right of Way process.


Relationships with Government Agencies

At an early stage, the Right of Way team identifies relevant governmental agencies involved in the project like State Game Lands, Department of Conservation and Natural Resources and the National Park Service. Although PPL EU has strong relationships with many governmental agencies, negotiations can have significant impacts to project timelines, as seen with the National Park Service in the Susquehanna – Roseland project, so early contact and collaborative negotiation is a priority for PPL EU.

Landowner Relationships

The PPL EU Right of Way team is responsible for ordering title abstracts and preparing 15- Day Packets, which explain topics such as PPL EU's fair negotiation tactics, background on eminent domain and relevant vegetation management information. Figure 7 is an example of a PPL EU cover letter for the 15-Day Packet that PPL EU delivers to landowners.

Figure 7: PPL EU 15-Day Packet

The Right of Way team has representatives spread out across the six PPL EU regions which allows for more direct communication and access to landowners, providing a key advantage for PPL EU. Because of the geographic dispersion of resources, the team can hand deliver and attain landowner signature for acknowledgement of receipt as well as deliver or mail non-negotiating packets to adjacent landowners. The team negotiates with landowners for easement acquisitions, fee purchases when required, substation sites, access roads, pull-pad sites and off-ROW access. The Right of Way department follows landowner relationships all the way to completion by obtaining Highway Occupancy Permits and access road agreements, reviewing survey drawings, scheduling closings, delivering payments, and acting as a liaison during construction.

"Property Owner Perspective"

PPL EU prides itself on taking a "property owner perspective" when acquiring ROW – for example, rather than splitting a small parcel, PPL EU will seek to buy the land outright and accommodate landowner requests when practical. Acquiring Right of Way is a complex process that requires the coordination of many stakeholders, but the PPL EU's Right of Way team has demonstrated success through several acquisition projects with 100% voluntary acquisition. On a limited basis, the Right of Way team has been involved in a few condemnations.

Liaison to Landowners during Construction Process

A key element that sets the Right of Way team apart from peer utilities is the level of involvement PPL EU maintains with internal and external stakeholders throughout the entire development and construction process. During planning and construction, the Right of Way team coordinates with landowners and external agencies for input collection and negotiation. After construction is complete, the team remains engaged to assist with, and ensure, project clean up, including crop damage payments.

Internal and Contractor Safety Program, Including Safety Performance Record and Program Execution

Safety is a core value at PPL EU, and the company is committed to providing a safe work environment, sending each employee home injury-free every day.

Safety is a commitment that actively involves everyone in our organization. PPL EU's safety rules and procedures are a compilation of hazard controls and barriers identified through proactive work methods and past experiences – either by us or regulatory agencies. Only by consciously identifying the hazards of the job, knowing the safety rules and procedures, and applying them can PPL EU develop a safer work culture.

It is every employee's obligation to ensure that safety rules and safety procedures are incorporated into the planning and performance of each task. The scope of responsibility for a safe work environment includes a variety of duties by each PPL EU employee.

According to the Safety process, there are differing responsibilities for each level of responsibility at PPL EU. According to the Safety process:

All levels of management shall be responsible to:

Educate employees under their direct supervision on safety rules
Plan the work to include applicability of safety rules
Monitor the work to ensure applicable safety rules are being followed
When warranted, enforce safety rules through appropriate behavior modification, to include
disciplinary method from reprimand up to termination
Communicate with Environmental Health & Safety on interpretation and applicability of safety
rules.

Each employee shall be responsible to:

Become knowledgeable of safety rules and their application
Identify safety rules, work methods, and safety procedures applicable to the task(s) performed
Adhere to all safety rules applicable to the task(s) at all times
If there are questions on applicability, employees must seek interpretations of safety rules prior
to performing the task.

Through its Safety program, PPL EU strives to minimize Occupational Safety and Health Administration (OSHA) designated Recordable Events. A Recordable Event consists of any occupational illness or injury that requires medical attention above and beyond simple first aid. As seen in Figure 8, PPL EU has low incidence rates, especially when compared with industry peers.

Figure 8: PPL EU OSHA Recordable Events, 2019-2024²

	2019	2020	2021	2022	2023	2024
PPL EU Employees:						
Number of OSHA recordable events that occurred in PPL EU	31	42	22	16	27	21
Incidence Rate as related to the number of OSHA Recordable Events	1.69	2.53	1.58	1.14	1.60	1.28

Control Center Operations

PPL EU's Transmission Control Center (TCC) is tasked with the responsibility of monitoring and operating a reliable transmission grid as defined by PJM, RF and NERC.

Transmission Control Center

To operate and maintain the transmission grid reliably, PPL EU manages a Transmission Control Center 365 days, 24 hours a day in the Lehigh Valley. The control center is completely secure and has redundant data and communication at both the Operations Center and the Disaster Recovery Site that are independent of each other and meet all RF and NERC Reliability Standards. The control center adheres to the guiding principles of safety, reliability, and production in that order. Due to proactive approach and use of Human Performance tools the TCC has lessened the severity (or impact) and amount of Electric System Events (ESE's) and continues to strive for zero ESE's.

² Please note the PPL EU OSHA recordable events from 2019-2024 reflected in Figure 8 exclude Covid.

Transmission Control Center Operations

Core responsibilities of the TCC include monitoring and operating the BES and 69kV systems in the PPL EU footprint using a GE EMS system, directing the application of the PPL EU Permit and Tag process and procedures, constructing and maintaining the EU Outage plan, using EMS - load flow and study programs and contingency analysis to identify and mitigate overloads on a pre-contingency basis. The Operations engineering section resolves operational discrepancies with PJM when load flow models provide inconsistent results and requests stability studies from either Transmission Planning or PJM to assure system reliability is maintained within predefined limits. A key differentiating attribute of the TCC that sets PPL EU apart from other utilities is its tight linkage and coordination with the Susquehanna nuclear plant, including interface documents and maintenance and outage coordination meetings. This interface demonstrates PPL EU's ability to manage significant and complex interfaces safely and reliably.

The Transmission Control Center is comprised of employees who are certified PJM, NERC and PPL EU operators. The Manager of the Transmission Control Center is also PJM and NERC Certified.

NERC Compliance Process and Compliance History

NERC Compliance Program

The purpose of PPL EU's NERC Compliance Program is to achieve and maintain compliance to applicable NERC Reliability Standards approved by FERC. As part of a healthy compliance culture and continuous learning organization, PPL EU follows a well-defined process for identifying, analyzing, documenting and resolving potential non-conforming conditions related to PPL EU's NERC Compliance program. This process is defined in the PPL EU NERC Governance Program (EU-NERC-100) as the Compliance Condition Report (CCR) Process. PPL EU's CCR process includes near miss/good catch events which help ensure corrective action is taken before issues occur. PPL EU was granted self-logging permissions by RF for both Operations & Planning (O&P) and Critical Infrastructure Protection (CIP) Reliability Standards, demonstrating confidence in PPL EU's NERC Reliability program and self-monitoring capabilities.

Proven Compliance Track Record

PPL EU is very well received among peers, both within NERC and the RF regional organization. PPL EU takes pride in our compliance track record and external stakeholders recognize PPL EU for its compliance expertise. For example, Tim Gallagher – CEO of ReliabilityFirst Corporation stated, "We hold PPL in very high regard based on our past dealings, understanding of your compliance programs and reliability record. Observing the culture and attitude you have developed and implemented only served to reinforce our opinion....when ReliabilityFirst encounters a company that is struggling with its compliance programs, PPL is the first company suggested as a contact to help them improve."

PPL EU has been audited by the FERC, NERC, RF, and PJM on O&P and CIP Reliability Standards including tasks assigned to PPL EU via the PJM TO/TOP Matrix. PPL EU has also participated in RF Recertifications of its new Operations Control Center (2014), relocation of the Back Up Control Center (2025) and EMS Upgrade project (2018 and 2025) as part of the NERC Rules of Procedure. Part of PPL

EU's compliance success results from its early adoption of its CCR process which includes steps to identify and document non-conforming situations, performing an internal assessment that looks at generic implications that go beyond the specific event and ensures that the appropriate measures are taken to prevent recurrence. This process identifies potential problems early and, if deemed necessary, may result in self-reported potential non-compliances (PNCs), both of which are considered best practices. PPL EU has received numerous comments from the auditors for our commitment to reliability, continuous improvement and transparency during the process.

External Stakeholder Engagement

To ensure that PPL EU and its affiliates remain current on reliability and compliance related activities, PPL EU is active in the industry and well represented on many of the industry forums and committees available through EEI, NATF, PJM, RF (including leadership roles on the RF CIP Committee (CIPC) and Compliance User Group (CUG)) and NERC. In addition, PPL EU frequently engages in peer-sharing events with other utilities to share best practices.

Compliance Training

PPL EU recognizes that the identification, development and delivery of specific role-based training is essential to long-term compliance with NERC Reliability Standards. PPL EU provides numerous NERC related training courses (Computer Based Training (CBT), in person/remote awareness sessions) for applicable PPL EU employees and contractors. Some of these courses are designed for one-time implementation and others are designed for periodic implementation.

Registration or Ability to Register for Compliance with Applicable NERC Reliability Standards

PPL EU Compliance Resources

PPL Corporation and its relevant subsidiaries have dedicated resources, including staff and budget, to meet the requirements of PPL's NERC Compliance Program. Subject Matter Experts in PPL EU utilize their expertise in achieving, documenting and sustaining compliance with the NERC Standards on a part-time basis. The full-time resources noted above coordinate the efforts of these SMEs to ensure that compliance-related tasks are properly implemented. Office of General Counsel, Corporate Security, Information Solutions and Corporate Auditing also apply internal resources to the NERC Compliance Program.

Storm/ Outage Response and Restoration Plan

Outage Requests

In addition to real-time operations the department is charged with the construction and maintenance of the PPL EU outage plan. TCC Outage Planning analyzes and processes requests to upgrade transmission facilities and then translate these requests to equipment outages / restrictions using the PJM outage criteria timelines. The TCC effectively plans all outage requests, limits risks to the electric system, ensures PPL EU customer reliability and responds to any unplanned events. Transmission outage planning, including risk and conflict analysis, is key to promoting safety, preserving the reliability of the BES, eliminating

volatility in the work portfolio and ultimately completing all projects in the capital and maintenance budgets.

T&S Incident Response

The T&S Incident Response process outlines the organizational structure, strategy, and process to effectively respond to a Transmission system event. The T&S Incident Response Manager interfaces with the Transmission Operations organization and leads a team of representatives from multiple organizations: engineering, including Substation and Relay Engineering; Protection Analysis; Transmission Engineering, T&S Maintenance Engineering, Relay Test and Fiber/Telecommunications. Incident Response team members are on call to quickly address any electric system event that may occur. Figure 9 illustrates the engineering collaboration on the T&S Engineering Support team.

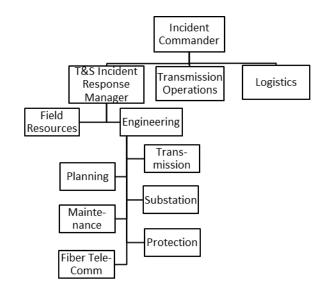


Figure 9: PPL T&S Incident Response Team

Emergency Preparedness

PPL EU has an Emergency Preparedness (EP) group. The Emergency Preparedness group's mission is to develop and maintain comprehensive emergency response plans for all of PPL EU through documented policies, procedures and processes that incorporate lessons learned and industry best practices. The group also supports the effective execution of the plans through training and the conduct of periodic drills and exercises to test the plan under various restoration scenarios.

Emergency Response Plan

PPL EU has an emergency response plan that provides for a coordinated and comprehensive response for the rapid restoration of electrical service during and after natural disasters, man-made events or other emergencies by ensuring that all required corporate resources are used in the most efficient manner. The plan describes the PPL EU Emergency Response organization and the roles and responsibilities of those responding to an emergency event. It also defines the thresholds for expanding the emergency response organization based on the size and complexity of the event.

Emergency Response Activation

For the weather report, PPL EU currently uses two different sources; StormGEO, which is a national weather prediction company, and EPAWA, which is a PA / Allentown based weather company. Using a combination of their predictions, PPL EU develops a model that will then show how the PPL EU system will be impacted. Additionally, PPL EU contracts with a third-party weather service that provides daily forecasts tailored to each of the six operating regions, real-time weather alerts, telephone consultation with an on-call meteorologist and lightning data. Hourly feeds of the daily weather forecast are uploaded into the PPL EU outage prediction model that is used to predict the number of cases of weather-related trouble anticipated across the system. Based on the forecast and the outage model predictions, a pre-event strategy conference call may be conducted by the on-call storm team.

PPL EU Employee Involvement

Each PPL EU employee is assigned to one of 86 emergency support roles that support storm and non-storm emergencies. The Emergency support roles of employees are tracked through the PPL EU's Human Resources database. Position specific procedures and job aids have been developed to provide guidance and outline the roles and responsibilities of the positions. All information and tools necessary for the implementation of the plan are stored and maintained on an internal SharePoint Site that is accessible to all PPL EU employees. PPL EU and PPL Services Corporation have personnel on call 24 hours a day, seven days a week, to fill the critical functions needed to support and staff the Emergency Command Center (ECC) and each of the three Regional Command Centers (RCCs) throughout PPL EU's service territory.

Smaller, isolated storm events impacting one of PPL EU's six regions are managed by the impacted region's on-call Regional Emergency Manager. However, when multiple regions are impacted, the Emergency Command Center is staffed and the incident commander for the event, the Director - System Emergency (DSE), is responsible for the overall restoration of PPL EU's transmission and distribution systems.

Monthly emergency exercises are conducted to maintain ECC and RCC staff proficiency with tools and processes. Additional exercises are conducted to assess summer and winter readiness. The EP group also facilitates bi-monthly Storm & Emergency Improvement Initiatives meetings to communicate to leadership teams in the regional and emergency command centers any changes to storm and emergency processes.

Key External Relationships

PPL EU has access to additional resources through the local contractors working on PPL EU's transmission and distribution systems. Additional resources are available through our affiliates: Louisville Gas & Electric and Kentucky Utilities and Rhode Island Energy. In the event of extreme damage to the T&S infrastructure, PPL EU has access to two very large pools of resources through the mutual assistance groups to which we belong: The North Atlantic Mutual Assistance Group (NAMAG) and the Southeastern Electric Exchange (SEE).

Awards and Recognition

PPL EU has recently received the following awards for storm response, customer satisfaction and industry innovation:

- SEPA 2025 Resilience Power Player Award for safety and reliability (PPL Electric Utilities)
- CPA-Zicklin 2024 Trendsetter Award for political disclosures and accountability (PPL)
- **Disability:IN** recognition as a best place to work for disability inclusion (PPL)
- Edison Electric Institute's Emergency Response Awards in recognition of recovery and assistance efforts related to extreme weather (LG&E and KU, PPL Electric and Rhode Island Energy)
- ENERGY STAR Partner of the Year Sustained Excellence Award (PPL Electric)
- Escalent 2024 Customer Champions Award Residential for utility customer engagement (PPL Electric)
- Fair360 Top Utility for Diversity (PPL)
- Forbes 2025 America's Best Companies (PPL)
- Fortnightly 2024 Top Innovator in Energy Transition Award (PPL)
- Newsweek 2024 America's Greatest Workplaces (PPL)
- **VETSIndex** recognition as 4-Star employer for military veterans (PPL)

Record of Past Reliability Performance

PPL EU is committed to achieving leading operations reliability and system performance for its transmission system. Stringent maintenance programs have been developed that prioritize maintenance activities based on established reliability standards, asset management driven programs, and overall equipment criticality. It is PPL EU's philosophy to perform as much substation maintenance as possible internally.

The experience of the PPL EU Transmission team is essential to success in operating and maintaining the system's transmission assets. A wide variety of training is available and provided for engineers, technicians and crews, including programs for journeyman, switchman, substation engineering, and relay technicians. Human performance tools training has also been developed to reduce human errors and programs required for NERC / CIP compliance, such as NERC compliance overviews, substation simulations, critical cyber asset recovery drills, system protection programs, facility rating methodology instruction and guidance for proper handling and protection of transmission information. Training programs are predominantly developed and administered internally, but external vendors provide training in some cases, especially on newly acquired equipment and tools.

This commitment to system performance through effective, preventive and real-time operations and maintenance programs is borne out in the reliability performance of system assets. As shown in Figure 10 below, T-SAIFI performance has shown steady improvement over time, with over 100% reduction since 2020. In December 2024, PPL EU was ranked 7th by J.D. Power in Customer Satisfaction with Residential Electric Service in the East among Large Utilities, finishing at the top 8 for the 13th year in a row.

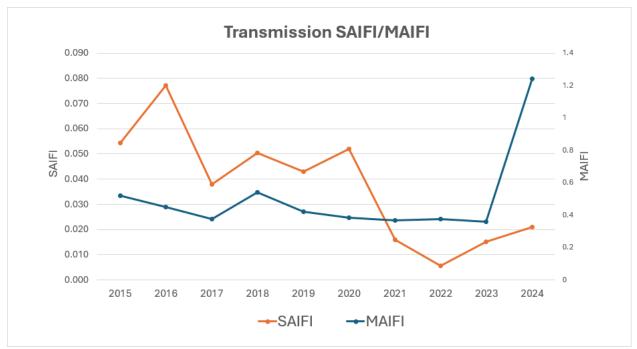


Figure 10: PPL EU T-SAIFI and MAIFI Historical Trend

Statement of Which Entity will be Operating Completed Transmission Facilities

PPL TransLink expects that completed transmission facilities will be operated by its affiliate PPL Services on behalf of the owning entity.

Staffing

The TCC employees seek continuous improvement in technologies and processes, are trained in all relevant operator tasks, and embrace compliance as a measure of PPL EU's effectiveness. The PPL EU Transmission Control Center follows best-in-class training practices, which increases the effectiveness of the organization and creates a distinct advantage when dealing with adverse conditions. All Transmission Control Center employees are trained within the TCC and they receive NERC, PJM Transmission Operator, PJM Generation and PPL EU training, several of which receive PJM and NERC certifications. In addition, PPL EU owns an internal simulator that is used for training. The transmission control center operators have broad experiences across multiple areas of the control center and are well versed on the uses of security- analysis/state estimation tools. Because of the training, the operators are all able to take action when necessary and can perform trouble shooting on advanced systems. All team members at the TCC participate in black start drills, and act as liaisons between PPL EU and PJM for information dissemination. All operators are coached and trained in black start requirements to ensure not only job knowledge but also to assure consistency from drill to drill.

Crew Training

The ability to respond to unexpected events, such as major electric-system outages, is a critical skill for control center personnel, and the related training programs and emergency drills conducted help to prepare for unexpected events. PPL EU's control center has a training coordinator responsible for developing quality training programs, engaging operators, verifying learning and refreshing the program over time. A large part of the training program consists of providing trainees with the necessary hands- on experience in dealing with challenging situations. Control room simulation provides experienced operators and trainees realistic and real-time experience in dealing effectively with those events that are unlikely, but potentially catastrophic. A virtual control room provides trainees and staff with a variety of realistic, but simulated scenarios, such as equipment failures, outages or other problems. The Dispatcher Training Simulator (DTS) is part of the energy management system and mirrors the real-time system to enable operators to create diverse scenarios that might be encountered.

Staffing and Crew Training

PPL EU currently has field employees dispersed across its operating territory solely responsible for the 24/7/365 operation and maintenance of substation facilities and equipment. The majority of physical operations and maintenance for substation facilities are performed by this team internally to ensure immediate and guaranteed service. The varied skill set of the department includes emergency response and restoration, operational switching, substation inspections, operational functionality testing, system protection functionality testing and general troubleshooting and maintenance in the substation environment. This team is also responsible for executing diagnostic testing, preventative maintenance and corrective maintenance for all substation equipment including NERC required maintenance of relay zones of protection, voltage and current metering devices. This team is fully equipped with the latest test equipment, SF-6 gas and insulating oil-handling and processing equipment for maintenance and diagnostic testing of power transformers, circuit breakers, potential transformers, current transformers, protective relaying and switchgear.

The substation electricians are trained in a Department of Labor sanctioned four-year apprenticeship that requires 144 hours of formal training for each year of the apprenticeship and a comprehensive written and oral examination at the end of the apprenticeship before advancing to Substation Journeyman Electrician. System protection relay technicians are two-year degreed technicians with various levels of experience and skills. Substation Field Engineers are all degreed Electrical Engineers with various levels of experience in substation operation and maintenance.

Maintenance crews are assigned substation responsibilities which drives a sense of ownership and community between the team assigned to that facility. In the unlikely event of an equipment failure due to human error, there is no lack of clarity regarding responsibility. All of the crews perform individualized, local switching, diagnostic testing, inspections, preventative maintenance, corrective maintenance and emergency response. These crews are assigned work throughout the year, using an accepted work management tool (Cascade). Crews also coordinate work that could impact both ends of a line outage or outage availability. Completion progress is tracked, monitored and reported on a monthly.

The operations and maintenance team also provide input into new project development on optimal design and construction in terms of ease and cost to maintain the assets.

PPL EU's Maintenance organization is responsible for providing direction and oversight of the Electric Utility's Transmission and Substation Maintenance Engineering functions. The team promotes the safe,

reliable, efficient and economical operation of the PPL EU Substation and Transmission line assets to optimize customer reliability and service.

Work Management

The Maintenance organization uses the Cascade maintenance program to schedule tasks and monitor an inventory database, which can be used for failure analysis and root cause investigations. The group is continually developing and refining a Preventative Maintenance program which includes processes, technical support and training to reflect best-in-class maintenance practices. The Maintenance organization regularly interacts with the Transmission Operations organization to coordinate repair priorities based on established reliability standards and equipment criticality.

Maintenance Resources

The Maintenance organization has engineers stationed throughout all six regions of the PPL EU footprint to provide technical support and quickly respond to issues that may arise. The engineers are highly trained, and their experience is essential to successfully maintaining the system's transmission assets. The organization requires that its employees attend seminars and manufacturer trainings. The PPL EU Maintenance organization has strong relationships with our Contractors of Choice in all six of the regions in PPL EU's footprint.

Transmission Facility and Equipment Maintenance and Record of Past Maintenance Performance

PPL EU has established an asset management strategy to manage reliability at target levels and minimize system risk, all with sustainable spending levels. Maintaining a consistently reliable and cost-effective transmission system requires a robust and methodical strategy for efficient maintenance, which incorporates several strategies to enhance system performance, including:

- Deliberate capital investment to ensure sustainability and drive down on-going and unplanned maintenance
- Cost-effective maintenance programs designed around asset condition and desired operating outcomes
- Reducing variability by mitigating high-consequence events and establishing and enforcing robust standards
- o Leveraging technology to increase system visibility and improve operability
- Developing systems, tools and processes to enhance asset management decision making and generate value
- Collecting comprehensive asset information to facilitate accurate analyses and informed decision making

This sustainability concept combines deliberate, proactive equipment replacement, targeted asset maintenance programs, improved decision data and deployment of the right monitoring and control technologies. Design and materials standards have been established that optimize life-cycle costs and oversee effective commissioning to enable a high-quality system to be operated. These concepts are essential to developing a strategy to sustain the system at a reasonable cost.

The Transmission Maintenance group conducts both routine and emergency maintenance using a variety of methods and technologies including: helicopter patrols (comprehensive, routine and emergency), special patrols resulting from Risk Mitigating Studies, foot patrols, routine air break

inspections, thermo vision, Acceptance of Facilities, pole inspections and right-of-way encroachment reviews.

Substation Maintenance

The Substation Maintenance group is responsible for the maintenance and reliability of Substation equipment including: batteries, battery chargers, oil circuit breakers, gas circuit breakers, air break switches, disconnects, ground switches, lightning arrestors, power fuses, CCVTs, potential transformers, power transformers, tertiary cables, capacitor bank vacuum switches and station service transformers.

Advanced Technologies

The PPL EU Maintenance organization uses advanced technologies when it provides demonstrable technical, operational or economic value to projects or operations. For example, the organization has implemented Forward Looking Infrared (FLIR) and LiDAR technologies as they have proven to provide essential advantages to the Maintenance organization.

Relay Test

PPL EU Relay Test is responsible for the operability of all transmission and distribution protection systems, Supervisory Control and Data Acquisition (SCADA) equipment, protection system high speed communications systems, and disturbance analysis sub-systems.

Work Management

The Relay Test organization utilizes work management processes and systems that provide integrated planning and scheduling of work (via work orders), multi-work group scheduling, cost accounting, metrics, and electronic asset registry updating. All work orders are generated in the state-of-the-art Asset Suite program, which can handle five different types of work orders. The Asset Suite program allows the Relay Test organization to know the work that will be performed up to one year in advance. Relay Test management actively participates in protection system maintenance program governance and compliance audits and process reviews.

The core focus of PPL EU Relay Test is preventative maintenance as required by all applicable NERC Reliability Standards. PPL EU Relay Test also provides resources for capital projects as time permits, based on the maintenance workload. For larger projects, PPL EU contracts additional Relay Test resources.

Protection System Maintenance

The Relay Test organization performs preventative maintenance activities (relay calibrations, functional trip testing, communication testing) for all transmission and distribution assets. Relay Test assures PPL EU's compliance to the applicable NERC Reliability Standards.

Supervisory Control and Data Acquisition (SCADA)

The Relay Test organization is responsible for the commissioning, maintenance, configuration programming, and overall operability of all Remote Terminal Units (RTUs), Programmable Logic Controllers (PLCs), and other data concentrators / data collections systems within the PPL EU's substations.

Communication Systems

The Relay Test organization is responsible for the commissioning, maintenance, configuration programming and overall operability of all high-speed protective system pilot communication systems including fiber optics (both sonnet and direct), power line carrier, audio tone and third party leased digital and POTS communication.

Disturbance Monitoring Equipment

The Relay Test organization is responsible for the commissioning, maintenance, configuration programming and overall operability of PPL EU's fault analysis systems, including digital fault recorders, relay-based oscillography, and phasor measurement units (PMUs). Relay Test assures PPL EU's compliance to the NERC Reliability Standards under their ownership.

Corrective Maintenance

The Relay Test organization is tasked with timely response, investigation, and remedy for all protection system anomalies. Relay Test staff respond to call-outs whenever they occur to perform investigative studies and troubleshooting, supporting PPL EU's operations to rapidly diagnose issues and return equipment back to service.

Capital Projects

The Relay Test organization or the Commissioning organization is responsible for the commissioning activities of all new transmission and distribution substation protections systems, SCADA, and communication systems. Relay Test performs the field engineering function of design and drawing review, wire checks, energization, phasing, and final assurance that all substation equipment is protected and functional. Additionally, PPL EU contracts adjunct testing staff to provide additional testing resources when needed for extensive capital projects. Commissioning responsibilities are performed by the PPL EU Commissioning organization.

All of PPL EU's protection system maintenance is performed by the PPL EU internal Relay Test organization. All protective relaying work with respect to capital projects is either performed by PPL EU's internal Relay Test organization or augmented by testing contractors who work under the guidance or direction of PPL EU's Commissioning organization. The PPL EU Commissioning organization has extensive experience managing contractors and ensuring that they are familiar with PPL EU systems and technologies. In addition, the internal PPL EU team is responsible for ensuring receipt of work and incorporating it into asset management.

Vegetation Management

PPL EU's Vegetation Management (VM) organization works to ensure the safe, efficient and technically compliant execution of our VM program across the PPL EU service territory.

The North American Electric Reliability Corporation (NERC) has adopted a vegetation-management reliability standard with detailed requirements for vegetation management and inspection (FAC-003).

PPL EU's VM group manages all aspects of this overall enterprise program with the goal of keeping transmission facilities clear of all incompatible trees, brush, and other vegetation through routine maintenance activities such as tree felling, pruning, mowing and herbicide application. The VM team is centralized under the PCM group.

PPL EU solicits competitive bids for contractor services to ensure quality and safety, while minimizing the cost to customers. VM contractor expectations are defined in a VM guidelines document and work completed by contractors is evaluated and audited against these expectations. At the highest level, the goal is to ensure public and worker safety, comply with regulatory and legal requirements, provide reliable electric service that allows for flexible operations, and act as a good steward of the environment.

PPL EU VM has a long-term, managed business relationship with two of the largest VM contractors in North America and a comprehensive contractor evaluation system is used to quantify overall contractor value to the company. Evaluation components include line-miles completed, budget management, quality, safety, electric service reliability performance and a variety of micro indicators that measure contractor project management abilities. In addition, the VM contractors play an active role supporting the VM formal daily management structure.

PPL EU has leveraged geospatial and remote sensing technologies to better manage the vegetation threats to transmission facilities at a reduced cost. Light Detection and Ranging (LiDAR) is a remote sensing technology that allows for geospatially reference three-dimensional point clouds to be created to ensure adequate clearance between vegetation and conductors, as well as identify danger and hazard trees. LiDAR was first used by PPL EU in 2008 and the favorable results confirmed that this process and approach for vegetation management would be beneficial.

Advanced vegetation management practices have proven effective with high reliability performance and lower cost.

Transmission Vegetation Management Program (TVMP)

The PPL EU Transmission Vegetation Management Program (TVMP) seeks to improve the reliability of the electric transmission systems by preventing outages from vegetation located on transmission rights-of-way (ROW) and minimizing outages from vegetation located adjacent to ROW, maintaining clearances between transmission lines and vegetation on and along transmission ROW, and reporting vegetation related outages of the transmission systems to the respective Regional Reliability Organizations (RRO) and the North American Electric Reliability Corporation (NERC).

The purpose of the TVMP is to memorialize PPL EU's required practices intended to prevent vegetation-related transmission outages from occurring within the rights-of-way (ROW) and to minimize vegetation outages from occurring outside the ROW on all 200kV and above transmission lines as well as any other lower voltage transmission lines that are designated as critical to reliability. Figure 11 provides an overview of PPL EU's TVMP.

Figure 11: PPL EU Transmission Vegetation Management Program

EU-NERC-OPS-013 PPL Electric Utilities Transmission Vegetation Management

Custom ID: **EU-NERC-OPS-013** Revision: 5 Effective Date: 11/18/2024 Page 1 of 14

TABLE OF CONTENTS

1.	PURPOSE / SCOPE	1
2.	RESPONSIBILITY	1
3.	APPLICABILITY	3
4.	TERMS AND DEFINITIONS	3
5.	MAIN BODY	3
6.	REFERENCES	11
7.	REGULATORY REQUIREMENTS	11
8.	TRAINING	11
	COMPLIANCE AND EXCEPTIONS	
	ATTACHMENTS	
11.	RECORD RETENTION	12
12.	PROCESS CONTROLS	12
13.	REVISION HISTORY	13

1. PURPOSE / SCOPE

1.1. This procedure documents PPL Electric Utilities Corporation (PPL EU) process for the Transmission Vegetation Management Program (TVMP) to ensure that vegetation does not reach the Minimum Vegetation Clearance Distance (MVCD) during all operating conditions and vegetation does not cause sustained outages. PPL EU uses a defense-in-depth strategy to manage vegetation located on transmission rights of way (ROW).

2. RESPONSIBILITY

- 2.1. Manager Vegetation and Program Management
 - 2.1.1. Approve Transmission Vegetation Management Program (TVMP)
 - 2.1.2. Approve and manage work plan for annual completion.
 - 2.1.3. Approve and manage any corrective action plans as a result of minor modifications to the annual work plan
 - 2.1.4. Prioritize work through a cycle-based maintenance program and annual emergent Light Detection and Ranging (LiDAR) program
- 2.2. Foresters and Supervisor Vegetation Management
 - 2.2.1. Develop and maintain a Transmission Vegetation Management Program (TVMP)
 - 2.2.2. Confirm all applicable lines are managed in the annual work plan

© 2024 PPL Electric Utilities Corporation. All rights reserved. Business Use

Proven Track Record

PPL EU places great emphasis on the value of vegetation management, since it recognizes the importance of proactive inspections and maintenance. line management. Utilizing Integrated Vegetation Management "IVM," PPL EU has maintained a "Wire Zone – Border Zone" program for the Transmission Electric System facilities since 2012. This approach has allowed for consistently reduced operating costs. In addition to "IVM" and "Wire Zone – Border Zone," PPL EU utilizes remote sensing technology such as LiDAR and helicopter observations to monitor vegetation along the entire system. As a testament to the thoroughness of the Vegetation Management program, all work that is completed is

100% inspected. PPL EU is committed to continued vegetation management investment, which can be seen in Figure 12.

Figure 12: Specific Vegetation Management Work

Type of work	Unit	2019	2020	2021	2022	2023	2024
230-500kV	Miles	627	901	702	742	839	823
Cycle Maintenance - Herbicide	Miles	345	495	356	396	352	442
Cycle Maintenance - Trim	Miles	281	406	345	346	487	381
138kV	Miles	182	92	202	90	183	88
Cycle Maintenance - Herbicide	Miles	57	63	145	28	55	60
Cycle Maintenance - Trim	Miles	125	29	57	62	128	28
69kV	Miles	1455	1653	1541	1727	1547	1670
Cycle Maintenance - Herbicide	Miles	787	936	665	766	866	953
Cycle Maintenance - Trim	Miles	668	717	877	960	680	718
Grand Total	Miles	2264	2646	2446	2559	2568	2582

Proactive and Extensive Community Outreach

The PPL EU VM program prides itself on early outreach and communication with affected stakeholders. The team distributes a communication plan comprised of a letter and a brochure four weeks prior to maintenance, which provides information about the work to be done as well as contact information. The VM group is committed to responding to all phone calls within 24 hours of receipt, which speaks to the dedication of the organization.

Qualified Employees

The VM organization is unique because of the high qualifications of the employees. All employees are either degreed foresters or certified arborists, which provides a high level of technical expertise. All employees are initially trained in processes, procedures, and the specifications of the TVMP and receive updates and new training based on new equipment, herbicides, application methods, or other significant changes in vegetation management trends and processes.

Ability to comply with or demonstration of how the Applicant plans to be able to comply with NERC Reliability Standards

As an operating member of PJM, PPL EU has consistently performed to the NERC Reliability Standards. This is accomplished through a robust NERC Compliance program that is integrated within PPL EU's existing programs and processes and are extended to new assets added to the PPL EU transmission grid.