Reactive Reserves & Unit Testing

PJM Initial Training Program

Student Guide

Prepared by: State & Member Training PJM©2025

Table of Contents

Course Overview	3
Objectives	4
Reactive Capability	4
Capability Curve/Limitations	5
Reporting Reactive Capability Data to PJM	6
Reactive Capability Seasonal Review	8
What Reactive Information is Reported?	9
Reactive Testing	9
Reactive Testing	10
Voltage Profile 500kV - 7/6/99	11
Generator Reactive Testing - Who's Required	12
Unit Types	13
Unit Types	14
Max Lag and Max Lead	15
Testing Process	16
Testing Process	17
Testing Process	18
Reactive Capability Testing - Reporting Results	19
Test Results	20
External Operational Limitation	21
Internal Operational Limitation	22
Knowledge Check	22
Resources & References	23
Resources & References	24

Sui	mmary	24
	Summary	25
	Questions	26

Objectives

- •Identify the process for monitoring and maintaining reactive reserves
- •Identify the reactive capability testing process and requirements

Capability Curve/Limitations

Reporting Reactive Capability Data to PJM

Reporting Reactive Capability Data to PJM

Dispatchable Unit

Unit Info	MW	Min MVAR	Max MVAR	Comment
Point 1	50	-80	250	Typical net ECO Min
Point 2	100	-75	240	
Point 3	150	-70	230	
Point 4	200	-65	220	
Point 5	250	-60	210	
Point 6	300	-55	190	
Point 7	350	-50	180	Typical net ECO Max
Point 8	375	-45	170	*

^{*}Max possible unit net output considering ideal operating conditions such as winter ambient temperatures, low cooling water temps, optimum fuel conditions, etc.

Reporting Reactive Capability Data to PJM

Unit that can also operate as a synchronous condenser

Unit Info	MW	Min MVAR	Max MVAR	Comment
Point 1	0	-50	150	Synchronous Condensing operating point
Point 2	70	-25	240	Typical net ECO Min
Point 3	75	-22	230	
Point 4	80	-20	220	
Point 5	85	-18	210	
Point 6	90	-15	190	
Point 7	95	-12	180	Typical net ECO Max
Point 8	100	-10	170	*

^{*}Max possible unit net output considering ideal operating conditions such as winter ambient temperatures, low cooling water temps, optimum fuel conditions, etc.

PJM©2025

Reporting Reactive Capability Data to PJM

Inverter-based Energy Storage Resource

Unit Info	MW	Min MVAR	Max MVAR	Comment
Point 1	-20	-22	22	Max Active Power Charging (Min MW)
Point 2	-14	-26	26	
Point 3	-7	-29	29	
Point 4	0	-30	30	Inverter MVA Capability Curve Rating
Point 5	6	-29	29	
Point 6	12	-27	27	
Point 7	18	-24	24	
Point 8	25	-17	17	Max Active Power Discharging (Max MW)

.

Reactive Capability Seasonal Review

What Reactive Information is Reported?

PJM©2025

Reactive Testing

PJM©2025

Voltage Profile 500kV - 7/6/99

Generator Reactive Testing - Who's Required

Unit Types

Unit Type	MW Output	MVAR Output	Test Duration
Fossil, Hydroelectric & Blackstart	Max	Max Lag	One Hour
	Max	Max Lead	When limit reached
	Min	Max Lag	When limit reached
	Min	Max Lead	When limit reached
Synchronous Condenser or Generator that	» -	Max Lag	One Hour
operates in the condensing mode to provide			
reactive support	-	Max Lead	When limit reached
Nuclear	Max	Max Lag	One Hour
	Max	Max Lead	When limit reached
Variable (e.g. Wind and Solar)	Variable	Max Lag	When limit reached
(Testing done with at least 90% of turbines or			
inverters on line)	Variable	Max Lead	When limit reached
Inverter based energy storage resources	Max	Max Lag	When limit reached
	Max	Max Lead	When limit reached
Max MW Output = fully discharging	Zero	Max Lag	When limit reached
	Zero	Max Lead	When limit reached
Min MW Output = fully charging	Min	Max Lag	When limit reached
	Min	Max Lead	When limit reached

1:

Unit Types

Unit Type	MW Output	MVAR Output	Test Duration
DC-Coupled Inverter Based Hybrid Resource	Max	Max Lag	When limit reached
	Max	Max Lead	When limit reached
	Zero	Max Lag	When limit reached
	Zero	Max Lead	When limit reached
	Min	Max Lag	When limit reached
	Min	Max Lead	When limit reached
AC-Coupled Inverter Based Hybrid Resource	Max	Max Lag	When limit reached
	Max	Max Lead	When limit reached
	Max Inverter Operating Point	Max Lag	When limit reached
	Max Inverter Operating Point	Max Lead	When limit reached
	Zero	Max Lag	When limit reached
	Zero	Max Lead	When limit reached
	Min	Max Lag	When limit reached
	Min	Max Lead	When limit reached
	12		

Max Lag and Max Lead

Testing Process

Testing Process

Testing Process

Reactive Capability Testing - Reporting Results

Reactive Capability Testing – Reporting Results

Generator Owner shall complete the Reactive Capability Testing Form within 30 calendar days from the test date

17

Test Results

External Operational Limitation

Internal Operational Limitation

1. All test results must be submitted to PJM within what time frame?

- a. 30 days
- b. 60 days

PJM©2025

- c. 3 months
- d. 6 months

2. A facility will be considered as passing its reactive capability test if it meets what criteria? (Select all that apply)

- a. Within 5% of stated limits
- b. Greater than 5% of stated limits
- c. Below 5% of stated limits

Resources & References

Summary

Summary

In this presentation, we:

- Identified the process for monitoring and maintaining reactive reserves
- Identified the reactive capability testing process and requirements

22

Questions

Questions

PJM Client Management & Services			
Telephone: (610) 666-8980			
Toll Free Telephone: (866) 400-8980			
Website: www.PJM.com			
Email: trainingsupport@pjm.co			

24