

Seasonal Auction Clearing: Detailed Walkthrough

RASTF – CIFP June 21, 2023

PJM©2023

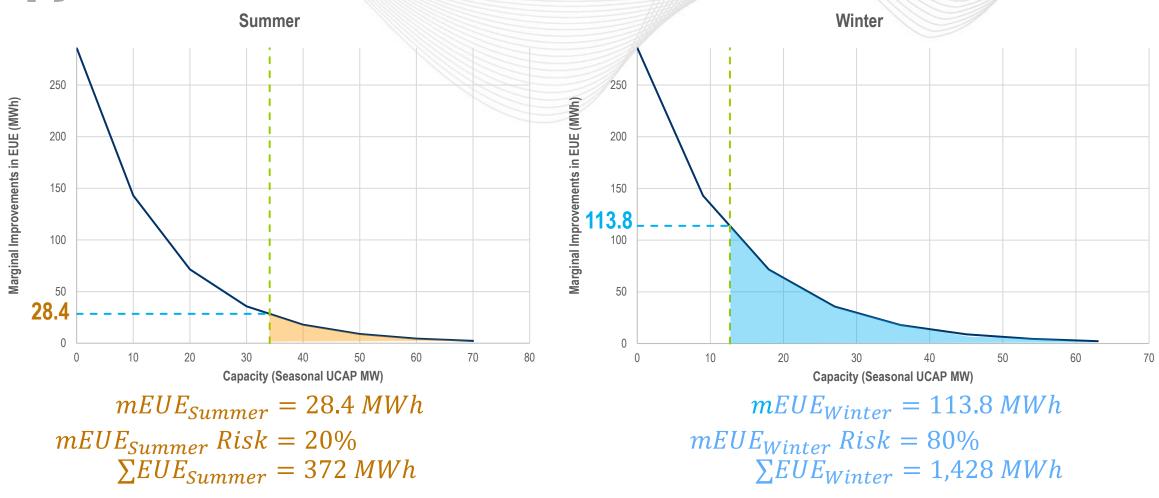
Overview

Seasonal Auction Clearing – Detailed Walkthrough

- **1.** Seasonal Demand Curves
- 2. Seasonal Supply Offer Curves and Seasonal Clearing
- 3. Adjustments to fit to an Annual VRR curve ("Seasonal Demand + Annual VRR Approach")

Objective: Review PJM proposed approach to determining supply and demand inputs in the proposed seasonal capacity market framework, and to clearing the auction to select lowest-cost seasonal and annual resources to maximize efficiency of the market clearing outcomes.

Seasonal Demand Curves



Seasonal Demand Curves: Overview

- Seasonal Demand Curves reflect willingness to pay for seasonal capacity
 - Reliability target based on modeled assumptions (resource mix, unit performance, weather patterns, etc.).
 - Each seasonal curve is calculated as the derivative of EUE with respect to seasonal capacity (dEUE/dQ).
 - The marginal reliability impact of an increment of capacity in each season is equal to the expected number of MWh of unserved energy that such capacity can serve (i.e., 1 MW x LOLH hours).
- At the expected reliability requirement there are a certain number of EUE MWh expected in each season. The sum of the expected EUE MWh, at the reliability requirement, equals the 1-in-10 equivalent standard.

Seasonal Demand Curves: Expected Modeled EUE Allocation

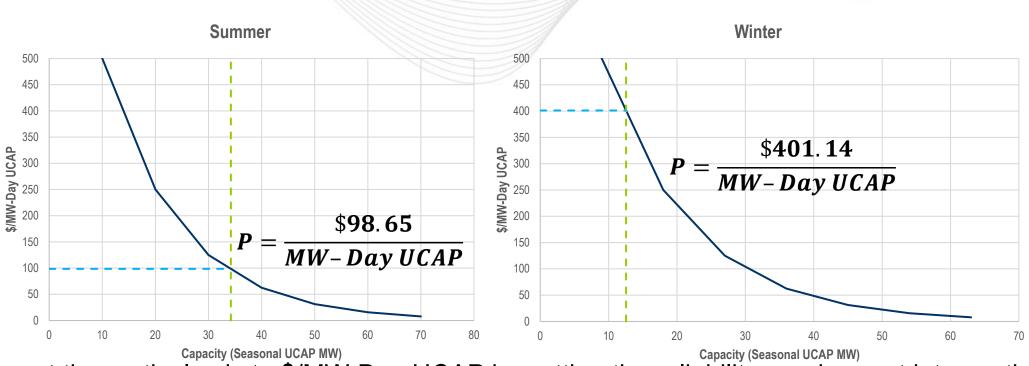
 $EUE_{Annual} = 372 \ MWh + 1,428 \ MWh = 1,800 \ MWh$

pjm

Seasonal Demand Curves: Adjust for the Reference Resource

- Reference Resource Net CONE is used to convert the marginal EUE curves from MWh/MW UCAP to \$/MW UCAP
 - Objective: Determine the willingness to pay for incremental capacity for each season such that (1) the Reference Resource covers annual Net CONE at the seasonal targets, while (2) appropriately reflecting relative reliability value of capacity in each season.
 - Approach: Convert the annual Reference Resource's Net CONE from \$/MW-Day ICAP to a Seasonal \$/MW-Day UCAP based on relative seasonal mEUE at the Reliability Requirement.

• Factors needed for conversion:


- Net CONE Tariff approved value
- Seasonal ELCC accreditation Output from probabilistic model
- **Expected Seasonal mEUE risk weight** Calculated on the previous slide

Seasonal Demand Curves: Reference Resource Conversion

Seasonal Demand Curves: Reference Resource Conversion						
	Summer	Winter	Annual			
ICAP	1,000 MW	1,000 MW	1,000 MW			
Net CONE ICAP			\$184/MW-Day ICAP			
Seasonal ELCC Accreditation	90%	70%				
Seasonal UCAP	900 MW	700 MW				
$ICAP \times ELCC_{Season}$						
Expected Seasonal mEUE Risk Weight	20%	80%				
Annual UCAP Contribution $UCAP_{Season} \times mEUE_{Seasonal Share}$	180 MW	560 MW	740 MW			
Net CONE UCAP	\$98.65/MW-Day Summer UCAP	\$401.14/MW-Day Winter UCAP	\$248.65/MW-Day UCAP			
	Annual Net $CONE_{UCAP}$ × $mEUE_{Seasonal Share}$ × $\frac{365}{184}$	Annual Net $CONE_{UCAP}$ × $mEUE_{Seasonal Share}$ × $\frac{365}{181}$	$\frac{Annual_{ICAP}}{Annual_{UCAP}} \times \frac{Net \ CONE \ \$}{MW - Day \ ICAP}$			
The Seasonal Net CONE prices are set to the reliability The " $\frac{365}{X}$ " factor reflects numbers of days in the year over number of requirement for each Seasonal Demand Curve.						

Apjm

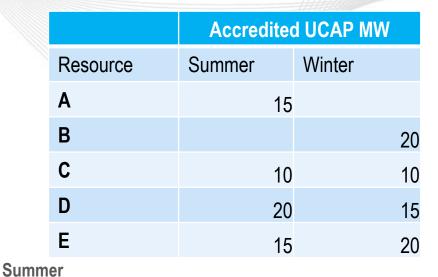
Seasonal Demand Curves: Seasonal Demand Curves Adjustment

- Convert the vertical axis to \$/MW-Day UCAP by setting the reliability requirement intersection for each curve to the calculated Seasonal Net CONE of the Reference Resource.
- Seasonal Demand Curves are set!

Seasonal Supply Offer Curves and Seasonal Demand Curves Clearing

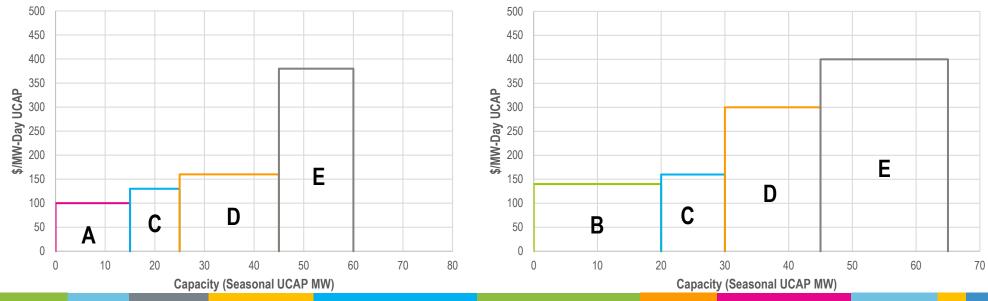
Seasonal Offer Structure

• Each resource is enabled to offer in a way that best reflects its economic going-forward avoidable costs of selling capacity and taking on a capacity obligation:


- Summer offer component: reflects costs avoidable only if not committed for summer commitment period.
- Winter offer component: parallel with summer.
- Annual offer component: reflects costs avoidable only if not committed in either season.
 May be zero if resource plans continued operation and relevant costs (CPQR, etc.) of a capacity commitment are seasonal and included in seasonal offer components.

(Simplified) Illustrative Examples

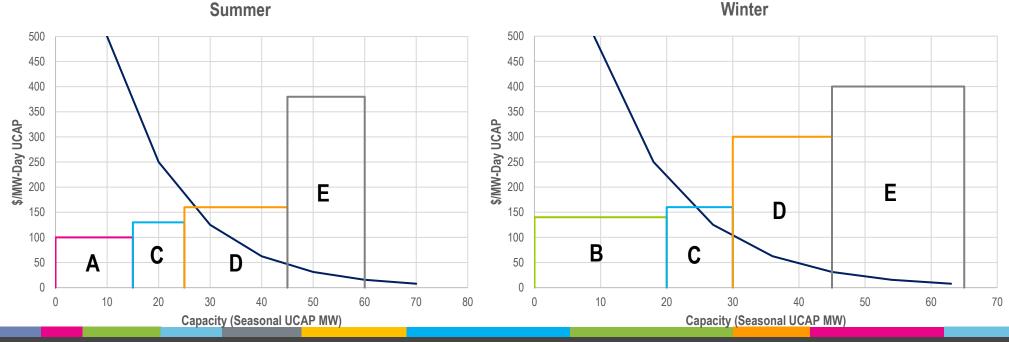
(Simplified) indstrative	
Example Resource	Offer Structure
Resource with qualified & accredited capacity n summer only ("summer only resource")	Includes all costs in summer offer component
esource with qualified & accredited capacity both seasons ("annual resource") whose voidable costs are incurred for continued peration, but is indifferent to receiving evenues in one or both seasons, AND is adifferent to receiving commitment in one or oth seasons	Includes all costs in annual offer component; seasonal offer components equal zero
Annual resource who plans to continue operation whose avoidable costs are entirely attributable to one season or the other	Separate all costs into summer and winter costs; annual offer component equals zero
Innual resource who incurs some costs it ould avoid if uncommitted in both seasons, nd other costs it could avoid if uncommitted on one season or the other	Provide non-zero offer summer, winter, and annual offer components reflecting costs


- Each resource only offers as a seasonal resource based on accredited UCAP MW and costs avoidable if not committed for that season.
- Resources can have different accredited UCAP MW depending on the season.

Example 1: Only Seasonal Offers

Offer \$/MW-Day UCAP					
Summer		Winter			
	\$100				
			\$140		
	\$130		\$160		
	\$180		\$300		
	\$380		\$400		
\A/!t.e.u					

Winter



- All offers are flexible, meaning any amount of MW can clear.
- Example with only Seasonal offers is intuitive to understand.
- Resource D is marginal in Summer, and Resource C is marginal in Winter

Example 1: Only Seasonal Offers + Demand

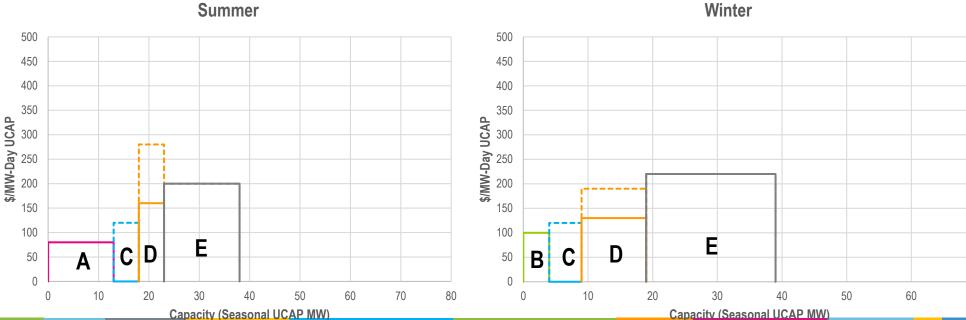
	Accredited UCAP MW			Offer \$/MW	-Day UCAP	
Resource	Summer	Winter		Summer	Winter	
Α	15	0		\$100		
В	0	20				\$140
C	10	10		\$130		\$160
D	20	15		\$180		\$300
E	15	20 Wint		\$380		\$400

Example 1: Clearing Results

	Summer Au	iction Results	Winter Auct	ion Results
Clearing Price (\$/MW-Day UCAP)	\$180		\$1	60
	Cleared Summer MW (UCAP)	Summer Daily Revenue	Cleared Winter MW (UCAP)	Winter Daily Revenue
Α	15 MW	\$2,700 per day		
В			20 MW	\$3,200 per day
C	10 MW	\$1,800 per day	5 MW	\$800 per day
D	3 MW	\$540 per day		
E				
Total	28 MW	\$5,040 per day	25 MW	\$4,000 per day

Example 2: Seasonal and Annual Offers

	ICAP	Accredited UCAP			Offer \$/MW-Day ICAP (Season) Offer \$/MW-day ICAP (Annual)			/-Day UCAP son)
Resource		Summer	Winter	Summer	Winter		Summer +maximum annual	Winter +maximum annual
	[1]	[2]	[3]	[4]	[5]	[6]	$\frac{[4] \times [1]}{[2]} + \left(\frac{[6] \times [1]}{[2]} \times 2\right)$	$\frac{[5]\times[1]}{[3]}+\left(\frac{[6]\times[1]}{[3]}\times2\right)$
Α	16	13	0	\$65.00			\$80	
В	5	0	4		\$80.00			\$100
С	6	5	5			\$50.00	\$120	\$120
D	12	5	10	\$66.67	\$108.33	\$25.00	<mark>\$160</mark> +\$120	<mark>\$130+\$60</mark>
E	25	15	20	\$120.00	\$176.00		\$200	\$220


- Resources would input offers based on ICAP and \$/MW-Day ICAP per season and annually.
- Maximum annual offer component reflects costs that would need to be recovered in a single season if the other season did not contribute to recovery of annual costs.
- Simplified $\frac{365}{X}$ to $\frac{365}{182.5}$ when calculating the maximum annual offer component (just for example).

- Each resource offers as a seasonal, annual, or combination of seasonal and annual resource for costs avoidable if not committed for that season or annually.
- Annual offers represent the total cost ٠ required to operate for the entire Delivery Year. Dollars earned in one season reduce the dollars needed in the other season to meet the Annual offer.

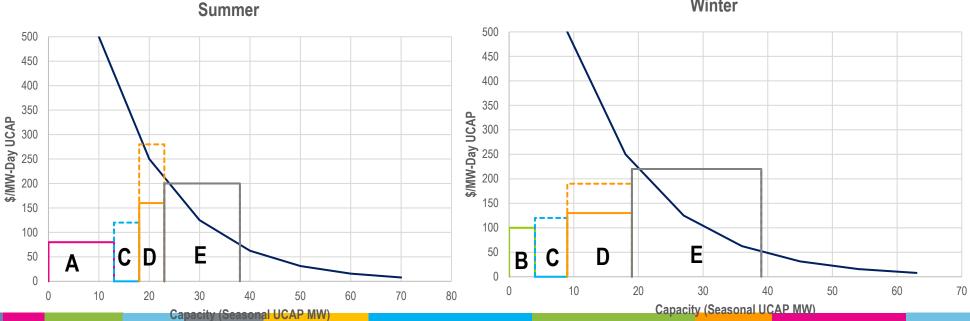
Example 2: Seasonal and Annual Offers, Continued							
	Accredite	d UCAP		Offer \$/MW	-Day UCAP		
Resource	Summer	Winter		Summer +maximum annual	Winter +maximum annual		
Α	13	C		\$80 (S)			
В	0	4			\$1		
C	5	5		\$120 (A)	\$		
D	5	10		\$160 (S) +\$120 (A)	\$130 (W) +		
E	15	20		\$200 (S)	\$2		

Offer \$/MW-Day UCAP				
Summer +maximum annual	Winter +maximum annual			
\$80 (S)				
	\$100 (W)			
\$120 (A)	\$120 (A)			
\$160 (S) +\$120 (A)	\$130 (W) +\$60 (A)			
\$200 (S)	\$220 (W)			

www.pjm.com | Public

PJM©2023

70


Summer

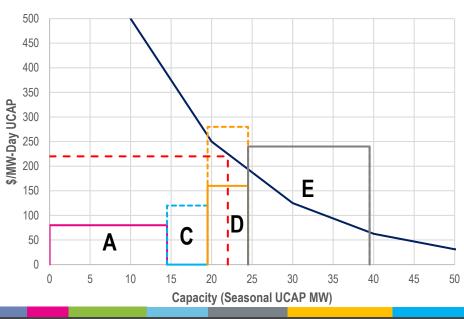
- All offers are flexible, meaning any • amount of MW can clear.
- Resource D fully clears in Winter, • allowing Resource D to also fully clear in Summer.
- Resource E is marginal in Summer • and Winter

	•	
	Accredit	ed UCAP
Resource	Summer	Winter
Α	13	0
В	0	4
С	5	5
D	5	10
Е	15	20

Offer \$/MW-Day UCAP				
Summer +maximum annual	Winter +maximum annual			
\$80 (S)				
	\$100 (W)			
\$120 (A)	\$120 (A)			
\$160 (S) +\$120 (A)	\$130 (W) +\$60 (A)			
\$200 (S)	\$220 (W)			

Winter

Example 2: Seasonal and Annual Offers + Demand


Example 2: Clearing Results

	Summer Au	ction Results	Winter Auct	ion Results
Clearing Price (\$/MW-Day UCAP)	\$2	200	\$2	20
	Cleared Summer MW (UCAP)	Summer Daily Revenue	Cleared Winter MW (UCAP)	Winter Daily Revenue
Α	13 MW	\$2,600 per day		
В			4 MW	\$880 per day
C	5 MW	\$1,000 per day	5 MW	\$1,100 per day
D	5 MW	\$1,000 per day	10 MW	\$2,200 per day
E	1 MW	\$200 per day	1 MW	\$220 per day
Total	24 MW	\$4,800 per day	20 MW	\$4,400 per day

- Resource D's marginal value exceeded both its seasonal and annual costs.
- Resource D's annual costs are fully covered in winter, therefore it only required the summer offer component in order to clear.

- All offers are flexible, meaning any amount of MW can clear.
- In both seasons, seasonal revenue exceeds seasonal offer component for all cleared resources. Both seasons contribute to recovery of annual costs sufficiently so Resource D partially clears.
- Resource D is the marginal resource in both seasons.
 Summer



Example 3: 3	Seasonal	and Annual	Offers +	Demand
--------------	----------	------------	----------	--------

	Accredited UCAP		
Resource	Summer	Winter	
Α	14.5	0	
В	0	14	
C	5	5	
D	5	10	
E	15	20	

Offer \$/MW-Day UCAP				
Summer (+maximum annual)	Winter (+maximum annual)			
\$80 (S)				
	\$100 (W)			
\$120 (A)	\$120 (A)			
\$160 (S) +\$120 (A)	\$135 (W) +\$60 (A)			
\$240 (S)	\$220 (W)			

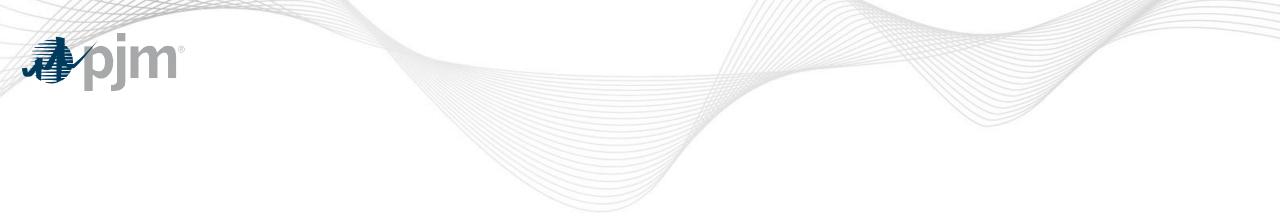
Winter

www.pjm.com | Public

Example 3: Clearing Results

	Summer Au	ction Results	Winter Auction Results		
Clearing Price (\$/MW-Day UCAP)	\$2	20	\$1	60	
	Cleared Summer MW (UCAP)	Summer Daily Revenue	Cleared Winter MW (UCAP)	Winter Daily Revenue	
Α	14.5 MW	\$3,190 per day			
В			14 MW	\$2,240 per day	
C	5 MW	\$1,100 per day	5 MW	\$800 per day	
D	2.5 MW	\$550 per day	5 MW	\$800 per day	
E					
Total	22 MW	\$4,840 per day	24 MW	\$3,840 per day	

- Resource D is partially clearing and recovering it's total costs required for the cleared amount.
- Total seasonal revenue is equal to the total cleared costs of Resource D.



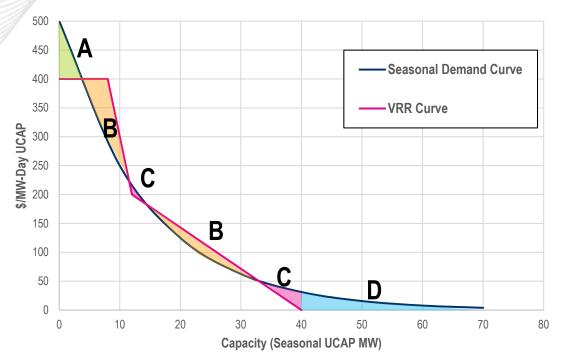
Example 3: Resource D's Costs and Revenues, Detail

	ICAP	Summer UCAP	Winter UCAP
Total	12 MW	5 MW	10 MW
Cleared	6 MW	2.5 MW	5 MW

	Costs			Revenue					
	Cleared MW ICAP [1]	\$/MW-Day ICAP [2]	Days [3]	\$/Year [1] × [2] × [3] = [4]		Cleared MW UCAP [5]	\$/MW-Day UCAP [6]	Days [7]	\$/Year [5] × [6] × [7] = [8]
Summer	6 MW	\$66.67	182.5	\$73,000		2.5 MW	\$220.00	182.5	\$100,375
Winter	6 MW	\$108.33	182.5	\$118,625		5 MW	\$160.00	182.5	\$146,000
Annual	6 MW	\$25.00	365	\$54,750					
Total				\$246,375					\$246,375

Total costs for 6 MW ICAP cleared of \$246,375 per year [4] is equal to the total revenue for 2.5 MW summer UCAP cleared and 5 MW Winter UCAP cleared of \$246,375 per year [8].

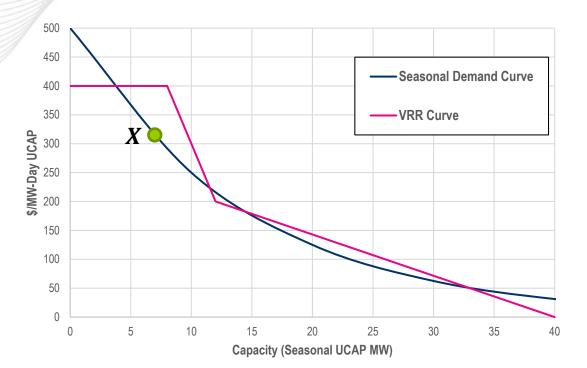
Adjustments to fit the Annual VRR Curve


- Seasonal Demand Curves are an output from the probabilistic modeling and are scaled based Net CONE of the Reference Resource, the Seasonal Reliability Requirements, and the relative mEUE expected across seasons.
- Annual VRR Curves are set based on Net CONE of the Reference Resource, and the Annual Reliability Requirements (as today).
- Both curve designs are downward sloping, but there are a few key differences.
 - Seasonal Demand Curves are naturally non-linear and convex that extend to positive infinity along the y-axis and positive infinity along the x-axis.
 - The VRR curves are based on three points (A, B, C) which cannot exceed the price of Point A and cannot exceed the quantity of Point C.

22

Annual VRR curve and Seasonal Demand Curves

- A: there is no prescribed maximum price on the Seasonal Demand Curves
- B: Seasonal Demand Curve is under valuing Capacity relative to the VRR curve
- C: Seasonal Demand Curve is over valuing capacity relative to the VRR curve
- D: there is no maximum quantity on the Seasonal Demand Curves

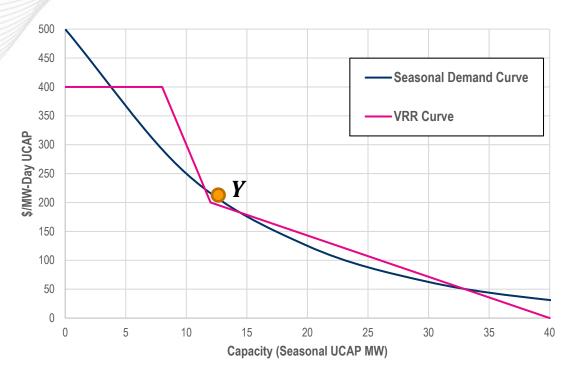


Seasonal and VRR Curves

Jpjn

Seasonal-VRR Adjustment Factor Up

- Clearing at point X on the Seasonal Demand Curve values capacity less than the Annual VRR Curves.
- The Seasonal Demand Curves must be adjusted to align the auction clearing amount with the Annual VRR Curves.
- A Seasonal-VRR Adjustment Factor will be proportional scaling of both seasonal demand curves to align with the Annual VRR curve.
- The Seasonal-VRR Adjustment Factor when clearing at point *X*, will be above 100% to realign the Seasonal Demand Curves with the Annual VRR Curves.



Seasonal and VRR Curves

.**⊅**∕pjm

Seasonal-VRR Adjustment Factor Down

- Clearing at point *Y* on the Seasonal Demand Curve values capacity more than the Annual VRR Curves.
- The Seasonal Demand Curves must be adjusted to align the auction clearing amount with the Annual VRR Curves.
- A Seasonal-VRR Adjustment Factor will be proportional scaling of both seasonal demand curves to align with the Annual VRR curve.
- The Seasonal-VRR Adjustment Factor when clearing at point *Y*, will be below 100% re-align the Seasonal Demand Curves with the Annual VRR Curves.

Seasonal and VRR Curves

Clearing Approaches: Review and Conclusions

- Seasonal Demand Curves:
 - Seasonal Demand Curves: Once created from the modeling, are easily scalable to the appropriate pricing scale, similar to the VRR curve.
 - Seasonal Supply Offers: Allow flexibility for allocating costs, or allow resources to offer like today with a single annual offer.
 - Seasonal Clearing: Clears on the least cost solution based on the combination of seasonal offers, allowing for greater flexibility within the optimization.
- Including the Annual VRR Curves:
 - Seasonal Demand Curves: No longer anchored, and will require a Seasonal-VRR adjustment factor, calculated as part of the auction clearing, to ensure the calculated annual MW and annual clearing price clear along the annual VRR curve. This Seasonal-VRR adjustment factor will be the same for both seasons (e.g. 101%, 102%, 99%, etc.)
 - Adds complexity behind the scenes, but preserves clearing along the approved Annual VRR Curves.
 - Under this approach, PJM will not be able to post seasonal demand curves before the auction as they will shift depending on the submitted sell offers, and the seasonal intersection points.

Comparison of two clearing approaches

Component	Seasonal Demand Curves	Annual VRR + Seasonal Design
Complexity	Simpler approach to a multi period market	More complicated, but technically feasible
Optimization	Less computationally intensive to clear	More computationally intensive, and requires adjustable Seasonal Demand Curves
Representation of Capacity Value	Maintains consistent willingness to pay to avoid EUE MWh	VRR Curve does not value capacity beyond Point C Fluctuating value for willingness to pay per avoided EUE
Just and Reasonable	FERC-approved marginal reliability impact ("MRI") curves for ISO-NE	FERC-approved approach for PJM
Changes from Status Quo	Ignore the Annual VRR curve; preserve Reference Resource & Net CONE	Most direct translation to what we do today

Contact

SME/Presenter:

Pat Bruno

Patrick.Bruno@pjm.com

Walter Graf

Walter.Graf@pjm.com

Skyler Marzewski

Skyler.Marzewski@pjm.com

Facilitator:

Dave Anders

Dave.Anders@pjm.com

Secretary:

Jaclynn Lukach

Jacklynn.Lukach@pjm.com

Auction Clearing Examples

Member Hotline (610) 666 – 8980 (866) 400 – 8980 custsvc@pjm.com

