Operations Report

MC Webinar

October 2015
Load Forecasting Error (Achieved 80% of the Time)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Error</td>
<td>1.38</td>
<td>1.90</td>
<td>1.96</td>
<td>1.79</td>
<td>1.92</td>
<td>2.18</td>
<td>1.20</td>
<td>1.49</td>
<td>2.60</td>
<td>2.39</td>
<td>2.78</td>
<td>2.56</td>
<td>1.44</td>
</tr>
</tbody>
</table>

On-Peak

Off-Peak

Average

3% Line
Average RTO load forecast error performance for October was 1.31%, within the goal of 3%.
Peak Load Average Forecast Error by Zone

Forecast Error (Absolute %)

- 2013 Q1
- 2013 Q2
- 2013 Q3
- 2013 Q4
- 2014 Q1
- 2014 Q2
- 2014 Q3
- 2014 Q4
- 2015 Q1
- 2015 Q2
- 2015 Q3
- 2015 Q4

2014 RTO MIDATL AP CE AEP DAY DUQ DOM ATSI DEOK EKPC
Peak Load Average Forecast Error by Zone

<table>
<thead>
<tr>
<th>Quarter</th>
<th>RTO</th>
<th>MIDATL</th>
<th>AP</th>
<th>CE</th>
<th>AEP</th>
<th>DAY</th>
<th>DUQ</th>
<th>DOM</th>
<th>ATSI</th>
<th>DEOK</th>
<th>EKPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013 Q1</td>
<td>2.0%</td>
<td>1.9%</td>
<td>2.9%</td>
<td>1.5%</td>
<td>3.5%</td>
<td>3.0%</td>
<td>1.8%</td>
<td>4.5%</td>
<td>2.4%</td>
<td>2.5%</td>
<td>4.3%</td>
</tr>
<tr>
<td>2013 Q2</td>
<td>1.8%</td>
<td>2.4%</td>
<td>2.6%</td>
<td>2.6%</td>
<td>2.2%</td>
<td>2.3%</td>
<td>2.2%</td>
<td>3.2%</td>
<td>1.9%</td>
<td>2.9%</td>
<td>4.6%</td>
</tr>
<tr>
<td>2013 Q3</td>
<td>2.0%</td>
<td>2.8%</td>
<td>2.9%</td>
<td>3.1%</td>
<td>2.4%</td>
<td>3.3%</td>
<td>2.9%</td>
<td>3.1%</td>
<td>2.7%</td>
<td>2.7%</td>
<td>3.8%</td>
</tr>
<tr>
<td>2013 Q4</td>
<td>1.6%</td>
<td>1.7%</td>
<td>2.3%</td>
<td>2.0%</td>
<td>2.0%</td>
<td>2.6%</td>
<td>2.2%</td>
<td>2.8%</td>
<td>2.0%</td>
<td>2.5%</td>
<td>4.6%</td>
</tr>
<tr>
<td>2014 Q1</td>
<td>1.4%</td>
<td>1.8%</td>
<td>2.5%</td>
<td>1.6%</td>
<td>2.2%</td>
<td>2.5%</td>
<td>2.0%</td>
<td>3.0%</td>
<td>2.1%</td>
<td>2.7%</td>
<td>4.2%</td>
</tr>
<tr>
<td>2014 Q2</td>
<td>1.6%</td>
<td>2.1%</td>
<td>2.6%</td>
<td>2.8%</td>
<td>2.4%</td>
<td>3.1%</td>
<td>3.5%</td>
<td>2.6%</td>
<td>2.2%</td>
<td>3.2%</td>
<td>3.2%</td>
</tr>
<tr>
<td>2014 Q3</td>
<td>1.6%</td>
<td>2.2%</td>
<td>2.1%</td>
<td>2.9%</td>
<td>2.0%</td>
<td>3.2%</td>
<td>2.9%</td>
<td>2.7%</td>
<td>2.5%</td>
<td>3.1%</td>
<td>4.1%</td>
</tr>
<tr>
<td>2014 Q4</td>
<td>1.2%</td>
<td>1.5%</td>
<td>1.9%</td>
<td>1.6%</td>
<td>2.3%</td>
<td>1.7%</td>
<td>1.9%</td>
<td>2.4%</td>
<td>1.5%</td>
<td>2.7%</td>
<td>4.3%</td>
</tr>
<tr>
<td>2015 Q1</td>
<td>1.5%</td>
<td>1.9%</td>
<td>2.9%</td>
<td>1.7%</td>
<td>2.6%</td>
<td>2.7%</td>
<td>2.5%</td>
<td>3.8%</td>
<td>2.4%</td>
<td>2.6%</td>
<td>5.5%</td>
</tr>
<tr>
<td>2015 Q2</td>
<td>1.3%</td>
<td>1.7%</td>
<td>2.5%</td>
<td>2.7%</td>
<td>2.1%</td>
<td>3.0%</td>
<td>3.5%</td>
<td>2.2%</td>
<td>2.4%</td>
<td>2.8%</td>
<td>3.3%</td>
</tr>
<tr>
<td>2015 Q3</td>
<td>1.7%</td>
<td>2.4%</td>
<td>2.4%</td>
<td>3.4%</td>
<td>2.4%</td>
<td>3.6%</td>
<td>3.2%</td>
<td>2.5%</td>
<td>2.3%</td>
<td>3.4%</td>
<td>3.2%</td>
</tr>
<tr>
<td>2015 Q4</td>
<td>1.4%</td>
<td>1.4%</td>
<td>1.7%</td>
<td>3.3%</td>
<td>1.6%</td>
<td>1.3%</td>
<td>1.5%</td>
<td>1.3%</td>
<td>1.0%</td>
<td>1.5%</td>
<td>3.3%</td>
</tr>
</tbody>
</table>
PJM's BAAL performance has exceeded the goal of 99% for each month in 2015.
• There were zero spinning events in the month of October.
• There were four reserve sharing events with NPCC.
• The following Emergency Procedures occurred in October:
 – 41 Post-Contingency Local Load Relief Warnings (PCLLRW)
 – 2 Geomagnetic Disturbance Events
 – 24 High System Voltages
 – 5 Minimum Generation Alerts
The average forced outage rate YTD is 4.67% or 8,552 MW.
The average total outage rate YTD is 15.51% or 28,517 MW.
The average forced outage rate YTD is 4.67% or 8,552 MW. The average total outage rate YTD is 15.51% or 28,517 MW.
2015 Planned Emergency & Unplanned Transmission Outage Summary

Note: “Unplanned Outages” include tripped facilities. One tripping event may involve multiple facilities.
PJM experienced no spinning events during the month of October.
Perfect Dispatch Estimated Production Cost Savings
Through October 2015

Monthly Production Cost Savings ($ in Millions)
Cumulative Production Cost Savings ($ in Millions)

1 2 3 4 5 6 7 8 9 10 11 12

Perfect Dispatch Estimated Production Cost Savings
Through October 2015

Monthly Production Cost Savings
Cumulative Production Cost Savings

Month/Year

$0 $3 $6 $9 $12 $15 $18 $21 $24 $27 $30

$0 $100 $200 $300 $400 $500 $600 $700 $800 $900 $1,000 $1,100 $1,200

Cumulative Production Cost Savings ($ in Millions)
Monthly Production Cost Savings ($ in Millions)
The year-to-date Perfect Dispatch performance score through October is 86.59%.

The estimated cumulative production cost savings through October 2015 is over $1,148 million with over $124 million in savings thus far in 2015.
Appendix
Goal Measurement: Balancing Authority ACE Limit (BAAL)

• The purpose of the new BAAL standard is to maintain interconnection frequency within a predefined frequency profile under all conditions (normal and abnormal), to prevent frequency-related instability, unplanned tripping of load or generation, or uncontrolled separation or cascading outages that adversely impact the reliability of the interconnection. NERC requires each balancing authority demonstrate real-time monitoring of ACE and interconnection frequency against associated limits and shall balance its resources and demands in real time so that its ACE does not exceed the BAAL (BAALLOW or BAALHIGH) for a continuous time period greater than 30 minutes for each event.

• PJM directly measures the total number of BAAL excursions in minutes compared to the total number of minutes within a month. PJM has set a target value for this performance goal at 99% on a daily and monthly basis. In addition, current NERC rules limit the recovery period to no more than 30 minutes for a single event.
Perfect Dispatch refers to the hypothetical least production cost commitment and Dispatch, achievable only if all system conditions (load forecast, unit availability / performance, interchange, transmission outages, etc.) were known and controllable in advance. While being hypothetical and not achievable in reality, this is useful as a baseline for performance measurement.

The Perfect Dispatch performance goal is designed to measure how well PJM commits combustion turbines (CTs) in real time operations compared to a calculated optimal CT commitment profile.

The Perfect Dispatch performance measure is calculated as 100% x (The accumulative year-to-date optimal CT production cost in Perfect Dispatch / The accumulative year-to-date actual real-time CT production cost).

The Perfect Dispatch performance goal was removed as a goal beginning in 2015. Currently Perfect Dispatch does not have a performance goal, but the metric will continue to be tracked.

The cumulative Estimated Production Cost Savings helps to demonstrate the savings that result from PJM’s process changes since the inception of the Perfect Dispatch analysis in 2008. This estimate is determined by comparing the Perfect Dispatch performance for all resources to benchmarks set at the beginning of the Perfect Dispatch analysis. A benchmark of 98.18% is used for comparison of the 2015 metric which is 99.13% through the end of October.