Analysis of Price Formation Compromise Proposal

MC February 6, 2019 Joe Bowring Catherine Tyler

Elements of Compromise Proposal

- No scarcity true up mechanism in the capacity market
- Penalty factor rises from \$1,000 per MWh to \$2,000 per MWh during hot and cold weather alerts
- Two year phase in of penalty factor
- ORDC slope adjustments
 - 30 to 20 minute uncertainty
 - Removed outlier units in forced outage risk calculation
- Reserve price cap of \$4,000
- Increase in DR participation limit in synchronized reserve market

Scarcity True Up Mechanism

- The scarcity true up mechanism is necessary for an efficient, effective, and equitable transfer of scarcity revenues from the capacity market to the energy market.
- The compromise proposal creates a windfall to generators.
- The compromise proposal does not support a long term transition to the energy market as a daily source of scarcity rents.

Penalty Factor

- Hot and cold weather alerts are the wrong trigger for raising the penalty factor from \$1,000 per MWh to \$2,000 per MWh.
- Greater than \$1,000 per MWh is only needed when PJM approves cost-based offers over \$1,000 per MWh.
- Hot and cold weather alerts are much more frequent.
- Hot and cold weather alerts may only apply to a subsection of the PJM footprint.
- Hot and cold weather alerts may only apply for a portion of the day, creating sudden intraday market transitions.

Penalty Factor and Revenues

- The penalty factor is not directly proportional to the reserve or energy price impact of the ORDC.
- Prices result from both supply and demand.
- Lowering the demand curve does not decrease prices by the dollar or percent amount of the decrease.

ORDC Slope Forecast Time Horizon

- Forecast error is not a good predictor of operator actions.
- The relevant forecast error for 10 minute reserves is no greater than 15 minutes.
- The compromise proposal does not address the time horizon for 30 minute reserves.

ORDC Forced Outage Distribution

- PJM's approach to the inclusion of forced outages in the ORDC is not accurate.
- PJM's approach overstates the forced outage MW and the ORDC.
- PJM's approach assumes that all units are always online.
- PJM's approach misses the fact that there is a significant probability of zero outages for each 30 minute time horizon.
- Removing 30 units from PJM's calculation does not correct the problem.

Forced Outage Distributions

©2019

Forced Outage Distributions

©2019

Forced Outage Distributions

©2019

ORDC Price Comparison

		PJM Method			Using Empirical Forced Outage Distribution			
		Res	erve Level (N	/W)	Reserve Level (MW)			
Season	Time Block	1500	2000	2500	1500	2000	2500	
Summer	1	\$213.7	\$21.9	\$2.7	\$135.4	\$24.3	\$4.8	
	2	\$145.2	\$29.3	\$4.1	\$100.8	\$20.5	\$3.0	
	3	\$206.0	\$37.8	\$6.1	\$136.9	\$27.9	\$4.5	
	4	\$191.2	\$24.0	\$2.5	\$101.3	\$16.1	\$2.3	
	5	\$622.5	\$160.7	\$25.3	\$358.4	\$79.7	\$15.4	
	6	\$396.9	\$114.1	\$22.0	\$244.6	\$59.7	\$11.0	
Winter	1	\$426.0	\$69.1	\$7.6	\$282.0	\$54.7	\$10.9	
	2	\$304.3	\$86.5	\$26.1	\$217.7	\$68.2	\$19.9	
	3	\$651.9	\$196.2	\$31.3	\$459.7	\$124.6	\$24.8	
	4	\$515.4	\$120.4	\$19.6	\$338.3	\$73.2	\$16.6	
	5	\$435.0	\$170.9	\$51.1	\$316.0	\$114.9	\$30.9	
	6	\$300.6	\$47.2	\$4.1	\$153.4	\$25.2	\$2.8	

ORDC Price Comparison

		PJM Method			Using Empirical Forced Outage Distribution			
		Res	erve Level (N	/W)	Reserve Level (MW)			
Season	Time Block	1500	2000	2500	1500	2000	2500	
Spring	1	\$183.7	\$12.6	\$0.9	\$114.1	\$16.9	\$3.4	
	2	\$180.7	\$42.3	\$7.1	\$136.7	\$34.9	\$5.1	
	3	\$495.5	\$115.4	\$20.5	\$349.7	\$81.4	\$17.0	
	4	\$387.7	\$50.2	\$3.3	\$218.2	\$31.9	\$4.9	
	5	\$202.1	\$40.1	\$7.8	\$122.5	\$28.3	\$6.3	
	6	\$445.4	\$186.9	\$63.4	\$337.0	\$137.7	\$44.1	
Fall	1	\$231.7	\$18.1	\$1.3	\$148.2	\$21.8	\$5.9	
	2	\$232.2	\$76.2	\$19.4	\$184.4	\$61.7	\$13.8	
	3	\$379.6	\$56.7	\$4.7	\$234.4	\$36.8	\$3.9	
	4	\$327.7	\$36.2	\$1.7	\$177.0	\$23.8	\$3.1	
	5	\$359.9	\$131.6	\$44.1	\$252.6	\$97.6	\$28.2	
	6	\$282.6	\$106.1	\$28.1	\$197.6	\$77.1	\$15.6	

Demand Response

- There should be no cap on demand response participation in any reserve market.
- The compromise proposal to increase participation up to 50 percent only applies to synchronized reserve.
- The compromise proposal does not allow 30 minute capacity DR to participate in 30 minute reserves.

Monitoring Analytics, LLC 2621 Van Buren Avenue Suite 160 Eagleville, PA 19403 (610) 271-8050

MA@monitoringanalytics.com www.MonitoringAnalytics.com