Fixed / Price Sensitive Demand Bids, Load Response, Virtual Bidding & Pump Storage Optimizer in the Day Ahead Market

Keyur Patel - Sr. Lead Engineer, Day-Ahead Market Operations
Stefan Starkov - Engineer, Day Ahead Market Operations
Special MIC: Electric Storage Resource Participation Model
June 14, 2018
Demand Side Response (DSR)

Consumer’s ability to reduce electricity consumption at their location when wholesale prices are high or the reliability of the grid is threatened.

- End-use customers participate in DSR via Curtailment Service Providers (CSP)
- Meter data required to establish Baseline (CBL)
- Offer curves are required for Energy Market participation (offers submitted via Markets Gateway)
- Only one offer curve can be made available on a daily basis
 - Market Type participation can be Day Ahead, Balancing or Both and is associated with a schedule that can be changed daily by the CSP
 - **DA Market** – If hour clears in DA market then DR should respond with associated MWs. PJM will not dispatch in RT for hours that clear in DA market.
 - **Balancing Market** – DR should follow RT dispatch signal
 - **Both** – If hour does not clear then hour is eligible to be dispatched in RT
• Markets Gateway allows for the selection of either Slope of Block

• Offer curves consist of MW-Price pair segments. Up to ten (10) segments can be defined for each offer curve

• Resource will be cleared / dispatched economically in accordance with the offer curve
Fixed / Price-Sensitive Demand Bids

Hourly demand quantities for which a participant commits to purchase energy at Day-Ahead prices for consumption in the next Operating Day. Bid must specify MW quantity and location (aggregate or bus)

- Fixed Demand → Location, MW
- Price-Sensitive Demand → Location, MW & Price

- Price-Sensitive Demand bids are accepted in single bid-blocks only (up to 9 segments may be submitted per market participant at a specific location)

- If a Market Buyer submits no Day Ahead bid information, then a 0 MW quantity is assumed

- The total MW quantity of Fixed and Price-Sensitive demand bids submitted by an LSE for a given Operating Day must not exceed the LSE’s Daily Demand Bid Limit
Increment Offers & Decrement Bids (Virtual Bidding)

• Increment (Inc) offer
 – Looks like a spot market sale or dispatchable resource
 – “virtual generator” (injects MW)
 – If LMP goes above offer price, Inc will be cleared

• Decrement (Dec) bid
 – Looks like a spot market purchase or price-sensitive demand
 – “virtual load” (withdraws MW)
 – If LMP goes below bid price, Dec will be cleared
How are Virtual Bids Treated?

- INCs & DECs are part of the Day-Ahead Supply curve

- Inc offers/Dec bids can be placed at any eligible trading point where either generation, load, or interchange transactions are settled, or at trading hubs where forward positions can be taken

- Treated just like generation to clear the market

- Can displace more expensive generators and set clearing price in the Day-Ahead Market
INC Offer
- Sells MW into Day Ahead Market at High Price
- Buys replacement MW from Real-Time Market at Lower Price
- Profits when Day-Ahead Prices are Higher than Real-Time Prices

DEC Bid
- Buys MW from Day Ahead Market at Low Price
- Sells those MW in Real-Time Market at Higher Price
- Profits when Day-Ahead Prices are Lower than Real-Time Prices
Example #1 – Increment Offer

Day-Ahead

- Participant offers 100 MW at $30
- Assume Day-Ahead LMP = $35

\[\text{Day-Ahead Settlement} = 100 \text{ MW} \times 35 = 3500 \text{ credit} \]

\[\text{Day-Ahead Position} = 3500 \]

Real-Time

- Assume Real-Time LMP = $20
- Deviation from DA schedule = -100 MW

\[\text{Balancing Settlement} = -100 \text{ MW} \times 20 = 2000 \text{ charge} \]

\[\text{Balancing Position} = -2000 \]

Net position

\[3500 - 2000 = 1500 \text{ credit} \]
Example #2 – Decrement Bid

Day-Ahead
- Participant bids 100 MW at $20
- Assume Day-Ahead LMP = $15
- Day-Ahead Settlement = 100 MW * $15 = $1,500 charge
- Day-Ahead Position = -$1,500

Real-Time
- Assume Real-Time LMP = $25
- Deviation from DA schedule = 100 MW
- Balancing Settlement = 100 MW * $25 = $2,500 credit
- Balancing Position = $2,500

Net position = -$1,500 + $2,500 = $1,000 credit
Pump Storage Optimizer Input Parameters

- Initial Storage
- Final Storage
- Maximum Storage
- Minimum Storage
- Pump Efficiency

- Economic Minimum (Gen)
- Economic Maximum (Gen)
- Economic Minimum (Pump)
- Economic Maximum (Pump)
- Minimum Run Time
- Maximum Run Time
- Minimum Down Time
• No offers are modeled in objective function for optimized pump storage hydro units
• Optimized Pump Storage hydro units can’t set price
• Typically follow Day-Ahead Schedule in Real-Time
• Charged deviation if deviate from Day Ahead schedule