

PJM Energy Storage Participation Model: Energy Market

Laura Walter Senior Lead Economist MIC: Special Session ESR cost offers March 15, 2019

- 1. Can sell* energy, <u>Capacity</u>, and A/S (incl. Black Start etc.) the resource is technically capable of providing
- 2. <u>Dispatched</u> and <u>sets price</u> as seller and buyer
- 3. Bid parameters that account for ESR characteristics

4. Min market threshold is 100 kW

= already in compliance

5. Stored MWh are billed at LMP as wholesale

* "Eligible to provide..."

Electric Storage Resource Definition

- Electric Storage Resource (ESR)= "a resource capable of receiving electric energy from the grid and storing it for later injection of electric energy back to the grid."
- Connected at: transmission, distribution, or behind a customer meter.
 - PJM has ESR at both T and D today, none behind a meter that inject.
- Excludes demand response.
- Includes pumped hydro

Over 5,300 MW of Electric Storage Resources currently in PJM

** Data taken from Generation Queue and EIA 860

ESR Participation Model Overview

- ESRs will be modeled as one continuous resource
- PJM will not make commitment decisions in the ESR model
 - Start-up and no load cost will not be considered
- PJM will not manage state of charge
 - Resource owners use mode of operation, offers, and parameters
- 3 modes of operation:
 - Continuous, Charge & Discharge
- Parameters
 - Max/Min charge/discharge, etc
 - Ramp rate considered infinite only in continuous mode

Continuous Operation Mode

ESRs can update their max charge and discharge limits hourly in day-ahead, and more frequently in real-time.

Price	MW	
\$10.00	20	
\$ 9.00	15	
\$ 8.00	10	
\$ 7.00	5	
\$ 6.00	0	
\$ 5.00	0	
\$ 4.00	0	
\$ 3.00	-5	
\$ 2.00	-10	
\$ 1.00	-15	

** State of charge telemetry will be requested for telemetered resources

www.pjm.com

Charge and Discharge Modes

Discharge Mode

- Questions: <u>esr@pjm.com</u>
- Issue Tracking: Electric Storage
 Participation FERC Order 841

Appendix: February MIC Presentation on Cost Offers

Energy Storage Resources (ESR) Cost Offer Development

Scott Benner Senior Lead Engineer Advanced Analytics MIC February 6, 2019

- Commitment
- Cost Development
- Opportunity Cost

pim

1

Self-Scheduling and Commitment

- PJM does not plan to optimize an ESR's State of Charge
- In Day-ahead Market (DAM), the market participant will:
 - Enter a profile of hourly-differentiated economic minimum and maximum limits for the market day
 - Each hour reflects the capability to produce or consume energy for the entire hour (in MW-h)
 - The unit will be considered "self-scheduled" / "running for company"; startup costs and no-load costs will be zero.

Day-Ahead Dispatchability

If there is a spread between min and max limits, then the unit will be economically dispatched on a participant-provided incremental offer curve

Operating	Economic	Economic	If LMP <	If LMP >
Mode	Min	Max	PRICE @ Min	PRICE @ Max
Discharge (Injecting)	0 MW	Max MW > 0	No DA Commitment (0 MW)	Committed for Max MW
Continuous	Min MW	Max MW	Committed for	Committed for
	< 0	> 0	Min MW	Max MW
Charge (Withdraw)	Min MW < 0	0 MW	Committed for Min MW	No DA Commitment (0 MW)

Why is this important?

- ESR are allowed to "self-schedule" to meet RPM must-offer req.
- Self-scheduled in DAM is considered "committed"
- Any unit can hourly-differentiate offers & limits in the DAM
- Only IDO-enabled units can update offers after Rebid up to 65 minutes before an interval, <u>and are not committed for Day-ahead</u>
- A unit that offered into DAM, with no committed MW (0 MW) should not be considered committed in RT so that it can update with IDO

Real-time Dispatchability

- DAM Commitment is not a RT "operating plan"
 - The participant is required to provide the DAM committed MW for the given hour, else they may be exposed to Deviation charges
 - The market participant is responsible for managing the real-time SOC to honor any DAM commitment
- The resource can modify the economic min and max limits to signal availability to charge/discharge in a given interval
 - If there is a spread between min/max, then the unit is potentially dispatchable, and eligible to set price with its energy offer

Why is this important?

- RTSCED solves a ramp-limited security-constrained economic dispatch for a *single interval* in "opportunistic" fashion
 - It does not optimize total energy (MWh) over future periods
 - The cheapest short run marginal cost unit will be dispatched first
 - At full injection, the battery may be depleted well before a peak
- Participants can modify economic max and min limits to represent their charge and discharge abilities in a given interval

Why is this important?

- PJM has a "fixed gen" flag where the resource self-schedules in real-time, injects whatever MW the unit wants, & is price-taker
 - Typically used for energy-only, intermittent, or renewables who don't control output, but just want to be paid LMP for generation
- Otherwise, the unit is "economic", and PJM follows the offer curve as bid-in. The participant determines the value of energy
- But what about *mitigation*?

- There are situations where a participant may have *market power* when providing *reliability services*
 - Transmission Constraints, Reactive control, Black Start, etc.
 - During commitment, PJM executes the Three Pivotal Supplier (TPS) test to scan for market power in constraint relief
- The resource is switched to the cheapest of the available costbased or price-based offers (cheapest schedule)

Cost-based schedule is typically short run marginal costs + adders

Types of Opportunity Costs

- Ancillary Service Opportunity Cost
 - A resource providing SR or REG "loses" the opportunity to provide its full range of energy *in the current interval*
 - This "product substitution" LOC is used in ancillary market pricing
- Operationally Limited Opportunity Cost
 - A unit has emission limitations that, if the unit runs today, it may not be available to run *later in the year* (e.g. at summer peak)
 - The Opportunity Cost Calculator (OPC) generates an cost-based adder that "optimizes" potential run hours; *evaluated daily*

Types of Opportunity Costs

- Limited Energy Opportunity Cost
 - A unit has charge limitations that, if the unit runs in this interval, it may not be available to run later in the market day
- Inter-temporal Opportunity Cost to Dispatch
 - If I discharge now, then the marginal cost is the *inventory cost*
 - If I discharge now, and I have an opportunity to charge later, then the *replacement cost* is important for the future discharge interval
 - I never know for certain what the future LMP will be