Table of Contents

Table of Exhibits..8

Approval...10

Current Revision..11

Section 1: Introduction ...12

1.1 About PJM Manuals ..12
1.2 How to Use This Manual ..12
1.3 The intended audiences for this Manual:12
1.4 What is in this Manual? ..12
1.5 Cost Development Subcommittee Mission12
1.6 Purpose of this Manual ..13
 1.6.1 Reason for Cost Based Offers: Market Power Mitigation13
1.7 Components of Cost ...13
 1.7.1 Generator offer curves ..14
 1.7.2 Start-up Cost ..14
 1.7.3 No Load Cost ..14
 1.7.4 Incremental Cost ..14
 1.7.5 Total Production Cost ..15
1.8 Cost Methodology and Approval Process15
1.9 References ..15

Section 2: Policies for All Unit Types17

2.1 Heat Input and Rates ..17
 2.1.1 Heat Input and Rate Policy ..17
2.2 Performance Factors ..18
 2.2.1 Engineering Judgment in Performance Factors18
 2.2.2 Higher Heating Value of Fuel18
 2.2.3 Calculation Methods of Performance Factors19
 2.2.4 ‘Like’ Units for Performance Factors19
2.3 Fuel Cost Policies and Guidelines ..19
 2.3.1 Submission of and/or Modifications to Fuel Cost Policies20
 2.3.1.1 Annual Review ...20
 2.3.1.2 Outside Annual Review/New Resource20
 2.3.1.3 Revocation ...22
 2.3.2 Fuel Cost Calculation ..22
 2.3.3 Total Fuel Related Costs ..23
 2.3.4 Types of Fuel Costs ..23
 2.3.5 Emission Allowances ...23

Revision: 30, Effective Date: 12/04/2018 PJM © 2018
2.3.6 Leased Fuel Transportation Equipment .. 24
2.3.7 Engineering Judgement in Fuel Cost Calculations 24
2.4 Start-up Cost .. 25
 2.4.1 Start-up Cost Definitions ... 25
 2.4.2 Engineering Judgment in Start Costs ... 25
2.5 No Load ... 25
 2.5.1 No-Load Definitions ... 25
 2.5.2 No-Load Fuel .. 25
 2.5.3 No Load Calculation .. 26
2.6 Variable Maintenance Cost .. 26
 2.6.1 Escalation Index .. 27
 2.6.2 Maintenance Period ... 28
 2.6.3 Incremental Adjustment Parameter .. 29
 2.6.4 Equivalent Hourly Maintenance Cost ... 29
 2.6.5 Immature Units: Maintenance Costs .. 30
2.7 Synchronized Reserve ... 31
2.8 Regulation Service ... 32

Section 3: Nuclear Unit Cost Guidelines .. 37
 3.1 Nuclear Heat Rate ... 37
 3.2 Performance Factor .. 37
 3.3 Fuel Cost ... 37
 3.3.1 Basic Nuclear Fuel Cost ... 37
 3.3.2 Total Fuel-Related Costs for Nuclear Units 37
 3.4 Start-up Costs ... 37
 3.4.1 Hot Start-up Cost ... 38
 3.4.2 Intermediate Start-up Cost .. 38
 3.4.3 Cold Start-up Cost ... 38
 3.4.4 Additional Components Applied to Hot, Intermediate and Cold Start-up Costs ... 38
 3.5 No-Load Cost .. 39
 3.6 Maintenance Cost .. 39
 3.6.1 Configuration Addition Maintenance Adder 39
 3.6.2 Calculation of the Configuration Addition Maintenance Adder: 40
 3.6.3 Reductions in Total Maintenance Costs 41
 3.7 Synchronized Reserve Cost ... 42
 3.8 Regulation Cost .. 42

Section 4: Fossil Steam Unit Cost Development 43
 4.1 Heat Rate ... 43
 4.2 Performance Factor .. 43
 4.3 Fuel Cost ... 43
 4.3.1 Total Fuel Related Cost .. 43
 4.4 Start-up Cost ... 44
 4.4.1 Hot Start-up Cost ... 44
Section 5: Combined Cycle (CC) Cost Development 50
5.1 Heat Rate ... 50
5.2 Performance Factors .. 50
5.3 Fuel Cost .. 50
5.4 Start-up Cost ... 50
5.5 No-Load Cost ... 51
5.6 Maintenance Cost .. 51
 5.6.1 Combined Cycle / CT Long Term Service Contract Cost Recovery 52
 5.6.2 Long Term Maintenance Expenses .. 52
 5.6.3 Equivalent service hours (ESH) ... 52
5.7 Synchronized Reserve .. 53
5.8 Regulation ... 54

Section 6: Combustion Turbine (CT) and Diesel Engine Costs 55
6.1 Combustion Turbine and Diesel Engine Heat Rate 55
6.2 Performance Factor .. 55
6.3 Fuel Cost .. 55
 6.3.1 Combustion Turbine other Fuel-Related Costs 56
 6.3.2 Total Fuel Related Cost (TFRC) Equation for CTs 56
6.4 Start-up Cost ... 56
6.5 No-Load Cost Calculation for CTs 57
6.6 Maintenance Cost .. 57
 6.6.1 Combustion Turbine Maintenance Adder Example 57
 6.6.2 Combustion Turbine Long Term Service Contract Cost Recovery 58
 6.6.3 Equivalent service hours ... 58
 6.6.4 Diesel Incremental Maintenance Adder Calculation 59
6.7 Synchronized Reserve: Costs to Condense 59
6.8 Regulation Cost ... 60

Section 7: Hydro ... 61
7.1 Pumping Efficiency (Pumped Storage Hydro Only) 61
7.2 Performance Factors .. 62
7.3 Fuel Cost .. 62
 7.3.1 Total Energy Input Related Costs for Pumped Storage Hydro Plant Generation .. 62
7.4 Start-up Cost .. 62
7.5 No-Load Cost .. 63
7.6 Maintenance .. 63
7.7 Synchronized Reserve: Hydro Unit Costs to Condense .. 63
7.8 Regulation Cost ... 64

Section 8 : Demand Resource (DR) .. 65
8.1 Demand Resource (DR) Cost to Provide Synchronous Reserves 65

Section 9: Wind Units ... 66
9.1 Heat Rates ... 66
9.2 Performance Factors .. 66
9.3 Fuel Cost ... 66
9.4 Start-up Cost ... 66
9.5 No-Load Cost .. 66
9.6 Maintenance .. 66
9.7 Synchronized Reserve: Wind Unit Costs to Condense .. 67
9.8 Regulation Cost ... 67

Section 10: Solar Units .. 68
10.1 Heat Rates ... 68
10.2 Performance Factors ... 68
10.3 Fuel Cost .. 68
10.4 Start-up Cost .. 68
10.5 No-Load Cost ... 68
10.6 Maintenance .. 68
10.7 Synchronized Reserve Cost .. 69
10.8 Regulation Cost .. 69

Section 11: Energy Storage Resource .. 70
11.1 Heat Rates ... 70
11.2 Performance Factors ... 70
11.3 Fuel Cost ... 70
11.4 Start-up Cost .. 70
11.5 No-Load Cost ... 70
11.6 Maintenance .. 70
11.7 Synchronized Reserve Cost .. 70
11.8 Regulation Cost .. 71

Section 12: Energy Market Opportunity Cost and Non-Regulatory
Opportunity Cost Guidelines ... 72
12.1 Opportunity Cost Policy ... 72
12.2 Basis for Opportunity Cost to be included in Cost Offers ... 72
12.2.1 Energy Market Opportunity Costs ... 72
12.2.2 Non-Regulatory Opportunity Cost: Physical Equipment Limitations: 72
12.2.3 Non-Regulatory Opportunity Cost: Fuel Limitations 72
12.3 Calculation Method Options: Two Methodologies for calculating Opportunity Cost.. 73
 12.3.1 Long Term Method (greater than 30 days) ... 73
 12.3.2 Short Term Method (30 days or less) ... 73
12.4 Definitions ... 73
12.5 Long Term Methodology .. 74
 12.5.1 Step 1: Derive Historical Monthly LMP Basis Differential between the
generation bus and western hub.. 74
 12.5.2 Step 2: Derive hourly volatility scalars to incorporate hourly volatility into
the LMP forecast... 77
 12.5.3 Step 3: Create three sets of hourly forecasted bus values 78
 12.5.4 Step 4: Create a daily fuel volatility scalar ... 79
 12.5.5 Step 5: Create three daily delivered fuel forecasts 80
 12.5.6 Step 6: Create generating unit(s) cost for each of the three forecasts 81
.. 83
 12.5.7 Step 7: Calculate the margin for every hour in the three hourly forecasts... 83
 12.5.8 Step 8: Determine the opportunity cost component 84
12.6 Short Term Methodology .. 85
 12.6.1 Step 1: Derive Historical Monthly LMP Basis Differential between the
generation bus and western hub.. 85
 12.6.2 Step 2: Derive hourly volatility scalars to incorporate hourly volatility into
the LMP forecast... 88
 12.6.3 Step 3: Create three sets of hourly forecasted bus values 89
 12.6.4 Step 4: Fuel Price ... 90
 12.6.5 Step 5: Create generating unit’s cost for each of the three forecasts 91
 12.6.6 Step 6: Calculate the margin for every hour in the three hourly forecasts... 92
 12.6.7 Step 7: Determine the opportunity cost adder 94

Attachment A: Applicable FERC System of Accounts.. 95
 A.1 Balance Sheet Accounts ... 95
 A.1.1 FERC FORM 1 ACCOUNT 151: Fuel Stock (Major only) 95
 A.2 Expense Accounts ... 95
 A.2.1 FERC FORM 1 ACCOUNT 501: Fuel ... 95
 A.2.2 FERC FORM 1 ACCOUNT 509: Allowances .. 97
 A.2.3 FERC FORM 1 ACCOUNT 512: Maintenance of Boiler Plant (Major only)... 97
 A.2.4 FERC FORM 1 ACCOUNT 513: Maintenance of Electric Plant (Major only).. 97
 A.2.5 FERC FORM 1 ACCOUNT 518: Nuclear Fuel Expense (Major only) 97
 A.2.6 FERC FORM 1 ACCOUNT 530: Maintenance of Reactor Plant Equipment
 (Major only).. 98
 A.2.7 FERC FORM 1 ACCOUNT 531: Maintenance of Electric Plant (Major only).. 98
 A.2.8 FERC FORM 1 ACCOUNT 543: Maintenance of Reservoirs, Dams, and
 Waterways (Major only) ... 98
 A.2.9 FERC FORM 1 ACCOUNT 544: Maintenance of Electric Plant (Major only).. 98

 A.2.10 FERC FORM 1 ACCOUNT 553: Maintenance of Generating and Electrical
Equipment (Major only) ... 98
A.3 Operating Expense Instructions 2 and 3 ... 98
 A.3.1 OPERATING EXPENSE INSTRUCTION 2: Maintenance ... 98
 A.3.2 OPERATING EXPENSE INSTRUCTION 3: Rents .. 99

Attachment B: NoLoad Calculation Examples ... 101
 B.1 No-Load Fuel .. 101
 B.2 Typical Steam Unit Example .. 101
 B.3 Typical Combustion Turbine Example .. 103
 B.4 Typical 2 on 1 Combined Cycle with Duct Burning Example 106
 B.5 No-Load Cost Adjustments .. 109
 B.6 Combustion Turbine Zero No-Load Example ... 114

Revision History .. 116
Table of Exhibits

<table>
<thead>
<tr>
<th>Exhibit</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Handy Whitman Index</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>Example Calculation of Maintenance Adder for CT using a 10 year Maintenance Period</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>Immature Unit</td>
<td>31</td>
</tr>
<tr>
<td>4</td>
<td>VOM for all Hydro Units or Non-Hydro Units providing service for less than 10 years</td>
<td>33</td>
</tr>
<tr>
<td>5</td>
<td>Example of VOM for Non-Hydro Units providing Regulation for more than 10 years</td>
<td>34</td>
</tr>
<tr>
<td>6</td>
<td>Regulation Maximum Allowable Cost Adder Example</td>
<td>36</td>
</tr>
<tr>
<td>7</td>
<td>Nuclear Unit’s Sample Formula of Maintenance Adder</td>
<td>40</td>
</tr>
<tr>
<td>8</td>
<td>Nuclear Unit’s Formula of Start Maintenance Adder</td>
<td>40</td>
</tr>
<tr>
<td>9</td>
<td>Nuclear Unit’s Formula of Configuration Addition Maintenance Adder</td>
<td>41</td>
</tr>
<tr>
<td>10</td>
<td>Fossil Steam Unit’s Sample Formula of Maintenance Adder</td>
<td>46</td>
</tr>
<tr>
<td>11</td>
<td>Fossil Steam Unit’s Sample Formula of Start Maintenance Adder</td>
<td>47</td>
</tr>
<tr>
<td>12</td>
<td>Fossil Unit’s Sample Formula of Configuration Addition Maintenance Adder</td>
<td>48</td>
</tr>
<tr>
<td>13</td>
<td>Steam Unit Synchronized Reserve Example</td>
<td>49</td>
</tr>
<tr>
<td>14</td>
<td>Combined Cycle Unit Synchronized Reserve Example</td>
<td>53</td>
</tr>
<tr>
<td>15</td>
<td>Combustion Turbine Maintenance Cost Adder Example</td>
<td>58</td>
</tr>
<tr>
<td>16</td>
<td>Three hourly basis differential ratios variables for the same hour in each of three historical years</td>
<td>75</td>
</tr>
<tr>
<td>17</td>
<td>Monthly Peak Basis Differentials for the three historical periods</td>
<td>76</td>
</tr>
<tr>
<td>18</td>
<td>Forecasted monthly bus prices for three historical periods</td>
<td>76</td>
</tr>
<tr>
<td>19</td>
<td>Forecasted bus LMPs for one hour for each of the three historical base years</td>
<td>79</td>
</tr>
<tr>
<td>20</td>
<td>Three daily fuel volatility scalars values developed for June 3 in each of three historic years for a unit with a single fuel</td>
<td>79</td>
</tr>
</tbody>
</table>
Exhibit 21: Create three daily delivered fuel forecasts from the volatilities of three historic years .. 81

Exhibit 22: Daily Unit Cost .. 82

Exhibit 23: Calculating total margins with a minimum runtime of one hour (i.e. no minimum runtime restriction), using historical data from the past three calendar years .. 83

Exhibit 24: A unit with 700 run hours ... 85

Exhibit 25: Three Hourly Basis Differential Ratios Values for the same hour in Each of Three Historical Years .. 86

Exhibit 26: Monthly Peak Basis Differentials for the Three Historical Periods 86

Exhibit 27: Forecasted Monthly Bus Prices for Three Historical Periods ... 87

Exhibit 28: Daily Unit Cost .. 92

Exhibit 29: Calculating Total Margins with a minimum run time of one hour (i.e. no minimum run time restriction), using historical data from the past three calendar years .. 93

Exhibit 30: A Unit with 700 run hours left ... 94
Approval

Approval Date: 12/05/2018
Effective Date: 12/04/2018
Glen Boyle, Chairman
Cost Development Subcommittee
Revision 31 (12/03/2019):

- FERC Order 841 Implementation
This section contains information for the development of battery and flywheel Energy Storage Resource cost offers. Regulation only resources should see Section 11.8.

Battery – device to store electrical energy via chemicals.
Flywheel – mechanical device for storing rotational energy.

11.1 Heat Rates Efficiency factor

Efficiency factor is a battery or flywheel version of a heat rate. Energy Storage Resources do not burn fuel so heat rates are not applicable. Efficiency factors measure the ratio of generation produced to the amount of electricity used to charge.

\[
\text{Efficiency factor} = \frac{\text{MWh Discharged}}{\text{MWh Charged}}
\]

Efficiency factors can be calculated over the time period specified by the Market Seller in the Fuel Cost Policy. A Market Seller must make the choice of method in their fuel cost policy and cannot change to another method for a period specified in Section 2.1.

11.2 Performance Factors

Note:
The information in Section 2.2 contains basic Performance Factor information relevant for all unit types. The following additional information only pertains to Energy Storage Resources, battery and flywheel.

Energy Storage Resources, battery and flywheel, do not burn fuel so Performance Factors are equal to 1.0.

11.3 Fuel Cost

Note:
The information in Section 2.3 contains basic Fuel Cost information relevant for all unit types. The following additional information only pertains to Energy Storage Resources, battery and flywheel.

Energy Storage Resource’s fuel costs are equal to zero.
11.3.1 Total Fuel Cost

Market Sellers for batteries and flywheels must identify in their Fuel Cost Policies the methodology they are using to calculate fuel cost (charging cost).

Total Energy Input Related Costs for Battery/Flywheel

\[
\text{Total Fuel Cost} \left(\frac{\$}{\text{MWh}} \right) = \left(\text{average charging cost} \left(\frac{\$}{\text{MWh}} \right) \times \text{efficiency factor} \right) + \text{maintenance adder}
\]

11.3.2 Operating Costs

Operating Costs may include, but are not limited to: acids and lithium ion replacement.

11.4 Start-up Cost

Energy Storage Resource’s Battery/flywheel’s Start Fuel and Total Fuel Related Costs are equal to zero.

11.5 No-Load Cost

Energy Storage Resources Batteries and flywheels no-load cost shall be equal to zero do not have No-load costs.

11.6 Maintenance

Note:
The information in Section 2.6 contains basic Maintenance Cost information relevant for all unit types. The following additional information only pertains to Energy Storage Resources.

Batteries and flywheels cannot include costs that can be include in their capacity offer such as straight time labor. Maintenance costs for batteries and flywheels may include, but are not limited to: cell repairs/replacements, inverter maintenance, and generation owned GSU/ Interconnection Transmission maintenance.

11.7 Synchronized Reserve Cost

Note:
The information in Section 2.7 contains basic Synchronized Reserve Cost information relevant for all unit types. The following additional information only pertains to Energy Storage Resources if applicable.

The cost to provide synchronous reserves from battery or flywheel resources shall be equal to the margin up of $7.50 per MWh of reserves offered plus the maintenance adder.
11.8 Regulation Cost

Note: The information in Section 2.8 contains basic Regulation Cost information relevant for all unit types. The following additional information only pertains to Energy Storage Resources.

Energy Storage Resources shall calculate Energy Storage Unit Losses in accordance with the equation below. The “Cost Increase due to Heat Rate Increase during non-steady state operation” and the “Fuel Cost Increase and Unit Specific Heat Rate Degradation due to Operating at lower loads” shall be equal to zero.

If a Market Seller wishes to change its method of calculating these losses, the Market Seller shall submit a request to change its Fuel Cost Policy to PJM and the MMU pursuant to Section 2.3.1. The approved method of calculation may be implemented upon approval and may be updated no more frequently than once every 12 months. If any action by a government or regulatory agency that results in a need for the Market Seller to change its method of cost calculation, the affected Market Seller may submit a request, or notification as appropriate, to PJM and the MMU for evaluation, pursuant to Section 2.3.1.

Energy Storage Unit Losses ($/MW) – shall be the calculated average of seven (7) days of rolling hourly periods where the real time bus LMP ($/MWh) at the plant node is multiplied by the net energy consumed (MWh) when regulating divided by the regulation offer (MW). The seven (7) days of rolling hourly periods shall consist of the unit’s last 168 hour periods with accepted regulation offers. The following equation governs energy storage unit’s fuel cost increase:

\[
\text{Energy Storage Unit Losses (}$/\text{MW}) = \text{Average of 7 Days}\left\{ \frac{\text{Hourly LMP}}{\text{Hourly Accepted Regulation Offers (MW)}} \times \frac{\text{Hourly Net Energy Consumed (MWh)}}{\text{MWh}} \right\}
\]

11.9 **Opportunity Cost for Energy Storage Resources Operating in the Energy Market**

- TBD