SMA Smart Inverter/ Grid Support Capabilities
Disclaimer

This presentation may contain future predictions. Future predictions are statements that do not describe facts from the past. They also contain assessments on our assumptions and expectations. These assessments are based on planning, estimates, and forecasts, which are currently available to the SMA Solar Technology AG (SMA or company) board of directors. Future predictions are therefore only applicable on the day on which they are made. It lies in the nature of future predictions that they contain risks and elements of uncertainty. Various known and unknown risks, uncertainties, and other factors may cause the actual results, financial situation, development, or performance of the company to significantly deviate from the assessments provided in this presentation. These factors include those that SMA has described in published reports, which are available on the website www.SMA.de. The company assumes no liability for updating or adjusting such future predictions in accordance with future events or developments.

This presentation serves informational purposes only and does not constitute an offer or request to buy, keep, or sell company shares.
Global Leadership, Local Expertise

- $1.2+B in annual revenue
- 5,000 employees worldwide
- 1,000 professionals in research and development
- 15 GW total manufacturing capacity
- More than 35 GW installed worldwide
- 30+ Years of Experience
- Well-positioned in 21 markets across the globe
- North American production in Denver and Toronto
- Solutions for all power classes and applications
Inverters with ‘Smart’ features available in the U.S.

Residential
Sunny Boy 3/4/5000TL-US

Commercial
Sunny Tripower 12/15/20/24000TL-US

Utility Scale
Sunny Central CP-XT and CP-US
Future Proof – Advanced Grid Support Features

- On-demand Active Power reduction (curtailment)
- Frequency-dependent Active Power reduction
- Reactive Power supply
 - Fixed, on-demand or dynamic control
- Low Voltage Ride-Through (LVRT)
 - Limited or full dynamic grid support
Autonomous vs On-Demand Inverter Functions

Autonomous Functions

- No communications architecture required
- Pre-defined behaviors that can be ‘programmed’ through inverter operating parameters
- May be activated at system commissioning or later
- May be activated, de-activated or adjusted as needed via on-site or remote operator interfaces

On-Demand Functions

- Communications and control architecture required
- Direct, exception-based command control of inverter behavior
- Control initiated based on remote grid operator commands or PCC-based control loop
Autonomous Functions: Frequency-dependent Active Power Limitation

Reduce PV generation to alleviate over-supply conditions

- Inverter interprets increase in frequency as over-supply condition
- Inverter reduces active power output until frequency returns to normal
Autonomous Functions: Dynamic Reactive Power Control

- **Support EPS voltage stabilization**

 > Characteristic curve based on \(\cos \varphi(P) \) or \(Q(V) \)

- Based on conditions at inverter output terminals
- \(\cos \varphi(P) \): Dynamically adjust power factor based on power \((P/P_{nom}) \)
- \(Q(V) \): Dynamic VAR injection based on grid voltage

![Characteristic curve based on \(\cos \varphi(P) \) or \(Q(V) \)](image)

- **Pythagoras' theorem:** \(S^2 = P^2 + Q^2 \)
- \(S = \frac{P}{\cos \varphi} \)
- \(P = S \cdot \cos \varphi \)
- \(Q = \sqrt{S^2 - P^2} \)
Autonomous Functions: Low-Voltage Ride-Through

> Grid Support during grid fault/disturbance
> Stay connected during High Voltage grid disturbances to avoid simultaneous shutdown
> During voltage dip to 0v, inverter injects reactive current for voltage support and to aid in protection devices.

![Diagram showing the requirements of dynamic grid support](image-url)
Autonomous Functions: Low-Voltage Ride-Through

Avoid loss of PV generation from system faults

> **Full Dynamic Grid Support**

 - Inverter remains connected through fault and supplies reactive current

> **Limited Dynamic Grid Support**

 - Inverter remains connected through fault but does not provide active or reactive power

![Image of graph showing dynamic grid support](image)

Figure 5: The requirements of dynamic grid support
Autonomous Functions: Additional Grid Interface Controls

> Voltage and Frequency trip points and times
 • Configurable to Area EPS conditions and requirements
 ▶ Avoid sudden loss of PV generation

> Reconnection time delay settings
 • Can be staggered or randomized across multiple inverters
 ▶ Avoid surges due to sudden reconnection of PV generation

> Ramp rate controls
 • Controllable active power ramp following grid disturbance or normal connection
 ▶ Avoid surges due to sudden reconnection of PV generation
On-Demand Functions: Active Power Reduction (Curtailment)

Reduce PV generation to alleviate over-supply conditions or grid backfeed

> Initiated by grid operator

• For severe over-supply conditions
• Requires defined standards for communications architectures and protocols

> Initiated by local control loop

• For systems where back fed power is prohibited or must be limited
• “Load serving” systems
• Communications architecture and protocol can be site-specific

> Remote OFF

• Can be effected by 0 kW command
On-Demand Functions: Reactive Power Setpoints (cos ϕ or Q)

- **Support EPS voltage stabilization**

> **Initiated by grid operator**

- Requires defined standards for communications architectures and protocols

> **Initiated by local control loop**

- Based on conditions at PCC
- Communications architecture and protocol can be site-specific

Figure 1: Pythagorean theorem: $S^2 = P^2 + Q^2$

\[
S = \sqrt{P^2 + Q^2} \quad S = \frac{P}{\cos \phi} \quad P = S \cdot \cos \phi \quad Q = \sqrt{S^2 - P^2}
\]
SMA Smart Inverter Capabilities by Inverter

<table>
<thead>
<tr>
<th>Applications</th>
<th>Residential</th>
<th>Commercial</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverters</td>
<td>Sunny Boy TL-US</td>
<td>Sunny Tripower TL-US</td>
<td>Sunny Central CP-XT / CP-US</td>
</tr>
<tr>
<td>Frequency-dependent power reduction</td>
<td>P(f)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reactive power supply: Fixed</td>
<td>cos φ</td>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>Reactive power supply: Dynamic</td>
<td>cos φ (P)</td>
<td></td>
<td>Q(V)</td>
</tr>
<tr>
<td>LVRT: Limited Dynamic Grid Support</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVRT: Complete Dynamic Grid Support</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On-demand active power reduction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On-demand reactive power supply</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
WEIL: Inverter Technical Standards Proposal

Western Electric Industry Leaders – recommended enhanced ‘smart’ inverter functions:

<table>
<thead>
<tr>
<th>Recommended Functions</th>
<th>Existing SMA Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communications capabilities</td>
<td>Requires identification/definition of standards</td>
</tr>
<tr>
<td>Real and reactive power support</td>
<td>✔️</td>
</tr>
<tr>
<td>Dynamic VAR injection</td>
<td>✔️</td>
</tr>
<tr>
<td>Expanded frequency trip point</td>
<td>✔️</td>
</tr>
<tr>
<td>Low voltage ride through</td>
<td>✔️</td>
</tr>
<tr>
<td>Randomization of timing for trip and reconnection</td>
<td>✔️</td>
</tr>
</tbody>
</table>