

CIRs For ELCC Resources: PJM Package D Alternatives 1 & 2 (New)

PC Special Session – CIRs for ELCC Resources April 28, 2022

- PJM Package D currently has two alternatives
- Both alternatives are similar except for certain elements of the transition mechanism related to non-ISA queue units
 - Both have 1 MW CIR = 1 MW summer deliverability
 - Both have the same new CIR request and retention policies
 - Both award wind and solar resources having an ISA at time of effective date of proposal with higher, default CIRs and the system will pay for any required baseline upgrades in the 2023 RTEP (currently 5 MW with \$7M upgrades)
 - Summer P80% for solar and offshore wind
 - Summer P90% for onshore wind

- Both have a summer generator deliverability study performed prior to each BRA during the transition to quantify any undeliverable MW above the requested amount of CIR MW but below the new higher, default amount
- Both cap ELCC hourly outputs for wind and solar resources at their deliverable MW
- Both have the new generator deliverability test implementation starting in next year's RTEP and in Transition Cycle 2

Transition Mechanism for Wind & Solar Units Without ISA

- Alternative 1
 - Transition wind and solar units in Fast Track and Transition Cycle 1 to higher, default CIRs and the load will pay for any required baseline upgrades. (PJM high level estimate of cost to load is ~\$3B – see Appendix 2 for preliminary results summary)
 - Wind and solar units in Transition Cycle 2 need to submit a new queue request for higher CIRs if desired
 - Begin capping ELCC at deliverable MW in 2025/26 BRA

- Alternative 2 (PJM currently recommended)
 - Wind and solar units in Fast Track, Transition Cycle 1 and Transition Cycle 2 that do not have an ISA upon effective date of this proposal will need to submit a new queue request for higher CIRs if desired
 - Begin capping ELCC at deliverable MW in 2025/26 BRA

- During the transition period, prior to each BRA for which such resources are eligible to participate, PJM will run summer, single contingency generator deliverability to determine whether wind and solar units are deliverable.
 - PJM will maximize amount of deliverable wind a solar MW by considering any overloaded flowgates and the DFAX of each wind and solar unit
 - Wind and solar units with an ISA at time of proposal effective date will be turned on first
 - In all cases, wind and solar deliverable MW will be above the requested amount of CIR MW but below the new higher, default amount

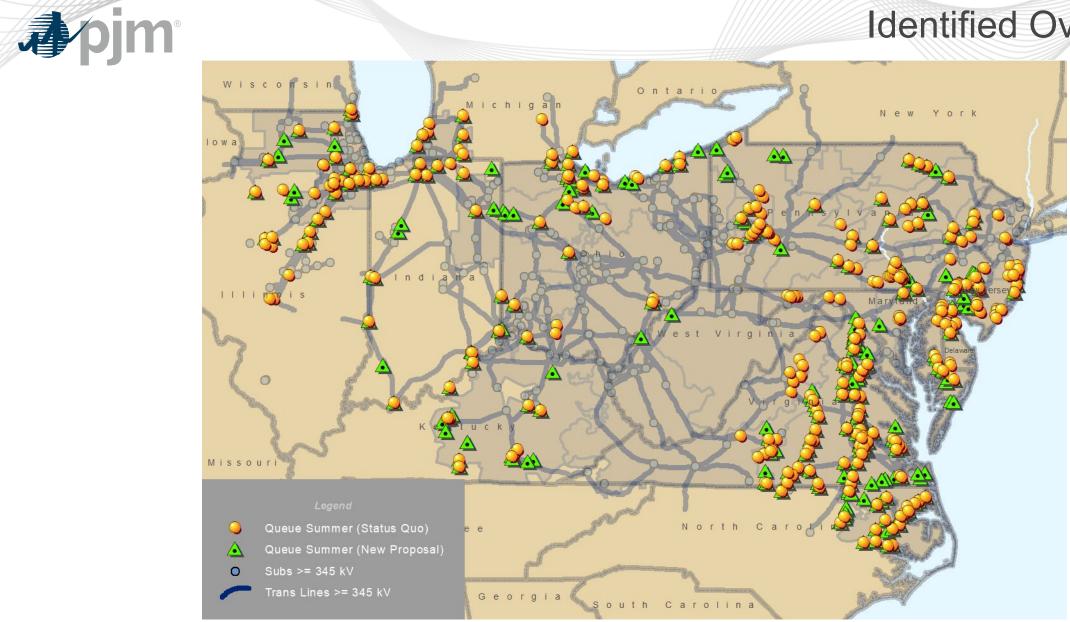
Appendix 1: Overloads In RTEP Baseline Under New Generator Deliverability Test

Additional RTEP Baseline Reliability Violations Under New Generator Deliverability Test

Violation Driver		Su	mmer	V	Winter		Light Load		Total	
Higher Intermittent	# of Violations:		2		0		2		4	
	\$M Cost	\$	7.00	\$	-	\$	12.00	\$	19.00	
Block Dispatch	# of Violations:		1		1		4		6	
	\$M Cost	\$	28.00	\$	8.50	\$	75.00	\$	111.50	
Block Dispatch + Lower Intermittent Helpers	# of Violations:		2		0		0		2	
	\$M Cost	\$	11.50	\$	-	\$	-	\$	11.50	
	# of Violations:		5		1		6		12	
Impact of All Drivers	\$M Cost	\$	46.50	\$	8.50	\$	87.00	\$	142.00	

Appendix 2: Summer Overloads In Queue Scenario Study Under New Generator Deliverability Test

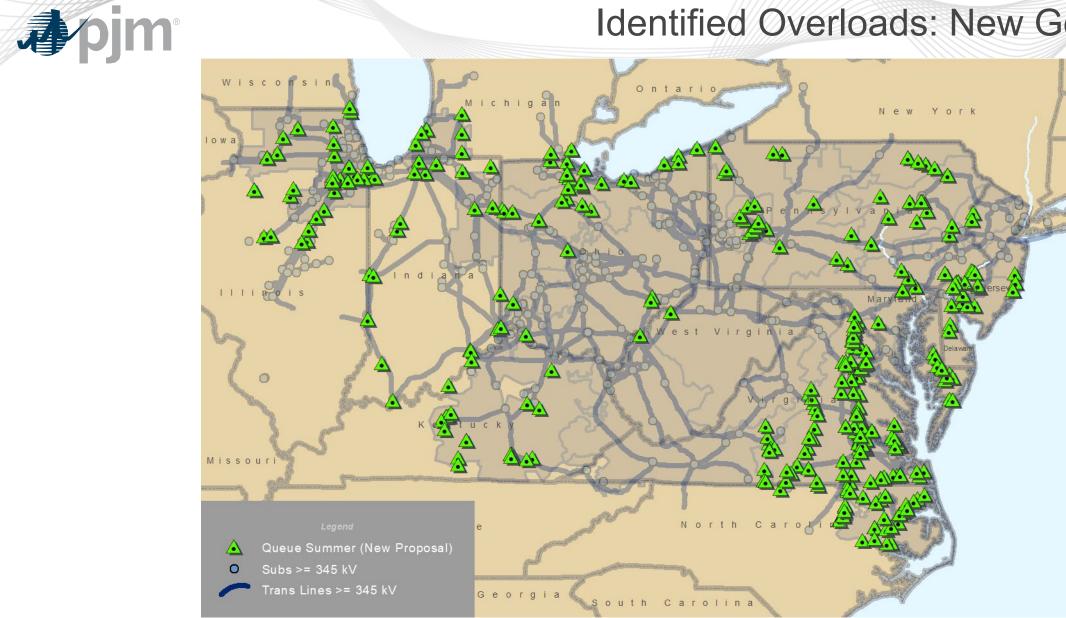
Summer Overloads Under New Gen Deliv


Violations Under Status Quo

kV	PJM East	PJM West	PJM South	TOTAL
765	0	3	0	3
500	3	0	17	20
345	0	77	0	77
230	44	2	70	116
161	0	0	0	0
138	10	34	2	46
115	27	0	18	45
69	12	5	0	17
765/345	0	8	0	8
500/230	3	0	4	7
345/230	2	0	0	2
345/138	0	6	0	6
230/115	4	0	9	13
115/69	0	0	0	0
TOTAL	105	135	120	360

Violations Under Proposal

kV	PJM East	PJM West	PJM South	TOTAL
765	0	6	0	6
500	7	0	25	32
345	1	75	0	76
230	25	0	95	120
161	0	2	0	2
138	1	24	0	25
115	4	0	28	32
69	10	6	1	17
765/345	0	4	0	4
500/230	4	0	6	10
345/230	0	0	0	0
345/138	0	3	0	3
230/115	1	0	3	4
115/69	0	3	0	3
TOTAL	53	123	158	334


Identified Overloads

Identified Overloads: Status Quo Gen Deliv

Identified Overloads: New Gen Deliv

Circuit Miles

			Statu	s Quo		Proposal			
	kV	PJM East	PJM West	PJM South	TOTAL (miles/unit)	PJM East	PJM West	PJM South	TOTAL (miles/unit)
	765	0	275	0	275	0	492	0	492
	500	144	0	364	508	97	23	493	613
÷	345	0	1,342	0	1,342	13	1,527	0	1,540
Circuit	230	403	35	512	950	263	0	725	988
U	138	32	240	9	280	10	146	0	156
	115	126	0	89	215	48	14	129	190
	TOTAL	704	1,892	973	3,569	432	2,202	1,347	3,980

Basis For Per Mile/Unit Cost Estimate

	138 kV High Side	\$4
Cost Estimates for	230 kV High Side	\$6
New Transformers	345 kV High Side	\$9
(\$M per unit)	500 kV High Side	\$25
	765 kV High Side	\$45

	Upgrades	Reconductor	Loadings	Rebuild	Loadings
	115 kV & 138 kV	\$0.8	≤ 400 MVA	\$1.2	> 400 MVA
Cost Estimates for	230 kV	\$1.2	≤ 1,200 MVA	\$1.8	> 1200 MVA
Transmission Line	345 kV	\$2.0	≤ 1,800 MVA	\$3.0	> 1,800 MVA
Upgrades	500 kV	\$5.5	≤ 4,000 MVA	\$8.0	> 4,000 MVA
(\$M per mile)	765 kV	\$8.0	≤ 6,000 MVA	\$12.0	> 6,000 MVA
	230 kV Cable				

Jpjm[®]

Cost Estimate Comparison

			Statu	s Quo		Proposal				
	kV	PJM East	PJM West	PJM South	TOTAL(\$M)	PJM East	PJM West	PJM South	TOTAL (\$M)	
	765	\$0	\$2,199	\$0	\$2,199	\$0	\$3 <i>,</i> 939	\$0	\$3,939	
ي	500	\$791	\$0	\$2,185	\$2,976	\$581	\$64	\$3,570	\$4,215	
Circuit	345	\$0	\$3,385	\$0	\$3,385	\$20	\$3,899	\$0	\$3,919	
Ū	230	\$559	\$31	\$660	\$1,250	\$335	\$0	\$961	\$1,296	
	138	\$32	\$197	\$3	\$232	\$8	\$119	\$0	\$127	
	115	\$111	\$0	\$73	\$184	\$39	\$11	\$103	\$152	
	765/345	\$0	\$630	\$0	\$630	\$0	\$180	\$0	\$180	
me	500/230	\$75	\$0	\$100	\$175	\$100	\$0	\$150	\$250	
sfor	345/230	\$36	\$0	\$0	\$36	\$0	\$0	\$0	\$0	
Transformer	345/138	\$0	\$72	\$0	\$72	\$0	\$27	\$0	\$27	
	230/115	\$24	\$0	\$54	\$78	\$0	\$0	\$18	\$6	
	TOTAL	\$1,627	\$6,513	\$3,076	\$11,216	\$1,082	\$8,238	\$4,802	\$14,122	

Facilitator: Brian Chmielewski, Brian.Chmielewski@pjm.com Secretary: Michele Greening, Michele.Greening@pjm.com

CIRs For ELCC Resources: PJM Package D Alternatives 1 & 2 (New) Member Hotline (610) 666 – 8980 (866) 400 – 8980 custsvc@pjm.com

