

Efficiency never looked so good®

ABOUT BOLD®

BOLD®

(Breakthrough Overhead Line Design®)

The BOLD Challenge:

- Achieve greater capacity and efficiency at native voltages
 - Avoid series compensation and specialized equipment
 - Increase utilization of existing and future ROW's
- Reduce environmental and visual impacts
- Deliver technology that consumers and regulators desire
- Achieve the above AND be cost competitive

If we could start from a blank page, what would transmission look like?

BOLD Delivers

Higher Capacity & Efficiency

- Significantly increases capacity (up to 60%)
- Avoids complexity and cost of compensation
- Avoids SSR issues with rotating generation
- Reduces Line Losses (up to 33%)

Environmentally Friendly

- Mitigates electromagnetic field effects (up to 50%)
- Reduces structure heights (as much as 30%)
- Provides <u>simple</u>, <u>elegant</u>, low-profile design
- Built-in avian protection features

Regulatory Answers

- Addresses need for <u>Advanced Transmission Technology</u>
- More rapidly brings new and replacement circuits into service
- Maximizes right-of-way utilization

BOLD is Cost Competitive

- BOLD competes on a first-cost basis
- o BOLD excels on a \$/MW basis

BOLD Survey Summary

Public concerns regarding transmission include property value, health impacts, visual impacts

- **79%** value advanced technology
- 75% would pay more for advanced technology
- 70% preferred **BOLD** structures versus traditional double-circuit design

Acceptable monthly premium for advanced technology:

Survey conducted with 1,000 U.S. customers and 500 European customers.

BOLD Award-winning Technology

• 2017 Recipient of Edison Electric Institute's

EDISON AWARD

2017 Recipient of <u>NARUC's</u>
 INNOVATION IN ELECTRICITY AWARD

2017 Grand Prize Recipient of <u>CIGRE/KEPCO's</u>
 INTERNATIONAL TOWER DESIGN AWARD

BOLD Project Deployment

as of Aug. 2024

Fort Wayne, Indiana 12 miles, 138-kV double-circuit

Energized December 2023

AEP Deer Creek – Sorenson Rebuild

Fort Wavne, Indiana 33 miles. 138-kV double-circuit (single-conductor)

Energized December 2019

NE

TX

AEP Meadow Lake -**Reynolds Rebuild**

Lafayette, Indiana 10 miles, 345-kV double-circuit (3-conductor bundle) (Lattice)

MI

Energized July 2017

WI

AEP Robison Park -**Sorenson Rebuild**

Fort Wayne, Indiana 22 miles, 345-kV and 138-kV

Energized November 2016

AEP Deer Creek - Delaware Rebuild

6

Fort Wayne, Indiana 19 miles, 138-kV double-circuit (single-conductor)

Energized December 2021

AEP Jug - Corridor Rebuild

Columbus, Ohio 6 miles, 345-kV double-circuit (2-conductor bundle)

Energized December 2019

AEP Angstrom - Naismith (New)

CA

Corpus Christi, Texas 18 miles, 345-kV double-circuit (2-conductor bundle) (Lattice) **Project Start - March 2023**

Scheduled Completion – 12/24

Delaware - Wes Del Rebuild

AEP Robison Park – Twin Branch & 5

Goshen and Muncie, Indiana (FAA issues) 1.3 and 2.2 miles, 138-kV double-circuit

(single-conductor – 795kcm Drake)

Energized December 2019

WY

AEP Vassell - Green Chapel (New)

Sunbury, Ohio 13 miles, 345-kV double-circuit (2-conductor bundle)

MO

Project Start - October 2024

Scheduled Completion – 4/26

AEP Angstrom – Grissom (New)

Scheduled Completion – 11/27

Corpus Christi, Texas 18 miles, 345-kV double-circuit (2-conductor bundle) (Lattice)

AEP Vassell – Curleys (New)

13 miles, 345-kV double-circuit

Project Start - May 2026

Sunbury, Ohio

(2-conductor bundle)

Project Start - January 2023

Scheduled Completion - 12/24

200 miles, 345-kV double-circuit (3-conductor bundle) (Lattice)

Over 100 miles installed (In Indiana and Ohio), meeting or exceeding design criteria. An additional 250+ miles in construction or design.

BOLD Development

How **BOLD** Works

- Leverage physics to maximize electrical performance:
 - (1) Reduce phase separation into a "delta" configuration
 - (2) Optimize conductor size and bundle diameter
- Reduces inductance (L) and impedance (Z) and increases capacitance (C)
- Higher degree of intrinsic "self-compensation"
- Arched cross arm and interphase insulators

BOLD ADVANTAGE – THE MATH

Surge Impedance changes with $\sqrt{L^+/C}$ + (ohm)

$$column{2}{c} L^{+} \approx \frac{\mu_{o}}{2\pi} \ln\left(\frac{d_{eq}}{R_{eq}}\right) = 0.3219 \ln\left(\frac{d_{eq}}{R_{eq}}\right) mH/mi$$

$$column{2}{c} C^{+} \approx \frac{2\pi\epsilon_{o}}{\ln\left(\frac{d_{eq}}{R_{eq}}\right)} = \frac{89.41}{\ln\left(\frac{d_{eq}}{R_{eq}}\right)} nF/mi$$

$$C^{+} \approx \frac{2\pi\epsilon_{0}}{\ln(\frac{d_{eq}}{R_{eq}})} = \frac{89.41}{\ln(\frac{d_{eq}}{R_{eq}})} nF/mi$$

$$\circ \quad \boldsymbol{Z}^{+} \approx 60 \, \boldsymbol{ln} \left(\frac{d_{eq}}{R_{eq}} \right) \, \Omega$$

- Where:
 - $d_{eq}=\sqrt[3]{d_{ab}d_{bc}d_{ca}}$ Eq. Phase Spacing (ft)
 - $R_{eq} = \sqrt[N]{NrR^{N-1}}$ Eq. Bundle Radius (ft)
 - d_{ab} , d_{bc} , d_{ca} = Phase spacings (ft)
 - N = Number of subconductors per phase
 - $r = Subconductor\ radius\ (ft)$
 - R = Subconductor bundle radius (ft)

L, Z decrease; C increases with:

- Closer phase spacing
- More sub-conductors
- Larger bundle diameter
- Larger conductor diameter

BOLD leverages these principles

LINE LOADABILITY BASED ON:

SURGE IMPEDANCE LOADING (SIL)

The St. Clair Curve represents a transmission line's power delivery capability over distance without reactive compensation.

EXAMPLE

Meadow Lake – Reynolds 345-kV

<u>Higher Capacity – 345 kV</u>

Higher Capacity – 230 kV

SIL Comparisons

765kV Single-circuit (6-conductor)

~2,400 MW

345kV **BOLD** Double-circuit (3-conductor)

~1,200 MW150' ROW

345kV Traditional Double-circuit (3-conductor)

~950 MW

345kV Traditional Double-circuit (2-conductor)

~850 MW7

150' ROW

500kV Single-circuit
(3-conductor)
~950 MW

175' ROW

BOLD is a relevant option for long-haul power Transmission

Better Use of RoW

BOLD allows you to deliver **more** power in a given right-of-way when compared to traditional transmission line designs. That means less land is needed to fulfill capacity needs.

One **BOLD** 345-kV double-circuit line can deliver the same power carrying capacity as three traditional 345-kV single- circuit lines creating a smaller environmental footprint of roughly 1/3 by comparison

Magnetic Field Mitigation

Traditional 345-kV

BOLD 345-kV

Magnetic Field Profile @1000MVA Per Circuit
Traditional 345-kV 2-Falcon 25.5ft Phase Spacing 18" Bundle Diameter
Super Bundle Arrangement (A-B-C / A-B-C)

Magnetic Field Profile @1000MVA Per Circuit
BOLD 345-kV 3-Cardinal 15ft Phase Spacing 29" Bundle Diameter
Super Bundle Arrangement (A-B-C / A-B-C)

Distance in Span (feet)

Min = 34.5 mGMax = 193.4 mG Min = 16.2 mG Max = 157.6 mG

Magnetic Field Intensity (mG)

<u>Structure Comparison – 345 kV</u>

Structure Comparison – 230 kV

BOLD Reduces Avian Interaction*

Nesting

 BOLD <u>eliminates cavity nests</u> and should <u>minimize corvid and raptor stick nests</u> due to the unique arch-shaped cross member.

Collision

BOLD has design elements to <u>reduce</u> collision risk

Feces

 BOLD <u>should reduce pollution outages</u> by limiting perching and creating a barrier; it may also reduce streamer outages.

Predation Management

 BOLD may <u>minimize avian predation on</u> <u>sensitive species</u> by reducing nesting on transmission structures.

Electrocution

BOLD can be implemented as <u>eagle</u> friendly

BOLD Structure Families

OPTIONS	115/138-kV	230-kV	345-kV
Single Circuit	✓	✓	✓
Double Circuit	\checkmark	\checkmark	\checkmark
Various Conductor Options	\checkmark	\checkmark	\checkmark

BOLD Conductor Options

	3-954 BOLD Lattice	3-954 Traditional Lattice	2-1590 BOLD Lattice	2-1590 Traditional Lattice	2-954 BOLD Lattice	2-954 Traditional Lattice
Average Line Cost* (\$/mile)	100%	105%	97%	102%	87%	92%
Tangent Structure Weight (lbs.)	100%	118%	95%	108%	85%	97%
Foundation (cu. yd)	100%	106%	97%	103%	91%	97%
Impedance (Ω)	100%	+127%	+122%	+136%	+130%	+145%

^{*}Indicative cost comparison, using common assumptions and unit pricing.

BOLD is the optimal design for cost and impedance.

A Cost Competitive **BOLD** Solution

Traditional

Pole Weight 36,600 lbs
Arm Weight 10,378 lbs
GL Moment 6,000 ft-K
Foundation Size 6.5 ft x 25ft

Pole Cost 100%
Arm Cost 100%
Anchor B Cost 100%
Foundation Cost 100%
Total Cost 100%

BOLD

Pole Weight 33,098 lbs
Arm Weight 11,070 lbs
GL Moment 4,600 ft-K
Foundation Size 6 ft x 22 ft

Pole Cost 90%
Arm Cost 157%
Anchor B Cost 60%
Foundation Cost 75%
Total Cost 99%

Typical 345-kV Tangent Structure

2-1590 ACSR Falcon

A Cost Competitive **BOLD** Solution

Traditional

Pole Weight 42,100 lbs
Arm Weight 10,500 lbs
GL Moment 6,150 ft-K
Foundation Size 6.5 ft x 25ft

Pole Cost 100%
Arm Cost 100%
Anchor B Cost 100%
Foundation Cost 100%
Total Cost 100%

BOLD

Pole Weight 33,700 lbs
Arm Weight 11,100 lbs
GL Moment 4,650 ft-K
Foundation Size 6.0 ft x 22 ft

Pole Cost 82%
Arm Cost 132%
Anchor B Cost 82%
Foundation Cost 75%
Total Cost 93%

Typical 345-kV Tangent Structure

2-1590 ACSR Falcon

Span Length: 1100'

NESC Medium

A Cost Competitive **BOLD** Solution

Traditional

Tower Weight 31,000 lbs
Uplift force 114 kips
Foundation Size 4.0 ft x 13ft

Tower Cost 100% Foundation Cost 100% Total Cost 100%

100% t 100% 100%

BOLD

Tower Weight 25,700 lbs
Uplift force 94 kips
Foundation Size 4.0 ft x 12ft

Tower Cost 82% Foundation Cost 92% Total Cost 86%

Typical 345-kV Tangent Structure

2-1590 ACSR Falcon

Span Length: 1200'

NESC Medium

Higher Capacity

- Up to <u>60%</u>
- Can avoid costly and complex compensation

Higher Capacity

- Up to <u>60%</u>
- Can avoid costly and complex compensation

Increased Efficiency

• Reduces Line Losses (up to 33%)

Higher Capacity

- Up to <u>60%</u>
- Can avoid costly and complex compensation

Increased Efficiency

• Reduces Line Losses (up to 33%)

Mitigates EMF Effects

• Up to <u>50%</u>

Higher Capacity

- Up to <u>60%</u>
- Can avoid costly and complex compensation

Mitigates EMF Effects

• Up to <u>50%</u>

Increased Efficiency

• Reduces Line Losses (up to 33%)

Reduces Avian Interaction

- Nesting
- Collision
- Contamination
- Electrocution

Higher Capacity

- Up to 60%
- Can avoid costly and complex compensation

• Up to 50%

Mitigates

EMF Effects

Reduces Structure Heights

• By nearly 30%

Increased Efficiency

• Reduces Line Losses (up to 33%)

Reduces Avian Interaction

- Nesting
- Collision
- Contamination
 - Electrocution

Higher Capacity

- Up to 60%
- Can avoid costly and complex compensation

EMF Effects

Mitigates

• Up to <u>50%</u>

Reduces Structure Heights

By nearly 30%

Increased Efficiency

• Reduces Line Losses (up to 33%)

Reduces Avian Interaction

- Nesting
- Collision
- Contamination
- Electrocution

Maximizes
Right-ofWay
Utilization

Mitigates

EMF Effects

• Up to 50%

BOLD Benefits Summary

Higher Capacity

- Up to 60%
- Can avoid costly and complex compensation

Increased Efficiency

• Reduces Line Losses (up to 33%)

Aesthetically Pleasing for Customers

• <u>70%</u> preferred

Reduces Avian Interaction

- Nesting
- Collision
- Contamination
- Electrocution

Reduces Structure Heights

By nearly 30%

Maximizes
Right-ofWay
Utilization

Higher Capacity

- Up to 60%
- Can avoid costly and complex compensation

Increased Efficiency

• Reduces Line Losses (up to 33%)

Mitigates EMF Effects

• Up to <u>50%</u>

Aesthetically Pleasing for Customers

• <u>70%</u> preferred

Reduces Avian Interaction

- Nesting
- Collision
- Contamination
- Electrocution

Reduces Structure Heights

By nearly 30%

Regulatory

 Addresses desire for Advanced Transmission Technology

Right-of-Way Utilization

Maximizes

<u>Higher</u> **Capacity**

- Up to 60%
- Can avoid costly and complex compensation

Increased **Efficiency**

 Reduces **Line Losses** (up to 33%)

Mitigates EMF Effects

• Up to 50%

Aesthetically Pleasing for Customers

• 70% preferred

Reduces **Avian** Interaction

- Nesting
- Collision
- Contamination
- Electrocution

Reduces **Structure** Heights

By nearly 30%

 Addresses desire for Advanced **Transmission** Technology

Maximizes Right-of-Way **Utilization**

Regulatory

Cost Competitive!

Efficiency never looked so good.®

Presentation to PJM TEAC – Special Session, Order 1920 September 6, 2024

David E. Rupert President & CEO 1 Riverside Plaza Columbus, OH 43215

614-716-2529 (office) 614-302-8297 (cell) derupert@aep.com vimeo.com/boldtransmission

Learn more at: BOLDTransmission.com

