Interactions Between Co-Sited Curtailment and W-DER

Andrew Levitt
Senior Market Strategist, Emerging Markets
DERs
Jan 31, 2017
• For W-DER behind a customer meter:
 – “W-DER Load Offsets” means end-use load that is
 fed from the W-DER and not from the grid.
 – “Curtailment” means a direct reduction in end-use
 load, by turning it off or down, etc.
• W-DER output and curtailment will both impact power
 flow through the POI and the meter there. They interact
 by virtue of sharing a single meter.
W-DER “Load Offsets” means end-use load that is fed from the W-DER and not from the grid.

“Curtailment” means a direct reduction in end-use load, by turning it off or down, etc.

At left:
- Gross load is 7 MW
- Load offset is 7 MW
- Curtailment is 0 MW
W-DER “Load Offsets” means end-use load that is fed from the W-DER and not from the grid.

“Curtailment” means a direct reduction in end-use load, by turning it off or down, etc.

At left:
- Gross load is 1 MW
- Load offset is 1 MW
- Curtailment is 6 MW
1. Separate W-DER market resource and curtailment (DR) market resource:
 - DR resource is measured via “gross load”, comparing the gross load baseline to gross load actual. Gross load is reconstituted using the W-DER submeter and the POI meter.
 - W-DER resource is based solely on the output at the POI meter.

2. Integrated market resource:
 - Resource schedules, offers, and is settled on total of <delta vs. baseline> + <net injections>
Examples of Interaction

• When load physically curtails, POI output will increase.
 – If separate: would dispatched Economic Demand Response be creating double value?
• When W-DER injects, it will necessarily be offsetting load
 – If the load wasn’t otherwise going to be offset, probably should represent the load offset vs. the baseline in SCED whenever the injection is scheduled.
• In cases of higher load than W-DER capability, an injection is not possible without a curtailment.
Separate vs. Integrated: Pros and Cons

<table>
<thead>
<tr>
<th>Feature</th>
<th>Separate</th>
<th>Integrated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modeling distinct parameters (startup time and cost, etc.)</td>
<td>Easy</td>
<td>Hard</td>
</tr>
<tr>
<td>Accommodation of interaction</td>
<td>Hard</td>
<td>Easy</td>
</tr>
<tr>
<td>Distinct settlement methods</td>
<td>Easy</td>
<td>Moderate</td>
</tr>
<tr>
<td>Distinct implementation (zonal/nodal, operating add-backs, commitment procedures, etc)</td>
<td>Easy</td>
<td>Hard</td>
</tr>
</tbody>
</table>
Separate vs. Integrated: Pros and Cons

<table>
<thead>
<tr>
<th></th>
<th>Separate</th>
<th>Integrated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modeling distinct parameters (startup time and cost, etc.)</td>
<td>Easy</td>
<td>Hard</td>
</tr>
<tr>
<td>Accommodation of interaction</td>
<td>Hard</td>
<td>Easy</td>
</tr>
<tr>
<td>Distinct settlement methods</td>
<td>Easy</td>
<td>Moderate</td>
</tr>
<tr>
<td>Distinct implementation (zonal/nodal, operating add-backs, commitment procedures, etc)</td>
<td>Easy</td>
<td>Hard</td>
</tr>
</tbody>
</table>

- PJM looking at options for an integrated approach for offering and scheduling W-DER that are behind a customer meter and co-sited with physical curtailments that wish to provide Demand Response.