Concepts for Carbon Pricing

Dallas Burtraw
Resources for the Future

PJM Carbon Pricing Senior Task Force

Audubon, PA

July 26, 2019
Drivers for carbon pricing

• Emissions reductions
 o Essential for addressing climate change
 o Pricing encourages fuel switching to lower carbon fuels
 o Pricing potentially encourages a reduction in energy demand, depending on use of proceeds

• Economic efficiency
 o Electricity generation produces carbon dioxide which contributes to climate change. The associated damages are not included in the price of electricity.
 o Pricing carbon will internalize the social cost of emissions
 o Carbon pricing is the lowest cost option for achieving a certain level of emissions reductions because it provides incentives to reduce emissions in every step from production through consumption

• Pricing promotes innovation and investments to achieve a reliable and affordable resource mix in the long run
 o Unlike for SO₂, NOₓ, and mercury, control technologies for CO₂ are evasive & difficult to implement in the power sector
 o A carbon price increases the value of low-carbon resources
Existing Carbon Prices

Environmental prices are not new to the electricity sector
Outline

1) Review basic principles of carbon pricing
2) Survey of existing carbon prices
3) Interactions of carbon prices with companion policies
4) Falling prices in carbon markets
5) Leakage issues
6) Takeaways and lessons from regional programs
1. Basic Principles of Carbon Pricing

- Carbon pricing imposes a condition of **scarcity** on GHG emissions and provides an economic signal to emitters.
- Approach 1: carbon tax sets a **price**
- Approach 2: cap and trade sets a **quantity** target

> Prices from either policy flows through wholesale energy markets
Most jurisdictions embrace cap and trade over carbon taxes. Why?

• Caps signal intermediate and long-term goals
• Use of allowance proceeds can build coalitions, and enables a lower carbon price
• Free allocation, where necessary, rather than exemptions
• Fungible allowances support longevity of program
• Opportunities for linking
• Implementation usually does not require legislation
Emissions Trading Has Been Used for Decades

• Media reactions to first SO$_2$ allowance trades in 1992 were sometimes critical

 o “Why applaud a deal that lets companies buy pollution rights? People will die.”
 (op. ed. in USA Today)

 o Economists contrast market-based approaches to regulations, in which permits are given away for free.

• Variants of cap and trade have been very successfully implemented to reduce lead, SO$_2$, NO$_x$, and CO$_2$

• However, methods for reducing CO$_2$ are unique relative to these conventional air pollutants

 o Less opportunity for post-combustion control

 o Greater need for fuel switching, innovation and efficiency
Basic Principles for Cap-and-Trade Program Design

• Pricing is *economically efficient*: it provides incentives for the least-cost means of emissions reductions

• Key feature: pricing creates financial *asset value*

• Key question: how is that asset value *distributed* in the economy?
The Basic Principle of Cap and Trade

- Regulators limit total emissions (the “cap”).
- Firms surrender one allowance per ton of emissions.
- Firms can buy or sell allowances.
- Firms that can reduce emissions at least cost will do so.

Source: EIA.
Deep Decarbonization Likely Involves a Substantial Expansion of the Electricity Sector

“All deep decarbonization pathways incorporate ‘three pillars’ of energy system transformation: energy efficiency and conservation, decarbonizing electricity and fuels, and switching end uses to low-carbon supplies...deep decarbonization cannot be achieved if any of the pillars is absent...

...Much of the direct combustion of fossil fuels ...is replaced by decarbonized electricity, which more than doubles the share of electricity in final energy consumption in 2050.” (options to reduce GHGs by 80% by 2050)

-- Pathways to Deep Decarbonization Synthesis Report, 2015
The technology pace for electrification is within historic experience

In 2050, NREL sees
- **60-110%** growth in electricity use.
- electricity’s share of total final energy increases to 32% to 41% (19% in 2016)

--NREL 2018 Electrification Futures Study

Figure ES-1. Diffusion of various technologies in U.S. households

Historic Rates of Technology Diffusion

Electrify everything?
2. Existing Programs and Prices

Cost per ton of CO2 by Program in 2019 (2019$/ton)

- Affordable Clean Energy
- Interagency Working Group
 SCC*
- RGGI
- CA Cap-and-Trade
- EU ETS

Social Cost of Carbon Estimate
Cap-and-Trade Price

Based on the 3% discount rate scenarios
The Magnitude of the Carbon Price Matters for Impact

• Determination of the carbon price differs by program

• Cap-and-Trade
 • Prices are determined in the market based on a set quantity of emissions reduction
 • Prices from cap-and-trade depend on the stringency of the cap. A stricter cap will yield higher prices, and vice versa.

• Setting the price directly - social cost of carbon
 • Price calculation depends on a variety of assumptions, including the focus on domestic or global benefits and costs of carbon
 • A higher price will yield higher emission reductions, and vice versa
The Price in the Carbon Market is Uncertain

- The energy landscape has many moving parts
 - E.g., weather, fuel prices, economic conditions, technology costs
 - Consequently, costs of climate policy are difficult to predict
 - Very high and very low prices relative to expectations could be problematic for program effectiveness
 - Very high prices could affect competitiveness
 - Very low prices undermine innovation and early action, and reduce the carbon price effectiveness relative to regulations

- Flexible policies (cap and trade) can accommodate uncertainties
 - Policy design choices matter for managing costs
Natural Gas Price Fluctuations Have Been Large

- Natural gas prices are a major driver of the cost of achieving emissions reductions
- Also significant:
 - Energy demand
 - Technology costs

Source: Macrotrends

Price drop of $14.50/mmbtu in a few months (2019$)

Source: Macrotrends
3. Policy Interactions

• Electricity sector policies include: renewable portfolio standards, energy efficiency standards, etc.
• Economic theory typically shows overlapping policies as departure from efficiency
• Nonetheless **companion policies** are a fundamental (and probably permanent) feature of climate strategies globally
• They are the central element of nationally determined commitments under the Paris accord
Companion Policies

• There are many reasons why companion policies are fundamental:
 o Political advantages
 o Carbon prices are often too low to drive needed emissions reductions
 • Politics
 • Leakage in the presence of incomplete global carbon pricing
 o Companion policies can drive long-term economic changes

• But it is sufficient to note:
 o Competition from outside the jurisdiction and associated leakage makes high prices unsustainable without a broad coalition
Dilemma: *Additionality* under an Emissions Cap

Cap and trade: Emissions reductions from companion policies lead to the *waterbed effect*

- An emissions cap is an *emissions floor*, leading to 100% leakage of individual efforts (at least in the short term)

- Prices fall, and emissions go up somewhere else!
4. Falling Prices in Carbon Markets

• Factors contributing to widely observed falling prices:
 o Program investments and federal and state policies
 o Over-allocation of allowances
 o Declining natural gas prices and electricity demand
 o Economic incentives lead to discoveries!

• But falling prices erode the payoff to early actors and the price signal for further investments
Price floors are auction “starting bids”

Most auctions have them!
Price Floors in Carbon Markets

One solution is a price floor. All North American markets have a price floor implemented as an **auction reserve price** (like eBay)
- Bids below a floor price are not accepted

There is no minimum price in the EU. Instead:
Market Stability Reserve

RGGI has an additional feature called an **Emissions Containment Reserve (ECR)**
Regional Greenhouse Gas Initiative (RGGI)

- Established in 2005, applies to power sector CO₂ emissions
- Currently includes PJM states Maryland and Delaware
- New Jersey on board to rejoin by 2020
- Virginia announced plans to link but not able to implement the regulation currently
- Next: Expanding to other states and the transportation sector?
Initial Distribution of Allowance Value, RGGI

Note: This figure shows distribution of allowances for 2008-2014. Auctions began in 2008 and compliance began in 2009. State set-aside allowances and allowances unsold at auction are not included.
RGGI’s Price Floor Was Crucial
A Supply Schedule without the Emissions Containment Reserve (ECR)

The waterbed effect:
- Prices fall.
- Regional emissions don’t change.
A Supply Schedule with the ECR

The ECR avoids build up of a large bank. Savings are shared with the environmental goal.
The New Model: Supply in North American Carbon Trading Programs

Quantities with Prices

Note role for consignment auctions with free allowances
5. Leakage Issues

- Leakage refers to the change in **emissions** outside the jurisdiction.
- Leakage can significantly reduce the efficacy of a policy by relocating emissions rather than removing them.
- For example, if New Jersey has a carbon price through RGGI and Pennsylvania does not, then this could cause emissions in Pennsylvania to increase.
- The higher the carbon price, the greater the potential problem.
- **Price** leakage also may occur, where the electricity price in a neighboring jurisdiction goes up due to changes in the wholesale market.
Is Leakage Important?

• Existing programs such as RGGI monitor leakage closely

• If leakage exists, it undermines cost effectiveness, but at typical low carbon prices, programs remain cost effective relative to the social cost of carbon

• Leakage does not undermine other interests of leading jurisdictions to propagate program design and promote technology innovation
Program Design Plays a Role

• Investment of allowance proceeds in energy efficiency (RGGI) or other technologies reduces leakage

• Output based allocation (free allowances) to generators provides a production incentive that mitigates leakage
 o OBA can promote specific technologies
 o Negative leakage is possible, by expanding in-state generation that is covered under the cap
 o But, OBA uses auction proceeds that could be used for other purposes

• Border adjustments are also possible
 o CA’s first jurisdictional deliverer in day-ahead market
 o Energy Imbalance Market ‘true-up’
6. Some Key Takeaways

• Most economists argue that carbon pricing is imperative for least-cost transition
• Empirically, carbon pricing can co-exist with companion policies
• Addressing climate change likely involves a substantial expansion of the electricity sector
• A crucial design feature is the distribution of asset value into the economy
• An emissions cap is an emissions floor unless the waterbed effect is explicitly addressed
• The innovations in RGGI may offer an enduring model that addresses both quantities and prices of reductions
Thank you.

- Find out more about RFF online: www.rff.org
- Follow us on Twitter: @rff
- Subscribe to receive updates: rff.org/subscribe
Examples of State Policies under RGGI’s Cap

• New York: 100% of electricity from clean sources by 2040
• Maryland: 40% reduction in GHG emissions economy-wide below 2006 by 2030, 50% renewable energy by 2030.
• Massachusetts: within-state cap-and-trade program to reduce carbon emissions from electricity by 80% from 2018 to 2050

RGGI recently completed its second scheduled program review
• State policies have enabled “adjustments” to the cap
• RGGI proposed an Emissions Containment Reserve – a soft price step above the hard price floor