Impact of Distributed Energy Resources on Arc Flash Incident Energy

January 15, 2019 Dominion Energy PJM Ride-Through Workshop

Presented by: Jonathan Deverick, P.E. Prepared by: Derek Kou, Jonathan Deverick, Kevin Phelps, Tin Nguyen, and Francisco Velez-Cedeno Dominion Energy, System Protection

Agenda

- Introduction
- Assumption / Set-up
- Modeling Variables
- Variable Impacts
- Mitigation
- Conclusions

Introduction

- Overhead Line Distribution Energized Work
- NESC 410A3 Employer is responsible to determine exposure.
- Personal Protection Equipment rating greater than the exposure
- Arc Flash Incident Energy < 8 cal/cm²

Effective Cover Up Performed on Overhead Lines (Dominion Energy Training Facility)

Assumption/ Set-up

- All 9 case studies: 34.5 kV_{L-L}
- Used ArcPro
- Single phase-to-ground faults*
- Bolted fault no fault impedance added
- Open air fault
- Arc gaps and Working distances follows NESC 410
- DER stays online after utility opens
- Fault is sustained

Assumption/ Set-up

•DER Comes offline after utility is disconnected.

Modeling Variables

DER Viable Impact: **Size** Fixed: Run-on Time – 0.160 s & GSU – Yg/Y

- 30 MVA 5.70% increase
- 20 MVA 2.13% increase
- 10 MVA 0.20% increase
- Case 1's 30 MVA study causes 17.18% increase

DER Viable Impact: **Run-on Time** Fixed: Size – 20MVA & GSU – Yg/Y

- 0.160s 2.7% increase
- 2 s 27.0 % increase
- 5 s 67.7 % increase

DER Mitigation: Low Set Instantaneous (LSI)

- 160 ms 15.13 % of the base case
- 2 s 39.48% of the base case
- 5 s 79.19% of the base case

Cons:

 Protection coordination is sacrificed at the expense of safety

DER Viable Impact: **Transformer Configuration** Fixed: Size – 20MVA & Run-on Time – 0.160 s

DER Mitigation: NGR (Neutral Grounding Resistor)

Conclusion

- Increased DER MVA size increases exposure: (10 MVA) 0.20%, (20 MVA) 2.13%, (30 MVA) 5.70%
- Longer Clearing times will substantially increase exposure: Approx. 14% increase in cal / cm² for each (1s) second @ 34.5 kV and 20MW
- Transfer Trip is preferred to control exposure from DER
- Yg / D requires NGR to manage exposure
- Yg-Y is preferred
- Low Set INST. decreases exposure (in Part A) by sacrificing downline coordination

Why we care....

Dominion Energy Crew

Supplement-A

Table 410-2—Clothing and clothing systems—voltage, fault current, and maximum clearing time for voltages 1.1 kV to 46 kV ac ^① (See Rule 410A3.)

		4-cal system	8-cal system	12-cal system
Phase-to-phase voltage (kV)	Fault current (kA)	Maximum clearing time (cycles)	Maximum clearing time (cycles)	Maximum clearing time (cycles)
1.1 to 15	5	46.5	93.0	139.5
	10	18.0	36.1	54.1
	15	10.0	20,1	30,1
	20	6.5	13.0	19.5
15.1 to 25	5	27.6	55.2	82.8
	10	11.4	22.7	34.1
	15	6.6	13.2	19.8
	20	4.4	8.8	13.2
25.1 to 36	5	20.9	41.7	62.6
	10	8.8	17.6	26.5
	15	5.2	10.4	15.7
	20	3.5	7.1	10.6
36.1 to 46	5	16.2	32.4	48,6
	10	7.0	13.9	20.9
	15	4.3	8.5	12.8
	20	3.0	6.1	9.1

())These calculations are based on open air phase-to-ground arc. This table is not intended for phase-to-phase area or enclosed arcs (arc in a box).

These calculations are based on a 15-in separation distance from the are to the employee and are gaps as follows: 1 kV to 15 kV = 5.08 cm (2 in), 15.1 kV to 25 kV = 10.16 cm (4 in), 25.1 kV to 36 kV = 15.24 cm (6 in), 36.1 kV to 46 kV = 22.86 cm (9 in). See IEEE Std 4-1995.

These calculations were derived using a commercially available computer software program. Other methods are available to estimate arc exposure values and may yield slightly different but equally acceptable results.

The use of the table in the selection of clothing is intended to reduce the amount or degree of injury but may not prevent all burns.

14

Supplement-B

Derived from NESC Table 410-2

Supplement-C

Figure 2. Sequence networks for a SLGF at feeder midpoint, with wye impedance grounded/delta interconnection transformer shown and either a Thevenin or Norton DG equivalent.

 $Z_{L=0} = zero \ sequence \ line \ impedance$ $Z_{L=1} = positive \ sequence \ line \ impedance$ $Z_{s=0} = zero \ sequence \ utility \ impedance$ $Z_{s=1} = positive \ sequence \ utility \ impedance$ $Z_{T1} = substation \ transformer \ impedance$ $Z_{T2} = PV$ transformer impedance $Y_0 = zero \ seq$ line susceptance + load $Y_1 = positive \ seq$ line susceptance + load $I_{r=0-1-2} = fault \ current$

Reference:

16

IEEE. Laura Wieserman, Student Member, IEEE, and T.E. McDermott. *"Fault Current and Overvoltage Calculations for Inverter-Based Generation Using Symmetrical Components." -*

Supplement-D

Inverter Modeling

- Inverters modelled as Voltage Controlled Current Source
- Similar and following ASPEN Recommendation:

/oltage (pu)* 1 1. 0.9 0.7 0.5 0.3	Current (A) 5774. 5888. 6350.	PF Angle (deg) 011.31 -33.06	MVA rating= 10. FLC FLC
1. 0.9 0.7 0.5 0.3	5774. 5888. 6350.	0. -11.31 -33.06	*Pos. seq. voltage measured at
0.9 0.7 0.5 0.3	5888. 6350.	-11.31	*Pos. seq. voltage measured at
0.7 0.5 0.3	6350.	-33.06	· -
0.5 0.3		00.00	Device terminal
0.3	6350.	-65.38	C Network side of transformer
	6350.	-65.38	
0.1	6350.	-90.	Limits on voltages at terminal
			Max - 1.05 times prefault value
			anes pretaut value
			Min= 0.05 pu
		-	Shut down based on min phase voltage
Date In-se	ervice: <u>N</u>	A Out-	of-service: <u>N/A</u>
rags: Nor		ок	Cancel Help
	_	Last changed Se	ep 22, 2016

Negative

Sequence

Positive

Sequence

Zero

Sequence

Sherman Chan, ASPEN, Modeling Solar Plants