Gaps in Current Pricing Methodology

Adam Keech
Executive Director, Market Operations
PJM
Energy Price Formation Senior Task Force
February 15, 2018
Missing Information in Prices

• There are times when the LMP is unable to send market signals that support the efficient commitment and dispatch of the system.
• When this occurs, market participants may have the incentive to deviate from PJM’s instructions.
• We use uplift (make whole and LOC) to remove the incentive for generation resources to deviate from dispatch.
• PJM believes all known pricing methods require some level of uplift to support commitment and dispatch instructions.
Example: Unit Commitment Process

Goals (in no specific order):
1. Achieve power balance (supply = demand)
2. Adhere to all limitations (ecomin/max, transmission limits, etc.)
3. Minimize bid production cost (BPC) in the process
Example 1: Commitment and Dispatch Solution

EcoMax = 300 MW
EcoMin = 50 MW
Offer = $50/MWh
Startup Cost = $0
No-Load = $200/hr
Sched. Rate (EcoMax) = $50.67/MWh

EcoMax = 200 MW
EcoMin = 50 MW
Offer = $80/MWh
Startup Cost = $100
No-Load = $200/hr
Sched. Rate (EcoMax) = $81.50/MWh

G1
L1
100MW
G1 MW = 150 MW

G2
L2
100MW
G2 MW = 50 MW

FLOW = 50 MW

G# COST = Start-up + No-load + (Offer * Output Level) = Cost

G1 COST = $0 + ($200/hr * 1hr) + (150 MWh * $50/MWh) = $7,700

G2 COST = $100 + ($200/hr * 1hr) + (50 MWh * $80/MWh) = $4,300

BPC = G1 COST + G2 COST = $12,000
Example 1: Commitment and Dispatch Solution

- If the limit on the line were 100 MW or greater only G1 would be needed to serve all load
 - LMP = $50/MWh across the system

- G2 has an EcoMin = 50 MW which must be adhered to in the commitment/dispatch process

- Because G2 is committed at 50 MW, G1’s output is reduced to 150 MW to maintain power balance
Example 1: Current LMP Calculation

EcoMax = 300 MW
EcoMin = 50 MW
Offer = $50/MWh
Startup Cost = $0
No-Load = $200/hr
Sched. Rate (EcoMax) = $50.67/MWh

G1
LMP = $50/MWh
FLOW = 50 MW

G2
LMP = $50/MWh

EcoMax = 200 MW
EcoMin = 50 MW
Offer = $80/MWh
Startup Cost = $100
No-Load = $200/hr
Sched. Rate (EcoMax) = $81.50/MWh

G# UPLIFT = MAX(0, COST – (LMP * OUTPUT))

G1 UPLIFT = $7,700 – ($50/MWh * 150 MWh) = $200
G2 UPLIFT = $4,300 – ($50/MWh * 50 MWh) = $1,800
TOTAL UPLIFT = $2,000
Example 1: Missing Information in Prices

• The next MW of load would be served by G1 thus the LMP = $50/MWh
• The transmission constraint is not binding so prices are uniform across the system

• Prices do not reflect G2 as being needed
• The need for G2 is reflected through uplift payments which are not transparent and shift costs
Example 1: Uplift Allocation

• Assume this scenario occurs in the Day-ahead Market
 – DA Uplift is allocated to all withdrawal transactions on a pro-rata basis
 • Cleared DA demand, DECs, price-sensitive demand, exports
 – L1 and L2 will both be allocated a pro-rata share of the cost to make units G1 and G2 whole ($1,000 each)
 – L1 and L2 pay the same price despite the fact that G2 is needed to serve load at L2 and not L1
Example 2: Impacts on Balancing Settlement

- Units G1-G4 able to be scheduled to serve load in the DAM
- DA Demand = 550 MW
- G1 and G2 are flexible
- G3 and G4 are inflexible
Example 2: Generator Offer Data

G1 Unit Parameters
EcoMax = 300 MW
EcoMin = 100 MW
Offer @ EcoMax = $60/MWh
Offer @ EcoMin = $40/MWh
Startup Cost = $0
No-Load = $200/hr

G2 Unit Parameters
EcoMax = 400 MW
EcoMin = 200 MW
Offer @ EcoMax = $40/MWh
Offer @ EcoMin = $20/MWh
Startup Cost = $0
No-Load = $200/hr

G3 Unit Parameters
EcoMin = EcoMax = 100 MW
Offer = $70/MWh
Startup Cost = $300
No-Load = $0/hr

G4 Unit Parameters
EcoMin = EcoMax = 100 MW
Offer = $75/MWh
Startup Cost = $300
No-Load = $0/hr
Example 2: DA Commitment

- At 550 MW of load
 - G1 = 150 MW
 - G2 = 400 MW
 - G3 = 0 MW
 - G4 = 0 MW

- G1 is marginal
 - LMP = $45.10/MWh
Example 2: Real-time

- G1 trips in real-time
- Load is still 550 MW
 - G1 = 0 MW
 - G2 = 350 MW
 - G3 = 100 MW
 - G4 = 100 MW

- G2 is marginal
 - LMP = $35.10/MWh
Example 2: Real-time

- G1 has tripped
- The real-time LMP is set by G2 as it is the only dispatchable unit on the system
 - LMP is set consistent with the cost of the next MW at $35.10/MWh
- G1 must purchase out of its DA commitment at the RT LMP
 - This nets a margin of $10/MWh
- The uplift costs to G3 and G4 (~$8,080) are allocated to deviations between DA and RT
 - Assuming G3 and G4 are not for conservative operations
Example 2: Shortcomings of Prices

- Real-time prices do not reflect the need or commitment of G3 and G4
- G1 is not held accountable for this deviation...it actually profits!
 - G1 will receive a pro-rata share of the deviation charges.*
- This significantly diminishes performance incentives.

*Due to the simplicity of this example, G1 is the only resource deviating. In reality, there are many that will all pay a share of uplift created by G1 in this case.
Example 3: Reserve Pricing

$/MWh

$850/MWh

$300/MWh

Step 1

Step 2A

Step 2B

Single Largest Online Contingency

Step 1 + 190 MW

Step 2A + Extended

MWh
Example 3: Reserve Pricing

- **Step 1 - $850/MWh**
 - Largest single system contingency
 - Usually the largest unit
- **Step 2A - $300/MWh**
 - Additional reserves added July 2017
 - Intended to mitigate significant pricing impacts from transient shortages
- **Step 2B (optional) - $300/MWh**
 - Intended to reflect additional reserves added by operators
Example 3: Background and Interpretation

• Step 1
 – Load is not willing to pay more that $850/MWh to maintain the system’s largest single contingency in reserves
 – PJM system operators will commit reserves beyond this cost to maintain reliability and compliance
 – In these cases, the market prices are not reflecting operator actions
• $850/MWh was determined in 2007 based on the average cost of reserves during shortage events during that time
 – Offer cap was $1,000/MWh at that time
• There are similar interpretations for Steps 2A and 2B
Example 3: Reserve Pricing

$/MWh

$850/MWh

$300/MWh

Step 1

Step 2A

No Step 2B

1000 MW

1190 MW

MWh
Example 3: Alignment with Reliability Value

• PJM estimates the amount of Tier 1 on the system every 5 minutes

• If PJM estimates more than 1190 MW in Tier 1 the price for Synchronized Reserves is $0/MWh

• This indicates reserves have no value. This is inconsistent with the reliability value in terms reducing the loss of load probability in real-time

• If PJM cannot meet the requirement at the specified price, even if its by 1 MW, the price goes to the applicable penalty factor