Gaps in Current Reserve Pricing Methodology

Lisa Morelli
Manager, Real-Time Market Operations
Energy Price Formation Senior Task Force
March 29, 2018
Gap 1: Reserve Zone Modeling

- Current modeling of Mid-Atlantic Dominion (MAD) reserve sub-zone may result in overly conservative procurement of reserves in MAD
 - Forces set amount of reserves to be procured in MAD
 - Main goal in procuring locational reserves is to not overload critical constraints when reserves are deployed
Gap 1: Reserve Zone Modeling

- Reactive Transfer Interfaces used to define the MAD sub-zone are not always the constraints that dispatch is most concerned with overloading
 - Results in reserves being procured in areas where they can exacerbate these constraints upon deployment
 - Leads to MAD reserve prices that are misaligned with the reliability value of reserves in MAD

- September 2017 shortage event
 - System was constrained East to West
 - Most of MAD reserves would aggravate the constraints if deployed
 - MAD reserves valued at 2x non-MAD reserves

RTO Primary Reserves = $300
MAD Primary Reserves = $600
Tier 1
Online units that are following economic dispatch and are only partially loaded, and therefore are able to increase output within 10 minutes following PJM dispatcher request

Paid:
- Synch Reserve Market Clearing Price (SRMCP) when Non-Synch Market Clearing Price (NSRMCP) > $0
- Synchronized Reserve Premium Price for event response

Tier 2
Resources that have offered into the Synchronized Reserve Market and cleared
- Condensers (CTs and hydro) transition to online Tier 2 condense mode
- CTs online at min – operating at a point that deviates from economic dispatch
- Steam reduced to provide Tier 2 MW
- Demand response that can drop load

Paid:
- SRMCP for any assigned MW (made whole to offer if necessary)
Gap 2: Tier 1 Estimation

- Use of Tier 1 can lead to inaccurate accounting of reserve capability
 - Tier 1 has no obligation to respond
 - Resources don’t explicitly offer Tier 1 and therefore may not be aware they are being relied upon
 - Additional Tier 1 specific data that is not always kept up-to-date is used in the calculation of Tier 1 MW estimates
 - Synch Reserve Maximum MW
 - Synch Reserve Ramp Rate
Tier 1 Event Response

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
<th>Start Time</th>
<th>End Time</th>
<th>Duration</th>
<th>Region</th>
<th>Tier 1 Estimate (MW)</th>
<th>Tier 1 Response (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>01/01/2018</td>
<td>02:41</td>
<td>02:48</td>
<td>00:07</td>
<td>RTO</td>
<td>1135.7</td>
<td>668.4</td>
</tr>
<tr>
<td>2</td>
<td>01/03/2018</td>
<td>03:00</td>
<td>03:13</td>
<td>00:13</td>
<td>RTO</td>
<td>1896.7</td>
<td>509.9</td>
</tr>
<tr>
<td>3</td>
<td>01/07/2018</td>
<td>14:15</td>
<td>14:24</td>
<td>00:09</td>
<td>RTO</td>
<td>2513.1</td>
<td>850.5</td>
</tr>
</tbody>
</table>

- Poor response attributed to
 - Lack of Synch Reserve Maximum MW updates
 - Inaccurate Synchronized Reserve Ramp Rates
 - Communication from MOC to Generator
Impacts of Data Quality

• Data quality directly affect Tier 1 estimates
 – Impact to Shortage Pricing
 • Creates the potential to over or under estimate available synchronized reserves
 – Poses a challenge to creating a price signal that is consistent with system conditions
 – Operator decisions and actions
 • Disconnect between Economic Dispatch and Energy Management System (EMS) actual reserves
 • Use of Tier 1 biasing and additional Tier 2 commitments
Gap 3: Tier 1 Valuation and Compensation

- Tier 1 is compensated (when NSRMCP > $0) without an obligation to respond. Obligations and compensation are misaligned.
- Tier 1 is assumed to be free. If we can meet the entire reserve requirement with Tier 1, the price of reserves is $0. This price does not align with the value of synchronized reserves.
 - Tier 1 MW could be considered the most valuable synchronized reserves
 - Most economic
 - Less delivery risk than some Tier 2 resources because they’re already online and generating energy
 - Tier 1 is currently treated as perfectly substitutable for Tier 2 reserves, yet not valued comparably
Gap 4: 30-Minute Reserves

- PJM schedules 30-minute reserves in the Day-ahead Market
- PJM does not maintain a 30-minute reserve requirement in real-time
- No compensation in real-time suggests this capability has no operational value or cost
 - Market prices do not reflect the cost of resources needed to reliably serve system needs
- Value and potential use of 30-minute reserves:
 - Respond to unforeseen system occurrences like under forecasted load
 - Back-filling 10-minute reserves
 - Meeting large interchange exports
 - Responding to gas contingencies
• A real-time 30-minute reserve market could also trigger shortage pricing earlier than today
 – Currently shortage pricing is triggered when the system does not have enough 10-minute reserves, which is a severely degraded operating state

• Adding a real-time 30-minute reserve market would help change shortage pricing into a tool to avoid operating emergencies rather than an indication that we are in one (proactive vs. reactive)