Locational Reserve Modeling

Lisa Morelli
Manager, Real-time Market Operations
EPFSTF
July 17, 2018
The current, static reserve zone modeling approach (RTO reserve zone with MAD sub-zone) does not always accurately reflect the constraints dispatch is most concerned with overloading.

- Leads to procurement of reserves in locations that could exacerbate constraints when deployed.
- Leads to reserve prices that may be misaligned with system conditions and the reliability value of those reserves.
Update on Nodal Reserve Pricing

- **Nodal Reserve Pricing**
 - Model a single RTO-wide reserve demand curve
 - No locational demand curves necessary
 - Monitor one or more transmission constraints for overload if reserves are deployed
 - Assign reserves to resources that will not result in constraint overloads

- Initial discussions indicate this is a feasible alternative; more investigation required

- Requires significant further discussion with stakeholders

- **PJM recommendation:**
 - Move nodal reserve pricing to the EPFSTF’s mid-term scope of work
 - Include more flexible sub-zone modeling in the short-term scope of work

www.pjm.com
Flexible Sub-Zone Modeling

• More Flexible Reserve Sub-Zone Modeling
 – Keep existing RTO reserve zone with closed loop sub-zone structure, but allow flexibility to change the location of the sub-zone
 – Define several reserve sub-zones, of which only one will be used at a time
Flexible Sub-zone Approach Details: Defining new sub-zones

- Define several reserve sub-zones, of which only one will be used at a time

- New reserve sub-zones may be defined for constraints in these three categories:
 - Reactive transfer interfaces (AP South, BED-BLA, etc.)
 - 345kV or above actual overload constraint (i.e. Conastone-Peach Bottom 500kV actual overload)
 - Contingency overload exceeding the load dump limit on a 345kV or above facility

- New reserve sub-zones will be defined as far in advance as possible
 - Model the process after guidelines for notifying participants of new closed loop interfaces
 - Notification to PJM stakeholders of any new reserve sub-zone should be made as far in advance as possible, but no later than one day prior to use

- New reserve sub-zones will not be created on a same-day basis
Sub-zones will be defined as all buses that have a 3% or greater distribution factor on the associated transmission constraint

- Definitions will be posted on pjm.com
- Reserve sub-zone definitions will be re-evaluated and published quarterly in advance of the network model builds
Defining the Sub-Zone ORDCs

- Each reserve sub-zone will have its own ORDC for each product (SR or PR)
- Methodology for defining the sub-zone ORDC will be consistent with that of the RTO reserve zone ORDC.
 - Maximum price will be consistent with the maximum price on the RTO demand curve ($850)
 - Minimum Reserve Requirement will be equal to the real-time output of the largest single contingency in the reserve sub-zone
 - Downward sloping section will be set by Probability of falling Below the Minimum Reserve Requirement (PBMRR) times the Max Price
 - If load forecast does not exist for the sub-zone area, then use the load forecast error for the area the sub-zone is contained within and scale it down using the sub-zone’s ratio share of actual load in that area
 - Thermal forced outage, and wind and solar forecast uncertainties can be derived using the uncertainties associated with the units located within the sub-zone.
 - Curve will be adjusted for operator actions taken within the sub-zone, consistent with methodology applied to RTO demand curve
Flexible Sub-zone Approach Details: Changing the location of the sub-zone

- Keep existing RTO reserve zone with closed loop sub-zone structure, but allow flexibility to change the location of the sub-zone

- The reserve sub-zone to be used for a given operating day will be determined on a day-ahead basis and will apply for the entire operating day.
 - Will be the reserve sub-zone associated with the most limiting of the defined reserve constraints, as determined by day-ahead or other forward reliability studies
 - Notification of changes to the reserve sub-zone to be used will be made as far in advance as possible, but no later than prior to the close of the day-ahead market.

- Changes to the reserve sub-zone in use can be made after the close of the day-ahead market (including intraday) on an exception basis.
 - Stakeholders will be notified of all switches in the modeled reserve sub-zone as soon as possible
Enhancements to Reserve Deployment Communications

- Enhancements to spin event notifications / instructions will be necessary if the sub-zone in use can change
 - PJM is currently investigating adding requested spin event response MW to a resource’s energy dispatch instructions so resources receive a single base point to follow.
 - This enhancement is a pre-requisite to the implementation flexible sub-zone modeling