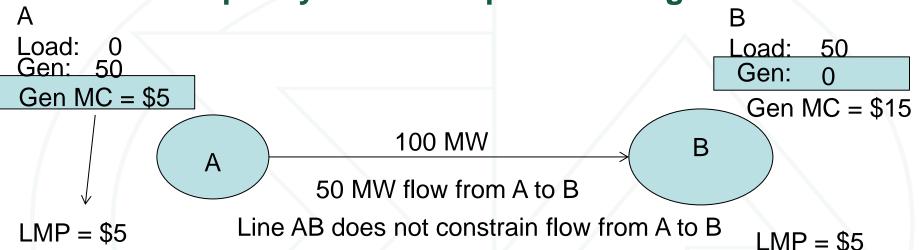
Basic Congestion Concepts


FRMSTF July 17, 2019 **Howard Haas**

Congestion

- Congestion = The difference between total charges to load and total payments to generation caused by binding transmission constraints.
 - Binding transmission constraints cause price differences on the system
 - With binding constraints, load pays more for energy than generation gets paid for energy
 - Generation upstream of generation is paid lower prices than generation downstream of congestion
 - Load downstream of congestion pays the higher (upstream price) for all of its energy
 - The difference in payments from load to generators is congestion Monitoring Analytics

Simple System Example: No Congestion

What are the LMPs at A and B?

	А	Constraint	В	
LMP	\$5	>	\$5	
	Zone A		Zone B	
Load MW	0		50	
Marginal Price of Power	\$5.00		\$5.00	
(LMP x MW)	Zone A		Zone B	Total
Load Charges	\$0.00		\$250.00	\$250.00
Generation Credits	\$250.00		\$0.00	\$250.00
Total Credits/Charges	(\$250.00)		\$250.00	\$0
_	_		_	7

Congestion= Load Charges – Gen Credits

Congestion = The difference between total charges to load and total payments to generation caused by binding transmission constraints.

Monitoring Analytics

Α

Simple System Example: Congestion

Load: 0

Gen: 100

Gen MC = \$5

What are the LMPs at A and B?

Load: 150 Gen: 50

Gen MC = \$15

A)

100 MW

100 MW flow from A to B

LMP = \$5

Line AB constrains the flow from A to B Gen at B is needed to meet some of load.

LMP = \$15

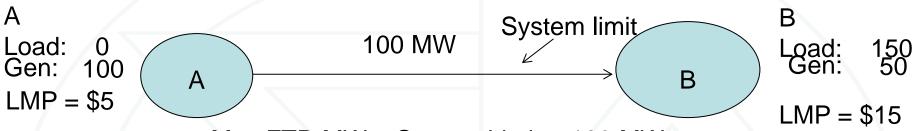
	А	Constraint	В			
LMP	\$5	>	\$15			
	Zone A		Zone B			
Load MW	0		150			
Marginal Price of Power	\$5.00		\$15.00			
(LMP x MW)	Zone A		Zone B	Total		
Load Charges	\$0.00		\$2,250.00	\$2,250.00		
Generation Credits	\$500.00		\$750.00	\$1,250.00		
Total Credits/Charges	(\$500.00)		\$1,500.00	_ \$1,000		
Congestion= Load Charges – Gen Credits						

Congestion = The difference between total charges to load and total payments to generation caused by binding transmission constraints. Monitoring Analytics

B

Path Based FTR vs. Direct Allocation of Congestion FTR

2019 Howard Haas



Congestion Allocation: FTR or Direct

- Congestion = The difference between total charges to load and total payments to generation caused by binding transmission constraints.
- Congestion belongs to load
- If congestion is returned to load, load gets credit for the access to upstream generation made available by transmission.
- If congestion is returned to the load that paid it, the average cost of power realized by the load will equal the actual average cost of energy that served that load.
- Load has the rights to congestion but can sell that right
 - In the current system load can claim or passively sell path based, modeled path based rights to congestion
 - Under proposed construct, load can keep or sell actual congestion (network based)

Monitoring Analytics

FTR vs Direction Allocation

- Max FTR MW = System Limit = 100 MW
- PJM can make 100 MW available on line AB as an FTR
- Load can self schedule and claim the FTR or passively sell and get the auction revenue from the sale (ARR)
 - Maximum potential value of FTR from A to B = (FTR MW) x (Price difference between B and A)

FTR Target Allocation = (LMP Sink – LMP Source) x FTR MW

If FTR MW = 100 MW, then FTR Target Allocation = \$1,000 Congestion assigned to FTR = \$1,000

If Congestion is assigned to load directly, Congestion assigned = \$1,000

7

Monitoring Analytics

FTR vs. Direction Allocation

- Load has the rights to congestion but can sell that right
 - In the current system load can claim or passively sell path based, modeled path based rights to congestion
 - In this example FTR claims \$1,000 in congestion
 - In a simple one line system, perfect alignment in model and actual system capability (and single settlement market) results in FTR being the right to actual congestion
 - Simple one line system eliminates cross subsidy and leakage issue than cause a misalignment of target allocations and actual congestion
 - Under proposed construct, load can keep or sell actual congestion (network based)
 - In this example, the FTR, defined as the direct allocation of actual congestion, claims \$1,000 in congestion
 - Direct allocation FTR always results in the allocation of actual congestion based on actual network. Monitoring Analytics

Allocation of congestion: Affect on Average Cost of Load

Total Congestion

\$1,500

\$500 \$1,000

	А	Constraint	В	
LMP	\$5	>	\$15	
SMP	\$5		\$5	
CLMP	\$0		\$10	
	Reference Bus	100		
Load MW	0		150	
Gen MW	100		50	
CLMP x MW	Zone Based A		Zone Based B	
Load Charges	\$0		\$1,500	
Gen Credits	\$0		\$500	
Total Charges	\$0		\$1,000	
	Zone A		Zone B	Т
Load MW	0	150		
Marginal Price of Power	\$5.00	\$15.00		
Total Load Charges	\$0.00	\$2,250.00		
Average Cost of Power	\$5.00	\$15.00		
Congestion Allocation	\$0.00	\$1,000.00		
Net Load Charges	\$0.00	\$1,250.00		
Marginal Price of Power	\$5.00	\$15.00		
Average Cost of Power	NA	\$8.33	~	

Marginal Price does not change

With correct congestion allocation, average cost of power reflects actual average cost for serving zone Analytics

©2019 9

Monitoring Analytics, LLC 2621 Van Buren Avenue Suite 160 Eagleville, PA 19403 (610) 271-8050 MA@monitoringanalytics.com www.MonitoringAnalytics.com

