

Performance Based Reactive Power Compensation – PJM Package

Glen Boyle

Sr. Manager, Performance Compliance Dept. Reactive Power Compensation Task Force June 6, 2022

Objectives of PJM Package

- Focus on PJM operational needs
 - Reactive Power is an essential reliability service
- Ensure resources are meeting ISA obligations
- Encourage and reward resource performance for real time voltage control
- Reduce administrative and legal burden of existing process

- 1. Determine eligibility of resource based on eligibility criteria
- 2. Determine capability
- 3. Update Reactive Capability Curve
- 4. Determine MVAR capability eligible for flat rate payment
- 5. Performance incentive through monthly eligibility assessment for flat rate payment based on unit performance, plus ongoing capability de-rate following inadequate performance

Determine Resource Eligibility for Flat Rate Payment

- Physically connected directly (through unit step-up transformer) to PJM
 Transmission Facilities
 - Modeled and necessary telemetry
- Must have Automatic Voltage Regulation (AVR) set to control transmission level voltage based on PJM approved voltage schedule
 - Units operating on fixed power factor mode not eligible
- AVR must be operating at all times except planned outages
 - Automatic response
- Requirement to be dispatched by PJM for reactive power as needed

• Must be PJM Member or have executed full responsibility DOA

Determine Capability

- Upon entry to the program and every 5 year testing/demonstration
- Based on existing testing criteria as today in M-14D
- When internal conditions preclude testing to full capability, only maximum actual delivered MVAR capability will be eligible for flat rate payment
 - Limit of two tests/year/generator
 - Use of actual historic MVAR capability delivered over last 2 years may be used as substitute for tested capability
 - PJM reserves the right to require a retest if prior test capability is not reflected in actual operations
- Measurement location as defined in ISA

Update Reactive Capability Curve

- Utilize eDART to update reactive capability curve as required following testing
 - Ensures EMS is modeled with dependable, deliverable MVAR capability
 - Status Quo process as today

Basis for Compensation – Option A Full Tested/Demonstrated MVAR Capability

- Eligible capability = greater of (0, Eligible Lagging capability + [Eligible Leading capability])
 - Eligible Lagging Capability = (demonstrated lagging MVAR at Eco Max)
 - Eligible Leading Capability = (demonstrated leading MVAR at Eco Min)
 - Must meet at least both ISA required leading and lagging requirements to be eligible (i.e. no netting)
 - ISA required lagging capability = 0.9 pf for synchronous generators
 - ISA required leading capability = 0.95 pf for synchronous generators

Basis for Compensation – Option A Full Tested/Demonstrated MVAR Capability

- Resources must meet "gating criteria" on Slide 3
- Resources must at least meet ISA requirements
- Compensation at flat rate based on greater of ISA or tested/historic capability
 {{Lagging MVAR at Eco Max + abs(Leading MVAR at Eco Min)}(flat rate in \$/MVAR-year)}/12

Basis for Compensation – Option B Tested/Demonstrated MVAR Capability Above ISA

- Eligible capability = greater of (0, Eligible Lagging capability + |Eligible Leading capability|)
- Eligible leading/lagging capability = Demonstrated capability ISA required capability
 - Eligible Lagging Capability = (demonstrated lagging MVAR at Eco Max)
 - (ISA required capability at Eco Max)
 - E.g., ISA required lagging capability = 0.9 pf for synchronous generators
 - Eligible Leading Capability = (demonstrated leading MVAR at Eco Min)|
 (ISA required capability at Eco Min)|
 - E.g., ISA required leading capability = 0.95 pf for synchronous generators
 - Must meet at least both ISA required leading and lagging requirements to be eligible (i.e. no netting)

Apjm

Basis for Compensation – Option B Tested/Demonstrated MVAR Capability Above ISA

- Resources must meet "gating criteria" on slide 3
- Resources must at least meet ISA requirements
- Compensation at flat rate based on tested/historic capability beyond ISA requirement only
 {{(Lagging MVAR at Eco Max ISA Req) + abs(Leading MVAR at Eco Min ISA Req)}(flat rate in \$/MVAR-year)}/12

- Capability compensation based on existing markets
 - Removal of reactive credit from E&AS offset
- Bonus/penalty structure developed based on actual MVAR performance

Flat Rate Methodology

To Be Determined

- Option A
 - Based on cost of reactive compensation device
 - Capacitor
- Option B
 - Based on current Schedule 2 reactive payments
 - (Current Reactive Revenue)/(Total generator MVAR capability)

Monthly Eligibility Evaluation for Flat Rate Payment Based on Unit Performance

Monthly pass/fail lookback evaluation to determine eligibility for monthly credit

- 1. Determine if any regulated bus voltages are outside voltage schedules for 5 consecutive minutes
 - PJM default or bus specific

1		PJM Default Generator Voltage Schedules								
	Voltage Level (kV)	765	500	345	230	161	138	115	69	66
	Schedule (kV)	760.0	525.0	350.0	235.0	164.0	139.5	117.0	70.0	67.0
	Bandwidth (+/- kV)	+/-10.0	+/- 8.0	+/- 7.0	+/- 4.0	+/- 4.0	+/- 3.5	+/- 3.0	+/- 2.0	+/- 1.5

- For example, 230 kV voltage goes above 239 kV or below 231 kV for 5 consecutive minutes
- 2. Determine MVAR supplied or absorbed by generator (at measured point consistent with tested capability)
- 3. Compare actual MVAR delivered to eligible capability (within 10%)
- 4. If generator provides less than capability, ineligible for monthly credit
 - Update D-curve and MVAR eligibility to delivered amount

Monthly Eligibility Check for Flat Rate Payment Based on Unit Performance

- If regulated voltage is within voltage schedule limits for entire month, generator is eligible for credit
- If generator was offline during voltage excursion, it is assumed to have passed performance test and remains eligible for credit
- If generator fails performance test due to AVR outage, it is ineligible for credit
- Must pass each check to be eligible for month
 - Actual MVAR delivered >= (.9)Eligible capability \rightarrow Eligible for that month
 - Actual MVAR delivered < (.9)Eligible capability → Not eligible for that month Update D-curve

- 500 MW ICAP generator connected directly to 345 kV transmission system
- ISA required MVAR = 242 lagging, -164 leading
- Tested MVAR capability = 350 lagging, -200 leading
- Option A MVAR = 350 + |-200| = 550 MVAR
- Option B MVAR = (350-242)+|(-200-(-164)| = 144 MVAR
- Monthly Performance Evaluation
 - Voltage drops to 342.5 kV for 5 minutes
 - Generator must deliver at least 315 MVAR (.9)(350) in order to pass monthly eligibility evaluation

Other Package Elements

- Synchronous and non-synchronous resources eligible for uplift if MW output is reduced at PJM direction to provide increased reactive
- Voltage schedules (including AVR mode) set by PJM with TO input
- Capacitors at generator sites can be included in plant MVAR capability if they meet technical conditions
 - Fast enough autonomous response to be useful post-contingency

Open Issues

- MVAR capability eligible for flat rate payment
- Flat rate payment amount
- Transition issues from current Schedule 2
 - New generators and existing generators rolling off legacy
 Schedule 2 rates would be eligible for new flat rate
 - Break implementation into phases phase in
 - Smooth transition from status quo
 - Allow time for generators to adjust performance
 - Allow time to develop supporting tools and automation

Facilitator: Diane Lake, Diane.Lake@pjm.com

Secretary: Risa Holland, Risa.Holland@pjm.com

SME/Presenter: Glen Boyle, Glen.Boyle@pjm.com Member Hotline (610) 666 – 8980 (866) 400 – 8980 custsvc@pjm.com