Generation and Transmission Interconnection Process

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of Contents</td>
<td>ii</td>
</tr>
<tr>
<td>Table of Exhibits</td>
<td>v</td>
</tr>
<tr>
<td>Approval</td>
<td>1</td>
</tr>
<tr>
<td>Current Revision</td>
<td>1</td>
</tr>
<tr>
<td>Introduction</td>
<td>2</td>
</tr>
<tr>
<td>ABOUT THIS MANUAL</td>
<td>2</td>
</tr>
<tr>
<td>Intended Audience</td>
<td>2</td>
</tr>
<tr>
<td>References</td>
<td>2</td>
</tr>
<tr>
<td>Section 1: Interconnection Process Overview</td>
<td>3</td>
</tr>
<tr>
<td>1.1 MERCHANT TRANSMISSION INTERCONNECTION FACILITIES</td>
<td>4</td>
</tr>
<tr>
<td>1.2 INITIATING THE GENERATION AND TRANSMISSION INTERCONNECTION PLANNING PROCESS</td>
<td>4</td>
</tr>
<tr>
<td>1.3 PROJECT MANAGEMENT AND CLIENT MANAGEMENT</td>
<td>4</td>
</tr>
<tr>
<td>1.4 ELECTING CAPACITY RESOURCE STATUS VERSUS ENERGY RESOURCE STATUS</td>
<td>5</td>
</tr>
<tr>
<td>1.5 PJM MEMBERSHIP</td>
<td>5</td>
</tr>
<tr>
<td>1.6 MEMBERSHIP IN NERC REGIONAL COUNCILS</td>
<td>6</td>
</tr>
<tr>
<td>1.7 THE INTERCONNECTION REQUEST STUDIES</td>
<td>6</td>
</tr>
<tr>
<td>1.8 CHANGES TO EXISTING OR PROPOSED GENERATION</td>
<td>6</td>
</tr>
<tr>
<td>1.9 SMALL GENERATION INTERCONNECTION CONSIDERATIONS (20 MW OR LESS)</td>
<td>7</td>
</tr>
<tr>
<td>1.10 DISTRIBUTED GENERATION</td>
<td>8</td>
</tr>
<tr>
<td>1.11 BEHIND THE METER GENERATION</td>
<td>8</td>
</tr>
<tr>
<td>1.12 COORDINATION OF STUDIES BETWEEN PJM AND MISO</td>
<td>8</td>
</tr>
<tr>
<td>1.12.1 Study of PJM Interconnection Request impacts on MISO transmission</td>
<td>9</td>
</tr>
<tr>
<td>1.12.2 Study of MISO Interconnection Request impact on PJM Transmission</td>
<td>10</td>
</tr>
<tr>
<td>1.12.3 Study of PJM Transmission Service Request impacts on MISO transmission</td>
<td>10</td>
</tr>
<tr>
<td>1.13 STUDIES FOR LONG TERM FIRM TRANSMISSION SERVICE</td>
<td>11</td>
</tr>
<tr>
<td>Section 2: Generation and Transmission Interconnection Planning Process</td>
<td>12</td>
</tr>
<tr>
<td>2.1 GENERATION OR TRANSMISSION INTERCONNECTION FEASIBILITY STUDY AGREEMENT EXECUTION AND ANALYSIS</td>
<td>12</td>
</tr>
<tr>
<td>2.1.1 Purpose of the Generation or Transmission Interconnection Feasibility Study Agreement’s</td>
<td>12</td>
</tr>
<tr>
<td>2.1.2 Interconnection Requests and PJM Queue Position</td>
<td>13</td>
</tr>
<tr>
<td>2.1.3 Generation and Transmission Interconnection Feasibility Study Cost Responsibility</td>
<td>13</td>
</tr>
<tr>
<td>2.1.4 Changes to Existing Generators and Transmission Facilities</td>
<td>14</td>
</tr>
<tr>
<td>2.1.5 Generation and Transmission Interconnection Feasibility Study Analysis and Results</td>
<td>15</td>
</tr>
<tr>
<td>2.2 GENERATION OR TRANSMISSION INTERCONNECTION SYSTEM IMPACT STUDY AGREEMENT EXECUTION AND ANALYSIS</td>
<td>16</td>
</tr>
<tr>
<td>2.2.1 Impact Study Agreement and Cost</td>
<td>16</td>
</tr>
<tr>
<td>2.2.1.1 Dynamic Model for stability studies</td>
<td>17</td>
</tr>
</tbody>
</table>
Section 3: Small Resource Interconnection Process .. 21
3.1 SMALL RESOURCES (20 MW OR LESS) ... 21
3.1.1 Study Requirements and Cost ... 21
3.2 SPECIFIC PROVISIONS FOR RESOURCES OF 10 MW OR LESS 23
3.3 SPECIFIC PROVISIONS FOR RESOURCES GREATER THAN 10 MW UP TO 20 MW 24

Section 4: Interconnection Service Agreement and Construction Service Agreement Execution and Other Agreements ... 25
4.1 INTERCONNECTION SERVICE AGREEMENT .. 25
4.1.1 Interim Interconnection Service Agreements ... 27
4.2 INTERCONNECTION CONSTRUCTION SERVICE AGREEMENT 28
4.2.1 Option to Build .. 28
4.2.2 General Timeline ... 28
4.2.3 Summary of General Conditions .. 30
4.2.4 Specific Process Flow and Timeline (See Timeline in Attachment A) 31
4.2.5 PJM Manuals ... 34
4.2.6 PJM Open Access Transmission Tariff – Part VI (Interconnections with the Transmission System) ... 34
4.2.7 PJM Operating Agreement .. 34
4.3 OTHER AGREEMENTS .. 35
4.3.1 Station Power ... 35

Section 5: Additional Generator Requirements .. 36
5.1 BEHIND THE METER GENERATION PROJECTS ... 36
5.1.1 Behind the Meter Generation Interconnection Requests 36
5.1.2 Metering of Behind the Meter Generation ... 36
5.1.3 Behind the Meter Generation Effects on Market Operations 37
5.2 GENERATOR POWER FACTOR REQUIREMENTS .. 37
5.2.1 Application of Power Factor Requirements to Increases of Existing Generation 37
5.3 WIND-POWERED GENERATION PROJECTS .. 38
5.3.1 Wind Generation Capacity Credit Rules ... 38

Attachment B: PJM Request Cost Allocation Procedures ... 40
B.1 PURPOSE .. 40
B.2 SCOPE ... 40
B.2.1 Definitions ... 41
B.3 PJM GENERATION AND TRANSMISSION INTERCONNECTION COST ALLOCATION METHODOLOGIES 41
B.3.1 Load Flow Cost Allocation Method ... 41
B.3.2 Short Circuit Cost Allocation Method .. 42
B.3.3 Cost Allocation Method for Generator and/or Generator Step Up (GSU) Changes .. 43
B.3.4 Generation Project Excess MW Capabilities ... 44
<table>
<thead>
<tr>
<th>Table of Exhibits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXHIBIT 1: PROCESS FLOW .. 3</td>
</tr>
<tr>
<td>EXHIBIT 2: PROCESS FLOW AND TIMELINE .. 34</td>
</tr>
</tbody>
</table>
Revision 15 (04/17/2014):

- Insert Sections 1.12 and 1.13 to document provisions for the study of cross border impacts between MISO and PJM associated with Interconnection Requests and Transmission Service Requests
- Update Attachment B to be consistent with current practices and Tariff defined terms
- Update Attachments F & G with current list of dynamic models which PJM has utilized in studies
Welcome to the Generation and Transmission Interconnection Process Manual. In this Section you will find:

- A table of contents
- An approval page that lists the required approvals and the revision history
- This Introduction
- Sections summarizing the guidelines, requirements and procedures for Generation and Transmission interconnection, including Developer actions and PJM actions.
- Attachments that include additional supporting documents and tables.

About This Manual

This PJM Manual, *Generation and Transmission Interconnection Process* is one of the PJM Manual 14 series family. This manual guides developers of generation and merchant transmission projects through the planning up to the request for facility construction.

Intended Audience

The intended audience for this PJM Manual includes the following:

- Developers of generation and merchant transmission facilities and their staffs interested in locating facilities within PJM.
- Existing Generation Owners planning increases to an existing generating resource.
- PJM Transmission Owners and other PJM Members and their staffs.
- PJM Staff.

References

The entire PJM Manual 14 series addresses issues that may be related to or of interest to the Interconnection Customer. The reader of this manual is urged to review the other manuals for additional material of interest. All PJM manuals can be found on PJM.com under the Documents/Manuals links. In addition the reader is urged to also check PJM committee postings for possible draft revisions that may be awaiting posting under the manuals section of PJM.com.
Entities requesting interconnection of a generating facility (including increases to the capacity of an existing generating unit or decommissioning of a generating unit) or requesting interconnection of a merchant transmission facility within the PJM RTO must do so within PJM’s defined interconnection process. This process ensures the successful, timely completion of PJM’s planning, facility construction and operational and market infrastructure requirements. For the purposes of this Manual, the term “Developer” is used to encompass any entity which bears responsibility for bulk power system upgrades, whether a third party seeking interconnection or an existing Transmission Owner with responsibility for Baseline Upgrades or self-identified enhancements.

Exhibit 1: Process Flow

These Manuals offer a set of guidelines that ensure successful interconnection and operations within PJM.
The accompanying Attachment A – Interconnection Process Flow Diagram - portrays in more detail the pertinent planning steps from the initial request up to the request for facility construction. This includes market and operational steps necessary for participation, as appropriate, in the PJM energy and capacity markets, including the process for acquiring any related or necessary transmission rights.

The PJM Manual 14A content is consistent with and elaborates on the terms and conditions found in the source PJM documents. The primary source documents for Manual 14A are the PJM Open Access Transmission Tariff (OATT) and the PJM Operating Agreement. Other applicable source documents may include the PJM Transmission Owners Agreement and the PJM Reliability Assurance Agreement. The source documents remain the final authoritative documents and these documents control with regard to any inconsistencies between them and the PJM Manuals.

1.1 Merchant Transmission Interconnection Facilities

As specified in the PJM OATT and Schedule 6 of the PJM Operating Agreement, the developers of Merchant Transmission Facilities that interconnect with the PJM Transmission System may be entitled, subject to certain restrictions, to elect certain transmission rights that are created by the addition of such facilities. Discussions of these rights and specific design, construction, operational and maintenance aspects of merchant transmission interconnection facilities can be found by referring to the PJM OATT.

1.2 Initiating the Generation and Transmission Interconnection Planning Process

In order to initiate the Interconnection Planning Process, a Developer must contact PJM through PJM’s hotline or through PJM’s web site at http://www.pjm.com/home.aspx. The Developer must submit a completed Interconnection Request. This is accomplished via the execution of a Feasibility Study Agreement, per OATT Attachment N, Attachment Y, or Attachment BB for generation interconnection requests and OATT Attachment S for merchant transmission interconnection requests. All Tariff attachments for application of service in the New Services Queue (interconnection queue) can be found in Documents/Agreements section of http://www.pjm.com/home.aspx. Completed Attachments, including the submittal of all required data, must be accompanied by the appropriate fees as detailed in following sections of this Manual in order to reserve a place in PJM’s interconnection New Services Queue.

1.3 Project Management and Client Management

After contacting PJM for the first time, PJM assigns a Project Manager. The Project Manager will be responsible for working with each Developer and their respective staff to complete the necessary steps related to interconnection planning. Additional Project Managers will be assigned for subsequent facility construction and operational phases of the project.
After contacting PJM for the first time through PJM’s hotline or through PJM’s web site at http://www.pjm.com/home.aspx, the Developer will be assigned a Client Manager. Client Managers coordinate PJM activities that facilitate each Developer's membership and market participation, bridging any concerns or coordination issues with appropriate PJM staff including the respective PJM Project Managers who oversee the interconnection process.

1.4 Electing Capacity Resource Status versus Energy Resource Status

A Developer must elect the status type for the generating capability associated with each interconnection request: Capacity Resource Status or Energy Resource Status. A Capacity Resource status designation permits the generator to be utilized by PJM Load Serving Entities to meet capacity obligations under the terms of the PJM Reliability Assurance Agreement (RAA), available in the Documents/Agreements section of http://www.pjm.com/home.aspx.

- **Capacity Resource Status:** Units must meet certain interconnection requirements for being granted this status including requirements for deliverability. Capacity Resource status is granted based on the availability of sufficient transmission capability to ensure the deliverability of generator output to network load and to satisfy the regional reliability requirements of the NERC region in which the generator is located - ReliabilityFirst or SERC. Specific analytical tests performed during the Generation Interconnection Feasibility Study and System Impact Study reveal the specific transmission system upgrades required to meet these reliability criteria. Capacity Resource Status conveys specific capacity interconnection rights enabling a unit to participate in PJM capacity markets. Through these markets, LSEs may procure capacity rights to meet their respective capacity obligations under the terms of the PJM Reliability Assurance Agreement.

- **Energy Resource Status:** The planning studies for generating units seeking this status do not include the deliverability analyses required of those units seeking Capacity Resource status. As such, Energy Resource units are only permitted to participate in the energy market. Such units do not receive capacity interconnection rights and may not participate in PJM capacity markets.

1.5 PJM Membership

Membership in PJM is granted under the terms of the PJM Operating Agreement. The Client Manager assigned to each Interconnection Request will guide each Developer through this process. While PJM membership is not required for the initial planning and construction phases of a given generation or merchant transmission interconnection project, Membership will be required prior to commercial operation. And, in many cases, Membership will be required in order to integrate operational and market infrastructure with PJM. PJM Membership entails certain data requirements, operational and market coordination, committee support and financial obligations.
1.6 Membership in NERC Regional Councils

PJM operates within the geographic boundaries of several regions of the North American Electric Reliability Corporation (NERC), including applicable areas of the ReliabilityFirst and the SERC Reliability Corporation. Any new signatory to the PJM Operating Agreement is obligated to be in compliance with the respective planning, operating and membership requirements of the respective NERC Council in which their facilities are located.

1.7 The Interconnection Request Studies

The PJM Operating Agreement, Schedule 6, and the PJM Open Access Transmission Tariff, Parts IV and VI, describe the procedures used to process requests for interconnection with the PJM transmission system. The Operating Agreement and Tariff establish the statutory basis for the business rules, described in detail in this Manual M14A, for the interconnection request process. These business rules include three analytical steps:

1. Feasibility Study
2. System Impact Study
3. Interconnection Facilities Study.

Each step imposes its own financial obligations and establishes milestone responsibilities. Projects within each time-based queue are evaluated against a baseline benchmark set of studies in order to establish project-specific responsibility for system enhancements, separate from general network upgrades suggested by the results of baseline analyses. Each Developer is encouraged to participate in the activities of the Transmission Expansion Advisory Committee (TEAC) and its Sub regional RTEP Committee. PJM consults with the TEAC and Sub regional RTEP Committees as part of the larger Regional Transmission Planning Process through which a coordinated regional expansion plan – including expansions necessitated by generation and merchant transmission interconnection - is reviewed.

Important PJM interconnection process steps established to implement provisions of the PJM OATT:

- The interconnection queuing process including the procedures used to initialize the interconnection evaluation process based on the timing of the receipt of all requests
- The cost responsibility for transmission upgrades required for interconnection;
- The rights accorded to a generator after it has satisfied OATT requirements;
- The required Interconnection Service Agreement (ISA) and Construction Service Agreement (CSA). Each of these two agreements is executed by and among three parties: the Developer, the Transmission Owner and the Transmission Provider (PJM).

1.8 Changes to Existing or Proposed Generation

An existing or proposed generating unit may experience changes which will require consideration under PJM’s interconnection, process:
New Ownership Requirements: If a generating facility is acquired by a new owner, then the transfer of responsibilities and rights in the PJM market for the transferred facility will be conveyed to the new owner following notification to PJM by the selling and purchasing entities.

Unit Output Increases: If a Generation Owner plans to increase the Maximum Facility Output (MFO) or the amount of Capacity Interconnection Rights (CIRs) of an existing generating unit or active Interconnection Request in the PJM study queue to a MW value greater than the amount already specified in a generating unit’s existing ISA or active Interconnection Request, then that additional MFO or CIRs will be treated as a new generation Interconnection Request subject to the procedures discussed in Manual 14A. If a proposed generating unit increase is less than 20 MW, the generation owner may be eligible to follow the Small Generation Interconnection Process, set forth in Part IV, subpart G of the PJM Tariff and discussed herein below.

If a Generation Owner changes the electrical characteristics of the existing generating unit(s) that were previously studied by PJM, but is not increasing the MFO or CIRs, then the Generation Owner must request that a necessary study be performed by PJM (See PJM Manual 14A Section PJM Tariff Section 36.2A.4 and Attachment O, Appendix 2, Section 3.1). Even when not increasing MFO or CIRs, if a Generation Owner wishes to parallel generating units in excess of the number of units previously studied by PJM, this would change the electrical characteristic and require a necessary study prior to operating with additional generating units. If a Generation Owner installs a spare generating unit with different electrical characteristics than the primary generating unit, the spare generating unit must be studied with a necessary study prior to being paralleled with the system.

1.9 Small Generation Interconnection Considerations (20 MW or less)

Requests for the interconnection of new resources of 20 MW or less, or for increases of 20 MW or less for existing generation may be processed through expedited procedures, in accordance with Part IV, Subpart G of the PJM Open Access Transmission Tariff. Generating resources of this size fall into one of three categories:

(1) Permanent Capacity Additions: units which are expected to remain connected to the transmission system for the life of the resource, expect to receive capacity interconnection rights, and may be utilized to meet the capacity obligations of LSEs.

(2) Permanent Energy Resource Additions: units which are expected to remain connected to the transmission system for the life of the resource but receive no Capacity Transmission Interconnection Rights and are not permitted to be used to meet capacity obligations of LSEs.

(3) Temporary Energy Resource Additions: units which are only expected to remain connected to the transmission system temporarily (less than six months), participating in spot market activity during peak demand periods and requiring only minimal or no transmission enhancements.
The planning process requirements for each of these are described in more detail in Manual 14B.

An Alternate Queue Process has been developed in order to streamline some of the administrative requirements associated with those small generation projects which meet criteria as established in the PJM Open Access Transmission Tariff. This process is intended for those generation interconnection requests which are not believed to have impact to the Bulk Electric System. The study of these projects may be similar to the process as set forth for other interconnection requests but will not involve studies of the Bulk Electric System. All required studies will be completed in order to address any impacts to the Transmission Owners lower voltage systems.

1.10 Distributed Generation

Developers who are considering construction of generating facilities within PJM which are 20 MW or less may follow the Small Generator Interconnection process described above. If a plant operator seeks operation as part of a load management arrangement, the operator is directed to PJM’s load management program, found on PJM’s web site at http://www.pjm.com/home.aspx.

1.11 Behind the Meter Generation

Any Behind the Meter Generation which seeks to be designated in whole or in part as an energy or capacity resource must submit a Generation Interconnection Request for the portion of the unit’s output that will participate in the PJM market. Further, sites with 10 MW or more must abide by PJM metering requirements as well as market, operational and settlement requirements. Manual 14D (Appendix A) describes the treatment of Behind the Meter generation, provisions for which are captured in PJM’s Open Access Transmission Tariff, Subpart A, Section 36.1.A.

As with any other Interconnection Request, The Developer will be assigned a Project Manager for each process phase captured in Exhibit 2. The Project Manager will be responsible for working with each Developer and staff to complete the respective steps for that particular phase. Attachment B: Interconnection Process Team Role Clarity Diagram captures Implementation Team roles for each interconnection process phase (including a PJM Project Manager for each phase) and shows how each Manual aligns with each phase.

Generating resources operating “behind the meter,” in isolation from the PJM bulk power transmission system and which do not intend to participate in the PJM wholesale energy market, need only coordinate planning, construction and/or operation with the host Transmission Owner.

1.12 Coordination of studies between PJM and MISO

MISO and PJM shall conduct Interconnection Studies, as necessary, to determine the impacts of Interconnection Requests on each other’s transmission system which will be treated as an affected system. This joint coordination of Interconnection Studies will be in addition to the existing Interconnection Studies that MISO and PJM already perform to evaluate the impacts of their respective queues on their own transmission system.
The Transmission reinforcement and the study criteria used in the coordinated interconnection studies will honor and incorporate provisions as outlined in the PJM and MISO Business Practices Manuals and their respective Tariffs.

Example:

1. PJM and PJM Transmission Owner study and reinforcement criteria will apply to PJM transmission when PJM evaluates the impact of MISO generation on PJM transmission.

2. MISO and MISO transmission owner study and reinforcement criteria will apply to MISO transmission when MISO evaluates the impact of PJM generation on MISO transmission.

1.12.1 Study of PJM Interconnection Request impacts on MISO transmission

During the course of PJM Interconnection studies, PJM shall monitor the MISO transmission system and provide the draft results of the potential impacts to MISO. These potential impacts shall be included in the PJM System Impact study report along with any information regarding the validity of these impacts and possible mitigation received from MISO and the MISO transmission owners.

Following the completion of the PJM System Impact Study and after the customers execute the PJM Facilities Study Agreement, PJM shall forward to MISO, at a minimum of twice per year (November 15 and May 15), information necessary for MISO and the MISO transmission owners to study the impact of the PJM interconnection request(s) on the MISO transmission.

MISO and the MISO transmission owners shall study the impact of the PJM interconnection request(s) on MISO transmission and provide draft results to PJM by:

- February 1 for PJM interconnection requests provided to MISO on or before November 15 of the previous year,
- August 1 for PJM interconnection requests provided to MISO on or before May 15 of the same year.

These impacts shall include a description of the required system reinforcement(s), an estimated planning level cost and construction schedule estimates of the system reinforcement(s). At times PJM may identify to MISO the need to perform studies associated with an interconnection request other than the times identified above. MISO shall endeavor to study these requests at the earliest time which is feasible, but not later than the times as specified above (commencing after November 15 and May 15).

If MISO identifies required Network Upgrades, on the MISO transmission system, due a PJM interconnection request, then the PJM Interconnection Customer(s) shall be required to follow all provisions, delineated under Attachment X of the MISO tariff, related to Facility Study funding and appropriate Network Upgrade Facility Construction Agreement.

Cost allocation for required Network Upgrades on the MISO transmission, for PJM interconnection requests, shall be governed by and subject to MISO Tariff and Manuals.
1.12.2 Study of MISO Interconnection Request impact on PJM Transmission.

During the course of MISO Interconnection studies, MISO shall monitor the PJM transmission system and provide the draft results of the potential impacts to PJM. These potential impacts shall be included in the MISO System Impact study report along with any information regarding the validity of these impacts and possible mitigation received from PJM and the PJM transmission owners.

Prior to commencing the MISO DPP study MISO shall forward to PJM, at a minimum of twice per year (January 1 and July 1), information necessary for PJM and the PJM Transmission Owners to study the impact of the MISO interconnection requests on the PJM territory. For the prescribed times when MISO provides this information to PJM, January 1 and July 1, PJM and the PJM Transmission Owners shall study the impact of the MISO interconnection requests and provide draft results on the PJM transmission by

- March 31, for requests submitted to PJM on or before January 7th of the same year, and
- September 29 for requests submitted to PJM on or before July 7th of the same year.

These impacts shall include a description of the required system reinforcement(s), an estimated planning level cost and construction schedule estimates of the system reinforcement(s). At times MISO may identify to PJM the need to perform studies associated with an interconnection request other than the times identified above. PJM shall endeavor to study these requests at the earliest time which is feasible, but not later than the times as specified above (commencing after January 7 and July 7).

If PJM identifies required Network Upgrades, on the PJM transmission system, due a MISO interconnection request, then the MISO Interconnection Customer(s) shall be required to follow all provisions, delineated under PJM tariff, related to Facility Study funding and appropriate Network Upgrade Facility Construction Agreement obligations.

Cost allocation for required Network Upgrades on the PJM transmission, for MISO Interconnection projects, shall be governed by and subject to PJM Tariff and Manuals.

1.12.3 Study of PJM Transmission Service Request impacts on MISO transmission

MISO and PJM shall coordinate on new Transmission Service Request (TSR) Studies to determine impacts on each other’s transmission system which will be treated as an affected system. The coordination and completion of these studies will follow the same basic procedures described in Section 1.12.1 above relating to interconnection request studies.
1.13 Studies for Long Term Firm Transmission Service

Transmission Service Requests are received through the PJM OASIS and, in the case of Long Term Firm Transmission Service, must be evaluated along with the other requests for service which are studied in the PJM New Services Queue.

The first step in the evaluation of Long Term Firm Transmission Service associated with the inclusion of the request in the New Services Queue is during the Initial Study. During the conduct of the Initial Studies of requests for transmission service as outlined in PJM Manual 2, PJM will conduct a screening of the requested service under conditions similar to the performance of the Feasibility Studies discussed later in this manual for generation and transmission requests, however, the results of these Initial Studies of transmission service shall only provide a listing of the possible impacted elements and not address the costs or time to complete any reinforcements.

If the customer proceeds forward after the Initial Study and executes the System Impact Study Agreement, PJM shall conduct a study of the requested service following the close of the New Services Queue in which the request for service is contained which shall be similar to the System Impact Study. This will occur during the time that the remaining New Service Requests are being evaluated for the Feasibility Study and will be performed with all New Service Requests in the case for the study as if those projects had proceeded forward to the System Impact Study phase however the commercial probability for the other New Service Requests shall remain at the value specified for the Feasibility Study. This study will provide the transmission service customers additional information in order to determine if they will move forward by defining the costs associated with reinforcements which may be required to grant the requested service. Following the completion of this study, the transmission service customer will receive a System Impact Study and will be required to move forward into the Facilities Study phase based on the results of this study.

The requests for transmission service will again be evaluated during the Tariff specified time period for the System Impact Study associated with the New Services Queue the customer is in. The results of this study will be used to modify and revise the requirements as previously specified in the original System Impact Study and the Facilities Study will be adjusted appropriately.
Section 2: Generation and Transmission Interconnection Planning Process

In this section you will find an overview of the generator and transmission interconnection planning process.

- A description of the Feasibility Study Agreement execution and analysis (see “Generation and Transmission Interconnection Feasibility Study Agreement Execution and Analysis”).
- A description of the System Impact Study Agreement execution and analysis (see “System Impact Study Agreement Execution and Analysis”).
- A description of the Facilities Study Agreement execution and analysis (see “Generation and Transmission Interconnection Facilities Study Agreement Execution and Analysis”).
- Specific requirements for interconnection of large generation and transmission projects with a capability greater than 20MW

2.1 Generation or Transmission Interconnection Feasibility Study Agreement Execution and Analysis

2.1.1 Purpose of the Generation or Transmission Interconnection Feasibility Study Agreement’s

As a FERC accepted Regional Transmission Organization (RTO), PJM administers the process for the interconnection of all new generators and new transmission facilities to the PJM Transmission Grid. New generation applicants may request either of two forms of interconnection service, Capacity Resource or Energy Resource service. Capacity Resource interconnections receive the right to schedule both capacity and energy deliveries at a Point of Interconnection – Energy Resource interconnections receive the right to schedule only energy deliveries at a specified point on the PJM Transmission System. Capacity allows the generator to be utilized by PJM load-serving entities to meet capacity obligations imposed under the Reliability Assurance Agreement. Capacity resources may participate in PJM Capacity Credit markets and in Ancillary Service Markets. Energy Resource status allows the generator to participate in energy markets based on locational prices.

Capacity Resource status is based on providing sufficient transmission capability to ensure deliverability of generator output to aggregate network load and to satisfy various contingency criteria established by the particular regional reliability council (ReliabilityFirst) in which the generator is located. See PJM Manual 14B, Attachment C for details of the PJM Deliverability Testing Methods. Specific tests performed during the Generation Interconnection Feasibility Study and later System Impact Study will identify those upgrades required to satisfy the contingency criteria applicable at the generator’s location.
2.1.2 Interconnection Requests and PJM Queue Position

The Interconnection Request must include descriptions of the project location, size, equipment configuration, anticipated in-service date, data as required to complete Attachment F of this Manual 14A, as well as proof of right to control the site for the proposed project. The in-service date must be no more than 7 years from the date the Interconnection Request is received by the Transmission Provider, unless it is demonstrated that engineering, permitting and construction of the project will exceed this period. Upon receipt of the completed Interconnection Request, the project is placed in a PJM Interconnection queue, in which queue positions are determined by the date of submission of the completed Interconnection Request.

The Interconnection Customer must provide either of the following associated with a proposed wind facility (The requirements listed below are in addition to the requirements contained in Section 36.1.01 of the PJM Tariff and do not replace the requirement for the Interconnection Customer to provide legal documentation demonstrating rights to the site land):

1. a site plan indicating the layout of all turbines associated with the proposed project including: 1) number of turbines proposed for the site, 2) size, in megawatts (MW), of each turbine, 3) size, in acres, of the proposed site, 4) distance between the hub(s) of all adjacent turbines on the site and, 5) length of blades on the turbine which is proposed for installation.

or

2. a minimum of 3 acres per MW of wind units in a single line or 10 acres per MW for a site consisting of wind units distributed over an area

2.1.3 Generation and Transmission Interconnection Feasibility Study Cost Responsibility

As specified in Part IV, Subparts A and G of the PJM Tariff, a party wishing to connect a new generation resource or a new transmission facility to the PJM system must submit an Interconnection Request in the form of an executed Generation or Transmission Interconnection Feasibility Study Agreement (OATT at Part VI, Attachment N or Attachment S, respectively) and a study deposit as specified in the table below (Table 1-1). The amount of the deposit is specified in accordance with the size, in MW, as well as the timing of receipt of the Interconnection Request. Refer to Section 3 of this Manual 14A for further details regarding the interconnection process for small resources of 20 MW or less.

The applicant is obligated to pay the actual costs of studies conducted by PJM on its behalf, and the non-refundable deposit is applied to those costs as work is completed. If the cost of the Generation or Transmission Interconnection Feasibility study is reasonably foreseen to exceed the standard deposit listed below for the Interconnection Request before the study begins, PJM will so advise the applicant.
Table 2-1: Large Generation Interconnection Process deposit requirements

<table>
<thead>
<tr>
<th>Month of New Services Queue</th>
<th>Non-refundable deposit</th>
<th>Cost per MW of Interconnection Request</th>
<th>Maximum deposit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st - 4th</td>
<td>$10,000</td>
<td>$100</td>
<td>$110,000</td>
</tr>
<tr>
<td>5th</td>
<td>$20,000</td>
<td>$150</td>
<td>$120,000</td>
</tr>
<tr>
<td>6th</td>
<td>$30,000</td>
<td>$200</td>
<td>$130,000</td>
</tr>
</tbody>
</table>

Note: The cost per MW of Interconnection Request costs shall be transferable to subsequent studies associated with the individual Interconnection Request. See below for an example of the cost for an Interconnection Request:

Example:

An Interconnection Customer submits a request for interconnection of a 40 MW facility during the first month of the queue period. The deposit costs would be as follows:

- **Non-refundable deposit:** $10,000
- **Cost per MW:** $4,000
- **Total deposit:** $14,000 (To be submitted as a single payment)

2.1.4 Changes to Existing Generators and Transmission Facilities

Transfer of ownership of existing generating units and transmission facilities is not subject to the interconnection queuing process unless pre-existing capacity injection rights for the unit are not transferred with the change in ownership.

Owners of existing generating plants that plan increases in a plant’s output capability above that specified in the generating plant’s existing ISA must follow the same procedure as new generation specified in the PJM Tariff and the PJM Manuals. These projects will be placed into the interconnection queue and will be evaluated under the same study procedure as new generation.

Some changes, such as improvements to same-site units injecting at a common point, may be aggregated or combined. Such requests are determined on a case-by-case basis.

Owners of existing generating plants that plan to retire or reduce the plant’s output capability must notify PJM in order to address capacity credit issues and any potential PJM System economic and/or reliability concerns. After a generator officially notifies PJM of retirement, system upgrades will be identified to resolve any reliability problems associated with the retirement. If the generator subsequently withdraws the request for retirement, PJM may continue to plan the system to accommodate retirement of the generator. The Capacity Interconnection Rights associated with the retired or reduced plant output capability may survive for up to one year following the actual Deactivation Date. *(PJM OATT at Part VI, Section 230.3 - formerly Subpart D, Section 45.3 in Part IV)*
Owners of existing Merchant Transmission Facilities that plan to retire or reduce the capability of a transmission facility must notify PJM in order to address any potential PJM System economic and/or reliability concerns.

2.1.5 Generation and Transmission Interconnection Feasibility Study Analysis and Results

After the Generation or Transmission Interconnection Request and deposit are received, PJM assigns a System Planning Senior Consultant as the Team Leader to initiate and direct the implementation of the Study phases of the Generator and/or Transmission Interconnection Process (see Attachment C for PJM Generation and Transmission Planning Team Role Clarity Diagram). Under the direction of the Team Leader, PJM staff, in coordination with any affected Interconnected Transmission Owner(s), will establish a time to hold a Scoping Meeting as described in Section 36.1.5 of the PJM Tariff and the following. The Interconnection Customer is required to choose a primary Point of Interconnection and also has the option to specify a secondary Point of Interconnection to be studied during the Generation or Transmission Interconnection Feasibility Study phase of the Interconnection Request, and also must identify one Point of Interconnection as the primary and the second as the secondary choice. The primary and secondary Points of Interconnection will be studied as follows:

The primary Point of Interconnection will be studied and the Generation or Transmission Interconnection Feasibility Study will follow the requirements as set forth in the PJM Tariff, Section 36.2 and this manual.

The secondary Point of Interconnection will receive a sensitivity analysis and this will be included in the Generation or Transmission Interconnection Feasibility Study. This sensitivity analysis will include definition of the overloads and no estimated costs.

The decision as to the designation of the primary and secondary Point(s) of Interconnection must be communicated to PJM and the Interconnected Transmission Owner(s) prior to completing the Scoping Meeting. If the Interconnection Customer fails to provide these designated options (primary or primary and secondary Point of Interconnection) prior to completion of the Scoping Meeting, PJM shall consider the Interconnection Request as deficient, as described for other cases of deficiency of an Interconnection Request in the PJM Tariff, Section 36.1.4, and will process the Interconnection Request in accordance with the PJM Tariff, Section 36.1.4.

Following the Scoping Meeting, PJM and the Interconnected Transmission Owner will conduct the Generation or Transmission Interconnection Feasibility Study when no deficiencies exist for an individual Interconnection Request. In general, the study will be completed within 90 days during the next Feasibility Study Cycle. If this is not possible, PJM must so notify the applicant and provide an anticipated completion date. PJM, in coordination with any affected Interconnection Transmission Owner(s), shall conduct Generation and Transmission Interconnection Feasibility Studies two times each year (PJM OATT at Part VI, Subpart A, Section 36.2 - formerly 36.2 and 41.2, in Part IV) for completion by:

- Last day of February, for requests received during the six month period ending October 31 of the preceding year.
- August 31, for requests received during the six month period ending April 30.
The Generation or Transmission Interconnection Feasibility Study assesses the practicality and cost of incorporating the generating unit or increased generating or transmission capacity into the PJM system. The analysis is limited to short-circuit studies and load-flow analysis. This study does not include stability analysis. The study also focuses on determining preliminary estimates of the type, scope, cost and lead time for construction of facilities required to interconnect the project.

Results of the study for the requested interconnection service (Capacity Resource or Energy Resource) are provided to the applicant and the affected Interconnection Transmission Owners, and are published on the PJM web site. Confidentiality of the applicant is maintained in these reports, but the location of the project and size (in megawatts) is identified. After reviewing the results of the Generation or Transmission Interconnection Feasibility Study, the applicant must decide whether or not to pursue completion of the System Impact Study.

2.2 Generation or Transmission Interconnection System Impact Study Agreement Execution and Analysis

2.2.1 Impact Study Agreement and Cost

After receipt of the Generation or Transmission Interconnection Feasibility Study results, if the applicant decides to proceed, an executed System Impact Study Agreement must be submitted to PJM with the required deposit as specified in Section 204.3A of the PJM Tariff. If the cost of the System Impact study is reasonably expected to exceed the deposit received before the study begins, PJM will so advise the applicant.

For an Interconnection Request to maintain its assigned priority, the applicant must execute and return the System Impact Study Agreement (and the required deposit), as well as complete the System Impact Study data form located at http://www.pjm.com/planning/rtep-development/expansion-plan-process/form-impact-study-data.aspx - See Attachment G for a list of the data required to complete this form) within 30 days of receiving the System Impact Study Agreement. If a New Service Customer fails to meet this deadline, the Interconnection Request will be deemed terminated and withdrawn. In general, the study will be completed within 120 days of the date the study begins. If this is not possible, PJM must so notify the applicant, providing an anticipated completion date and an explanation of why additional time is needed.

For generation projects, proof is required at this point of initial application for required air permits, if any, and the applicant must declare whether a generation project is to be connected as a Capacity or Energy Resource.

The System Impact Study is a comprehensive regional analysis of the impact of adding the new generation and/or transmission facility to the system and an evaluation of their impact on deliverability to PJM load in the particular PJM region where the generator and/or new transmission facility is located. This Study identifies the system constraints relating to the project and the necessary Attachment Facilities, Local Upgrades, and Network Upgrades. The Study refines and more comprehensively estimates cost responsibility and construction lead times for facilities and upgrades.
Table 2-2: System Impact Study costs

<table>
<thead>
<tr>
<th>Project size</th>
<th>Required deposit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Non-refundable</td>
</tr>
<tr>
<td>> 100MW</td>
<td>$50,000</td>
</tr>
<tr>
<td>>20MW but ≤100MW</td>
<td>$500/MW</td>
</tr>
<tr>
<td>>2MW and ≤20MW</td>
<td>None</td>
</tr>
<tr>
<td>≤2MW</td>
<td>None</td>
</tr>
</tbody>
</table>

2.2.1.1 Dynamic Model for stability studies

PJM utilizes manufacturer models to ensure the performance of turbines is properly captured during the simulations performed for stability verification and, where applicable, for compliance with low voltage ride through requirements. Turbine manufacturers provide such models to their customers. The list of manufacturer models PJM has already validated is contained in Attachment G to this Manual.

Manufacturer models may be updated from time to time, for various reasons such as to reflect changes to the control systems or to more accurately represent the capabilities turbines and controls which are currently available in the field. Additionally, as new turbine models are developed, turbine manufacturers provide such new models which must be used in the conduct of these studies. PJM needs adequate time to evaluate the new models in order to reduce delays to the System Impact Study process timeline for the Interconnection Customer as well as other Interconnection Customers in the study group. Therefore, PJM will require that any Interconnection Customer with a new manufacturer model must supply that model to PJM, along with a $10,000 fully refundable deposit, no later than three (3) months prior to the starting date of the System Impact Study (See Section 2.2.2. below for starting dates) for the Interconnection Request which shall specify the use of the new model. The Interconnection Customer will be required to submit a completed dynamic model study request form (Attachment G-1 of Manual 14A) in order to document the request for the study.

2.2.2 System Impact Study Analysis and Schedule

Relationships are studied between the new generator or the new transmission facility, other planned new generators in the queue, and the existing system as a whole. This study also encompasses an analysis of existing firm and non-firm Transmission Service requests. PJM, in coordination with any affected Interconnection Transmission Owner(s), shall conduct System Impact Studies two times each year (PJM OATT at Part VI, Section 205.2 - formerly 36.4.1 and 41.4.1, in Part IV) commencing on:

- June 1, for requests received during the six month period ending October 31 of the preceding year.
December 1, for requests received during the six month period ending April 30 of the same year. PJM may decide to group two or more interconnection requests within one System Impact Study if the proposed projects are in electrical proximity. In situations where more than one generation project violates reliability criteria, cost responsibility for network upgrades to mitigate such violations will be allocated among the projects in the course of the System Impact Study.

2.2.3 System Impact Study Results

Results of the study are provided to all applicants who had projects evaluated in the study and to affected Interconnected Transmission Owners and are posted on the PJM web site. While confidentiality obligations will be honored, the identity of the applicants will not be considered confidential in these reports.

The identity of all applicants, the size and the location of projects for which System Impact Studies have been completed are published on the PJM web site.

After reviewing the results of the study, the applicant must decide whether or not to proceed with either (i) a Generation or Transmission Interconnection Facilities Study or (ii) an Interconnection Service Agreement or Upgrade Construction Service Agreement, whichever is furnished by PJM. If the applicant decides to proceed with the project, the results of the System Impact Study are also rolled into the RTEP Process for development of the RTEP to be submitted to PJM's Board of Managers for approval.

2.3 Generation or Transmission Interconnection Facilities Study Agreement Execution and Analysis

2.3.1 Generation or Transmission Interconnection Facilities Study Agreement

Upon completion of the System Impact Study, PJM will furnish either (i) a Generation and/or Transmission Interconnection Facilities Study Agreement to the applicant, along with estimated cost of the study and the estimated time of completion or (ii) an Interconnection Service Agreement or Upgrade Construction Service Agreement. For an Interconnection Request to maintain its assigned priority, the applicant must execute and return the Generation and/or Transmission Interconnection Facilities Study Agreement (and the required deposit) within 30 days of receiving it. If an applicant fails to meet this deadline, the Interconnection Request will be deemed terminated and withdrawn. If the applicant has received an Interconnection Service Agreement or Upgrade Construction Service Agreement, please see discussion in Section 4 of this manual for additional information.

The Generation and/or Transmission Interconnection Facilities Study Agreement will provide the estimated cost responsibility and estimated completion date for the study. It may also define reasonable milestone dates that the proposed project must meet to retain its Queue Position while PJM is completing the Generation or Transmission Interconnection Facilities Study. See Attachment D for a General Description of the Facilities Study Procedure.
2.3.2 Generation or Transmission Interconnection Facilities Study Cost

As specified in Part IV, Subparts A and B of the PJM Tariff, if the applicant decides to proceed, the executed Generation and/or Transmission Interconnection Facilities Study Agreement must be returned accompanied by the required deposit as specified in Section 206.3 of the PJM Tariff, and also listed in Table 2-3.

Table 2-3: Facilities Study costs

<table>
<thead>
<tr>
<th>Project size</th>
<th>Required deposit</th>
</tr>
</thead>
<tbody>
<tr>
<td>>20MW</td>
<td>The greater of:</td>
</tr>
<tr>
<td></td>
<td>1. $100,000</td>
</tr>
<tr>
<td></td>
<td>2. estimated amount of Facilities Study cost for the first three months</td>
</tr>
<tr>
<td>>2MW and ≤20MW</td>
<td>$50,000</td>
</tr>
<tr>
<td>≤2MW</td>
<td>$15,000</td>
</tr>
</tbody>
</table>

2.3.3 Generation or Transmission Interconnection Facilities Study Results

When completed, the Generation or Transmission Interconnection Facilities Study will document the engineering design work necessary to begin construction of any required transmission facilities. The Generation or Transmission Interconnection Facilities Study will also provide a good-faith estimate of the cost to be charged to the applicant for Attachment Facilities, Local Upgrades and Network Upgrades necessary to accommodate the project and an estimate of the time required to complete detailed design and construction of the facilities and upgrades.
2.4 Transfer of Capacity Interconnection Rights

2.4.1 Transfer of Capacity Interconnection Rights (CIRs)

The transfer of CIRs is contemplated in Section 230.3.3 and 230.4 of the PJM Tariff. The following processes will be followed to determine the amount of CIRs which can be transferred from an existing operational generator, to an existing or new resource in order to increase or provide CIRs to an existing or new resource. In all cases the transfer of rights will require that the customer or owner enter the New Services Queue with an Interconnection Request.

For the study of the transfer of CIRs as it affects thermal constraints, all load flow studies will be performed in the queue to which the rights are to be transferred up to the Queue Position immediately preceding the project which is seeking to receive the transferred rights (the generator from which the rights are to be transferred would be online during these studies). PJM will then turn off the generator with the existing rights, make the unit unavailable for dispatch, and then study the new Interconnection Request to determine the thermal impacts of the new Interconnection Request. This analysis will insure that any Capacity Interconnection Rights owned by the existing generator will be used by the new Interconnection Request.

For the Study of short circuit impacts to the system, studies will be performed in order to determine the impact on the increase in fault current for all facilities associated with any new Interconnection Request. Any reinforcement(s) which are determined to be required for the new generator will be reviewed to determine if the existing generator’s contribution causes the need for the reinforcement, and if the reinforcement would not be required if the existing unit was removed from the study. The new Interconnection Request would not be required to provide reinforcement to the system if the new Interconnection Request does not cause the need for the reinforcement when the existing unit is removed.

For the study of stability impacts to the system, the existing generator would not be dispatched during the study of the new Interconnection Request.
Section 3: Small Resource Interconnection Process

In this section you will find the following:

- A description of the small resource interconnection process (see “Small Resources (20 MW or less)").
- Specific provisions applicable to resources of 10 MW or less (see “Specific Provisions for Resources of 10 MW or Less”).
- Specific provisions applicable to resources greater than 10 MW up to 20 MW (see “Specific Provisions for Resources Greater than 10 MW up to 20 MW”).

3.1 Small Resources (20 MW or less)

Requests for the interconnection of new resources which are 20 MW or less, or increases of 20 MW or less to existing generation (over a 24 month period) may be processed through expedited procedures. (Refer to Part IV, Subpart G of the PJM Tariff.) Expedited procedures are defined in the PJM Tariff for five categories of these “very small resource” additions; permanent Capacity Resource additions of 20MW or less, permanent Energy Resource additions of 20 MW or less, temporary Energy Resource additions of 20 MW or less but greater than 2MW, permanent and temporary Energy Resource additions of 2MW or less, and certified small inverter-based facility additions not greater than 10 kW.

Additionally a process has been established for the interconnection of new small resources which are not anticipated to have an impact on PJM monitored transmission facilities. This Alternate Queue Process is provided for those new resources which pass a specified screening criterion, as established in the PJM Tariff in Sections 110.1.1, 111.1.1, or 112.1.1, and is described in Tariff Section 112.5. The evaluation of those new small resource requests which pass the required screening criteria and are included in the Alternate Queue Process will include an evaluation of the load flow, short circuit, and stability impacts to be performed by the applicable Transmission Owner. PJM shall retain overall responsibility to monitor the study process, publish the Transmission owner reports, and provide a Wholesale Market Participation Agreement to the customer as required.

3.1.1 Study Requirements and Cost

In all cases, with the exception of requests for (i) interconnection falling under the process defined in the PJM Tariff applicable to permanent and temporary Energy Resource additions of 2MW or less and (ii) interconnection falling under the process defined in the PJM Tariff applicable to certified small inverter-based facility additions no larger than 10 kW, an Interconnection Customer must submit an Interconnection Request in the form of an executed Generation Interconnection Feasibility Study Agreement (OATT at Part VI, Attachment N) and provide the same information required for larger resources. Deposit requirements are listed in the table below (Table 3-1) (OATT at Part IV, Section 112).

Further:

- For resources of 2 MW or less, an interconnection customer must submit a completed Form of Screens Process Interconnection Request (OATT at Part IV, Section 112A, Attachment Y). See table 3-2 below for deposit requirements.
For Certified Inverter-Based resources no larger than 10 kW, an interconnection customer must submit a completed Form of Interconnection Service Agreement for Certified Inverter-Based Facility (OATT at Part IV, Section 112B, Attachment BB) and a non-refundable processing fee of $500.

Table 3-1: Small Generation Interconnection Process deposit requirements (Interconnection requests of 2 – 20MW)

<table>
<thead>
<tr>
<th>Month of New Services Queue</th>
<th>Refundable deposit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1<sup>st</sup> - 4<sup>th</sup></td>
<td>$10,000</td>
</tr>
<tr>
<td>5<sup>th</sup></td>
<td>$12,000</td>
</tr>
<tr>
<td>6<sup>th</sup></td>
<td>$15,000</td>
</tr>
</tbody>
</table>

Table 3-2: Small Generation Interconnection Process deposit requirements (Interconnection Requests of 2MW or less)

<table>
<thead>
<tr>
<th>Month of New Services Queue</th>
<th>Refundable deposit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1<sup>st</sup> - 4<sup>th</sup></td>
<td>$2,000</td>
</tr>
<tr>
<td>5<sup>th</sup></td>
<td>$3,000</td>
</tr>
<tr>
<td>6<sup>th</sup></td>
<td>$5,000</td>
</tr>
</tbody>
</table>

The deposit associated with the submission of the executed System Impact Study Agreement shall be in accordance with the requirements of Section 204.3A of the PJM Tariff, which is also listed below in Table 3-3.

Table 3-3: System Impact Study Deposit

<table>
<thead>
<tr>
<th>Project size</th>
<th>Required deposit</th>
</tr>
</thead>
<tbody>
<tr>
<td>>2MW and ≤20MW</td>
<td>$10,000</td>
</tr>
<tr>
<td><2</td>
<td>$5,000</td>
</tr>
</tbody>
</table>
The Generation Interconnection Facilities Study deposit amount shall be in accordance with the requirements of Section 206.3 of the PJM Tariff, which is also listed in Table 2-3.

Study Analysis

Analysis conducted during the Generation Interconnection Feasibility and System Impact Studies will be expedited (to the degree possible) for new permanent Capacity Resources of 20 MW or less, or permanent Energy Resources of 20 MW or less, or increases of 20 MW or less to existing resources over any consecutive 24 month period (OATT at Part VI, Section 36.1.02 - formerly Section 36.12, in Part IV).

Power flow analysis will be performed based on a limited contingency set to identify the impact of the resource on the local system and any known violations in the area. Deliverability tests will only be performed for small capacity resources in areas where margins are known to be limited. Similarly, stability analysis will only be performed for small resources where existing stability margins are limited. Generation Interconnection Facilities Studies for small resources can only be expedited consistent with the scope of the required transmission facility additions and upgrades.

Because it is expected that the interconnection of temporary Energy Resources will be based on 'turn-key' installations, the procedures to process such requests are highly expedited. Studies not affecting the regional plan may receive an expedited System Impact Study and be issued when complete.

Analysis and design normally performed within the context of Generation Interconnection Feasibility, System Impact and Generation Interconnection Facilities Studies will be performed within one study. Limited power flow analysis will be performed to ensure that local contingency criteria are not violated. Short circuit calculations will be performed to ensure that circuit breaker capabilities are not exceeded. The Transmission Owner, or contractors acting on their behalf, will evaluate the engineering details of the physical attachment of the resource, as well as the relaying and metering associated with the resource to ensure a safe and reliable interconnection.

All very small resource interconnections require the execution of Interconnection Service Agreements. Permanent, small Capacity Resources and Energy Resources will execute the same form of Interconnection Service Agreement as required for larger resources. A modified form of the Interconnection Service Agreement will be executed for temporary Energy Resources that reflect their interconnection status and their rights with respect to participation in the PJM markets.

3.2 Specific Provisions for Resources of 10 MW or Less

Under certain circumstances, requests for the interconnection of new resources of 10 MW or less may be expedited through the use of pre-certified generation equipment and systems that meet IEEE Standard 1547 technical requirements. See Attachment E for PJM “Small Generator (10 MW and Below) Technical Requirements and Standards” for full details of the specific provisions that apply to all new generator interconnections with an aggregate size of 10 MW and below at the Point of Interconnection.
3.3 Specific Provisions for Resources Greater than 10 MW up to 20 MW

Requests for the interconnection of new resources greater than 10 MW up to 20 MW may also qualify for certain Applicable Standards based on the core IEEE Standard 1547 technical requirements. See Attachment E-1 for PJM “Small Generator (greater than 10 MW up to 20 MW) Technical Requirements and Standards” for full details of the specific provisions that apply to all new generator interconnections with an aggregate size of greater than 10 MW up to 20 MW at the Point of Interconnection.
Section 4: Interconnection Service Agreement and Construction Service Agreement Execution and Other Agreements

In this section you will find the following overviews of the requirements for Interconnection Service Agreements and Interconnection Construction Service Agreements:

- A description of the Interconnection Service Agreement (see “Interconnection Service Agreement”).
- A description of the Interconnection Construction Service Agreement (see “Interconnection Construction Service Agreement”).
- A description of other agreements (see “Other Agreements”).

4.1 Interconnection Service Agreement

After the Generation or Transmission Interconnection Facilities Study is completed (or, if no Interconnection Facilities Study is required, upon completion of the System Impact Study), the Transmission Provider (“PJM”) will furnish an Interconnection Service Agreement (in the form included in Part VI, Attachment O to the Tariff) to be executed by the applicant and any affected Interconnected Transmission Owner(s). The Interconnection Service Agreement (“ISA”) defines the obligation of the generation or transmission developer regarding cost responsibility for any required system upgrades. The ISA also confers the rights associated with the interconnection of a generator as a capacity resource and any operational restrictions or other limitations on which those rights depend. For transmission interconnection customers, the ISA confers transmission injection and withdrawal rights (Merchant D.C. and/or Fully Controllable A.C. transmission projects) and applicable incremental delivery, available transfer capability revenue and auction revenue rights. The ISA further identifies any changes in construction responsibility from the Standard Option for Transmission Owner Interconnection Facilities due to the Interconnection Customer/Developer exercising the Negotiated Contract Option or Option to Build.

Upon issuance of the ISA, PJM team leadership for the project is transferred from the study phase System Planning Senior Consultant to an Interconnection Coordination Senior Consultant for the project Interconnection and Construction phases (see Attachment C for PJM Generation and Interconnection Planning Team Role Clarity Diagram). For leadership continuity, the study phase team leader continues active participation in the project as a member of the Interconnection and Construction team.

For an Interconnection Request to maintain its assigned priority, the applicant must respond within 60 days of receiving the ISA. To proceed with the project, the applicant must provide PJM with a Letter of Credit or other acceptable form of security in the amount equal to the estimated costs of new facilities or upgrades for which the applicant is responsible. The applicant must also respond by:

- Executing and returning the Interconnection Service Agreement, or
- Requesting dispute resolution, or
- Requesting, under certain circumstances, that the Interconnection Service Agreement be filed unexecuted.
Further details regarding each of the three response actions may be found in Part VI of the PJM Open Access Transmission Tariff, available from FERC or on the PJM web site at http://www.pjm.com/home.aspx.

Additionally, within the same 60-day period, the applicant must demonstrate:

- Completion of a fuel delivery agreement and water agreement, if necessary.
- Control of any necessary rights-of-way for fuel and water interconnections, if necessary.
- Acquisition of any necessary local, county, and state site permits.
- A signed memorandum of understanding for the acquisition of major equipment.

PJM may also include other reasonable milestone dates for events such as permitting, regulatory certifications, or third-party financial arrangements. Milestone dates may be extended by the PJM in the event of delays not caused by the Interconnection Customer, such as unforeseen regulatory or construction delays.

Additionally, PJM will again ensure that the Generation and/or Transmission Interconnection Customer has access to the Applicable Technical Requirements and Standards of the Interconnected Transmission Owner(s) for parallel operation of generators with the Interconnected Transmission Owner(s) systems and other matters generally included in good utility practice. Technical requirements for generator and transmission interconnections include but are not limited to:

- Engineering design requirements and standards
- Interconnection protection requirements
- Generator under frequency trip settings to coordinate with automatic underfrequency load shedding schemes
- Voltage control and reactive output requirements (OATT at Part VI, Section 4.7 in Att. O, App. 2 - formerly Section 54.7, in Part IV)
- Data and control requirements for transmission system operation
- Equipment specifications and suppliers
- Construction requirements and standards
- Engineering, procurement and construction process requirements and standards

PJM will file the Interconnection Service Agreement in compliance with applicable Commission guidelines. If the applicant has requested dispute resolution or unexecuted filing, construction of facilities and upgrades shall be deferred until any disputes are resolved, unless otherwise agreed by the applicant and the affected Interconnected Transmission Owner(s).
4.1.1 Interim Interconnection Service Agreements

Under certain circumstances, an applicant for an Interconnection Service Agreement may wish to initiate project construction activities on an expedited basis prior to completion of the Generation or Transmission Interconnection Facilities Study. One example of such a circumstance is to request that orders be placed for equipment or materials that have a long lead time for delivery. To initiate such an advance of construction activities, the applicant may request execution of an Interim Interconnection Service Agreement (OATT at Part VI, Attachment O-1) for those construction activities being advanced.

The Interim ISA would bind the applicant for all costs incurred for the construction activities being advanced pursuant to the terms of the PJM Tariff. While PJM agrees to provide the applicant with the best estimate (determined in coordination with the affected Transmission Owner(s) of the new facility costs and other charges that may be incurred for the work being advanced, such estimate shall not be binding and the applicant must agree through execution of the Interim ISA to compensate PJM and the affected Transmission Owner(s) for all costs incurred due to those activities that were advanced.

4.2 Interconnection Construction Service Agreement

The construction of any Interconnection Facilities required to interconnect a generator or transmission project with the PJM Transmission Grid shall be performed in accordance with the Standard Terms and Conditions as specified in an Interconnection Construction Service Agreement to be executed among the applicant for Transmission Service (Generation or Transmission Interconnection Customer), PJM and the affected Interconnected Transmission Owner(s). The form of an Interconnection Construction Service Agreement may be found in the PJM Open Access Transmission Tariff as Attachment P.

The party(ies) responsible for installing the Generator and/or Transmission Interconnection Facilities and/or Network Upgrade Facilities shall use Reasonable Efforts to install those facilities in accordance with an agreed Schedule of Work.

4.2.1 Option to Build

In the event that the Generation and/or Transmission Interconnection Customer and the Interconnected Transmission Owner are unable to agree upon the terms of an Interconnection Construction Service Agreement, the Interconnection Customer shall have the right, but not the obligation ("Option to Build"), to design and install all or any portion of the Transmission Owner Interconnection Facilities.

4.2.2 General Timeline

If the Interconnection Customer chooses to exercise the Option to Build, the Interconnection Parties must adhere to the following timeline:

- The Interconnection Customer must provide PJM and the Interconnected Transmission Owner with written notice of its election to exercise the option by no later than 7 days after the date that is 30 days after the Interconnection Customer’s execution of the Interconnection Service Agreement.
- Within 10 days after notifying PJM of its election to exercise Option to Build, Interconnection Customer shall solicit bids from one or more Approved Contractors.
- Prior to commencing construction, the Interconnection Customer shall submit to the Interconnected Transmission Owner and PJM initial drawings, certified by a registered professional engineer, of the Transmission Owner Interconnection Facilities that the Interconnection Customer arranges to build under the Option to Build. After consulting with the Interconnected Transmission Owner, PJM shall provide comments on such drawings to the Interconnection Customer within 60 days after its receipt thereof, after which time any drawings not subject to comment shall be deemed to be approved.
Each Constructing Entity shall issue reports to each other Construction Party on a monthly basis regarding the status of the construction and installation of the Interconnection Facilities. Each Construction Party shall promptly identify, and shall notify each other Construction Party of, any event that may delay completion or may significantly increase the cost of the Interconnection Facilities. Within 15 days of such notification, PJM shall convene a technical meeting of the Construction Parties to evaluate schedule alternatives.

Interconnection Customer and the Interconnected Transmission Owner shall coordinate the timing and schedule of all inspection and testing of the Interconnection Facilities. If inspection or testing identifies any defects or failures to comply with Applicable Standards of (i) Interconnection Facilities constructed by the Interconnection Customer, Interconnected Transmission Owner shall notify the Interconnection Customer and PJM of such defects or failures within 20 days after receipt of the results of such inspection or testing, or (ii) Interconnection Facilities constructed by the Interconnected Transmission Owner, Interconnected Transmission Owner shall take appropriate action to correct any such defects or failures within 20 days after it learns thereof.

Within 10 days after satisfactory inspection and/or testing of Interconnection Facilities built by the Interconnection Customer/Developer, the Interconnected Transmission Owner shall confirm in writing to the Interconnection Customer and PJM that the successfully inspected and tested facilities are acceptable for energization.

Within 5 days after determining that Interconnection Facilities have been successfully energized, the Interconnected Transmission Owner shall issue a written notice to the Interconnection Customer accepting the Interconnection Facilities built by the Interconnection Customer that were successfully energized.

Within 30 days after the Interconnection Customer’s receipt of notice of acceptance of the Interconnection Facilities, the Interconnection Customer shall deliver to the Interconnected Transmission Owner, for the Interconnected Transmission Owner’s review and approval, all of the documents and filings necessary to transfer to the Interconnected Transmission Owner title to any Transmission Owner Interconnection Facilities constructed by the Interconnection Customer, and to convey to the Interconnected Transmission Owner any easements and other land rights to be granted by the Interconnected Customer that have not by then already been conveyed. The Interconnected Transmission Owner shall review and approve such documentation, such approval not to be unreasonably withheld, delayed or conditioned.

Within 30 days after its receipt of the Interconnected Transmission Owner’s written notice of approval of the documentation, the Interconnection Customer, in coordination and consultation with the Interconnected Transmission Owner, shall make any necessary filings at the FERC or other governmental agencies for regulatory approval of the transfer of title.

Within 20 days after the issuance of the last order granting a necessary regulatory approval becomes final, the Interconnection Customer shall execute all necessary documentation and shall make all necessary filings to record and perfect the
Interconnected Transmission Owner’s title in such facilities and in the easements and other land rights to be conveyed to the Interconnected Transmission Owner.

4.2.3 Summary of General Conditions

In addition to the other terms and conditions applicable to the construction of facilities under the Option to Build, the Generation and/or Transmission Interconnection Customer must also:

A. Obtain all necessary permits and authorizations
B. Obtain all necessary land rights
C. Accept the exclusive right and obligation of the Interconnected Transmission Owner to perform line tie-in work and to calibrate remote terminal units and relay settings
D. Follow accepted procedures to have those facilities that it builds successfully inspected, tested and energized
E. Arrange for all work to be performed by contractors, and using equipment manufacturers or vendors, that are listed on the Interconnected Transmission Owner’s List of Approved Contractors
F. Allow the Interconnected Transmission Owner full site control and reasonable access to its property at all times
G. Allow the Interconnected Transmission Owner to have a reasonable number of appropriate representatives present for all work done on its property/facilities and the right to stop work or order corrective measures for any work with an adverse effect on reliability, safety or security of persons or of property
H. Comply with the Interconnected Transmission Owner’s safety, security and work rules, environmental guidelines and training requirements applicable to the area(s) where construction activity is occurring, and
I. Submit to the Interconnected Transmission Owner and PJM initial drawings, certified by a registered professional engineer, of the Transmission Owner Interconnection Facilities that the Interconnection Customer/Developer arranges to build under the Option to Build.

NOTE: Further information on all terms and conditions to be incorporated under the Option to Build may be found in Part VI, Section 3.2.3 in App. P, App. 2 – formerly Part IV, Subpart F at 83.2.3 of the PJM Open Access Transmission Tariff, available on the PJM Web site at http://www.pjm.com/documents/agreements/pjm-agreements.aspx.
4.2.4 Specific Process Flow and Timeline (See Timeline in Attachment A)

<table>
<thead>
<tr>
<th>Activity</th>
<th>Activity Duration</th>
<th>Cumulative Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generation and/or Transmission Interconnection Customer (IC) submits an initial Interconnection Request in the form of an executed Generation and/or Transmission Interconnection Feasibility Study Agreement to PJM with all required information including evidence of ownership interest and a deposit to be used for the Interconnection Studies. PJM informs the affected Interconnected Transmission Owner(s) (ITOs) upon receipt of each Generation and/or Transmission Interconnection Request.</td>
<td>Requests received in 2 cycles per year ending on April 30 and October 31.</td>
<td>Up to 182 days (may be accelerated for small resource projects of 20 MW or less)</td>
</tr>
<tr>
<td>PJM conducts Generation and/or Transmission Interconnection Feasibility Study in coordination with each affected ITO. Complete studies in 2 cycles per year (complete by April 30 and October 31)</td>
<td>Up to 92 day window, after 30 day modeling period</td>
<td>Up to 304 days</td>
</tr>
<tr>
<td>PJM responds to the IC with the Generation and/or Transmission Interconnection Feasibility Study Agreement results, tenders a System Impact Study Agreement to the IC, provides notification to the affected ITOs and posts the results of the Generation and/or Transmission Interconnection Feasibility Study on the PJM web site.</td>
<td>Up to 30 days</td>
<td>Up to 334 days</td>
</tr>
<tr>
<td>IC determines response to the Generation and/or Transmission Interconnection Feasibility Study results.</td>
<td>Up to 30 days</td>
<td>Up to 334 days</td>
</tr>
<tr>
<td>IC submits an executed System Impact Study Agreement (with proof of application for an air permit if required for a generator installation) and a $50,000 deposit (the $50,000 minimum deposit amount is waived for small resources of 20 MW or less).</td>
<td>Up to 30 days</td>
<td>Up to 334 days</td>
</tr>
<tr>
<td>PJM conducts the System Impact Study, in coordination with any affected ITOs, during the next designated cycle and completes the Study within 120 days of commencement. Commence studies in 2 cycles per year (commence by June 1 and December 1)</td>
<td>Up to 120 days for study, after 60 day modeling period</td>
<td>Up to 514 days</td>
</tr>
<tr>
<td>PJM advises the IC of the System Impact Study Agreement results, tenders a Facilities Study Agreement to the IC/D, provides notification to the affected ITOs and posts the results of the System Impact Study on the PJM web site.</td>
<td>Up to 30 days</td>
<td>Up to 544 days</td>
</tr>
<tr>
<td>IC determines response to the System Impact Study results.</td>
<td>Up to 30 days</td>
<td>Up to 544 days</td>
</tr>
<tr>
<td>Activity</td>
<td>Activity Duration</td>
<td>Cumulative Duration</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>IC submits an executed Generation and/or Transmission Interconnection Facility Study Agreement with a deposit of $100,000 or the estimated cost of its project responsibility, whichever is higher (small resources of 20 MW or less pay a deposit in the amount of the estimated cost of the study).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If one is required, PJM conducts the Generation and/or Transmission Interconnection Facilities Studies, providing good faith estimates of the cost to be charged to each affected IC for the Attachment Facilities, Local Upgrades and Network Upgrades and a “SCHEDULE OF WORK” to complete construction of the facilities and upgrades.</td>
<td>Based on estimate of the time needed</td>
<td>Up to 544 days + time for Facilities Studies</td>
</tr>
<tr>
<td>PJM provides the Generation and/or Transmission Interconnection Facilities Studies results to the IC and tenders an Interconnection Service Agreement to each Generation and/or Transmission Interconnection Customer. PJM posts the results of the Generation and/or Transmission Interconnection Facilities Study on the PJM web site. (If the Transmission Interconnection Facilities Study only identifies the need to upgrade existing network facilities, then PJM shall tender an Upgrade Construction Service Agreement to the Transmission Interconnection Customer for execution)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC determines response to the Generation and/or Transmission Interconnection Facilities Studies results and the “SCHEDULE OF WORK”.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC executes and returns tendered Interconnection Service Agreement or Upgrade Construction Service Agreement</td>
<td>Within 60 days</td>
<td>Up to 604 days + F.S.</td>
</tr>
<tr>
<td>IC elects Option to Build</td>
<td>Within 37 days following IC execution of the Interconnection Service Agreement</td>
<td>Up to 641 days + F.S.</td>
</tr>
<tr>
<td>PJM tenders and IC executes and returns Interconnection Construction Service Agreement</td>
<td>Within 45 + 90 days</td>
<td>Up to 739 days + F.S.</td>
</tr>
<tr>
<td>If the Generation and/or Transmission Interconnection Customer (IC) selects the Option to Build, the following timeline for various independent activities must be adhered to:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC solicits bids from Approved Contractors within 10 days after electing the Option to Build</td>
<td>Within 10 days</td>
<td>Up to 651 days + F.S.</td>
</tr>
<tr>
<td>Activity</td>
<td>Activity Duration</td>
<td>Cumulative Duration</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>IC submits initial drawings to the Interconnection Transmission Owner (ITO) and PJM - PJM responds within 60 days</td>
<td>Within 60 days</td>
<td></td>
</tr>
<tr>
<td>Constructing entity submits monthly reports</td>
<td>Monthly</td>
<td></td>
</tr>
<tr>
<td>Constructing entity notifies of delays or cost increases – PJM convenes a technical meeting within 15 days</td>
<td>Within 15 days</td>
<td></td>
</tr>
<tr>
<td>Inspection or testing identifies defects – Corrective action is required within 20 days</td>
<td>Within 20 days</td>
<td></td>
</tr>
<tr>
<td>Written notification by ITO is to be provided within 10 days of satisfactory inspection and/or testing and acceptance for energization</td>
<td>Within 10 days</td>
<td></td>
</tr>
<tr>
<td>After successful energization, ITO provides written notice accepting the Interconnection Facilities built by the IC within 5 days</td>
<td>Within 5 days</td>
<td></td>
</tr>
<tr>
<td>IC delivers all documents and filings to the ITO within 30 days of receipt of notice of acceptance</td>
<td>Within 30 days</td>
<td></td>
</tr>
<tr>
<td>After written notice of approval by ITO, the IC makes filings to FERC or other governmental agencies within 30 days</td>
<td>Within 30 days</td>
<td></td>
</tr>
<tr>
<td>After receipt of all regulatory approvals, the IC makes filings to record easements and land rights to be conveyed to the ITO within 20 days</td>
<td>Within 20 days</td>
<td></td>
</tr>
<tr>
<td>Other Timeline requirements:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Security for Payment - IC shall provide PJM with Security in the amount that is equal to the estimated cost of the ITO Interconnection Facilities that the ITO is responsible for constructing</td>
<td>Within 60 days after the date of IC’s receipt of Facilities Study</td>
<td></td>
</tr>
<tr>
<td>Submit Invoices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITO to PJM</td>
<td>Monthly</td>
<td></td>
</tr>
<tr>
<td>PJM to IC</td>
<td>Monthly</td>
<td></td>
</tr>
<tr>
<td>IC payment to PJM</td>
<td>Within 15 days</td>
<td></td>
</tr>
<tr>
<td>Submit Final Invoice</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activity</td>
<td>Activity Duration</td>
<td>Cumulative Duration</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>---------------------</td>
</tr>
<tr>
<td>ITO to PJM</td>
<td>Within 120 days of project completion</td>
<td></td>
</tr>
</tbody>
</table>

Exhibit 2: Process Flow and Timeline

Cross-References to Other Supporting PJM Documents

4.2.5 PJM Manuals
- PJM Manual for Control Center Requirements (M-1)
- PJM Manual for Transmission Service Request (M-2)
- PJM Manual for Transmission Operations (M-3)

4.2.6 PJM Open Access Transmission Tariff – Part VI (Interconnections with the Transmission System)
- Subpart A – Generation Interconnection Procedures
- Subpart B – Transmission Interconnection Procedures (Consolidated with Subpart A)
- Subpart C – (Reserved)
- Subpart D – Interconnection Rights (Moved to Subpart C in Part VI)
- Subpart E – Standard Terms and Conditions for Interconnection (OATT at Part VI, title moved to App. 2 of Att. O. Subpart E – deleted.)
- Subpart G – Small Generation Interconnection Procedure
- Attachment N-3 – Form of Optional Interconnection Study Agreement
- Attachment O – Form of Interconnection Service Agreement
- Attachment O-1 – Form of Interim Interconnection Service Agreement
- Attachment P – Form of Construction Service Agreement
- Attachment S – Form of Transmission Interconnection Feasibility Study Agreement

4.2.7 PJM Operating Agreement
- Schedule 6 – Regional Transmission Expansion Planning Protocol
4.3 Other Agreements

4.3.1 Station Power

All electric generation facilities consume some electric energy, generally referred to as "station power" in their operations. Station power requirements can include, for example, energy used for re-starting generators after they have been shut down for maintenance or other reasons; for emissions control and related monitoring equipment; for pumping and treating cooling water; for fuel handling equipment; and for lighting, heating and air conditioning of plant control rooms and offices.

Station power is defined as energy consumed in the PJM control area by a generating facility or by equipment or facilities located at the site of a generation facility and used in the operation, maintenance, or repair of the generation facility, regardless of whether the facility is operating when the energy is consumed.

Generators may obtain station service from a local utility under retail tariffs or service agreements. Every generator in PJM's control area remains free (consistent with FERC policy) to purchase any or all of its station power from any seller connected to the grid.

Make certain your contracts or business arrangements for obtaining Station Power are in place before beginning generator operations.
Section 5: Additional Generator Requirements

In this section you will find:

- The definition of Behind the Meter Generation and requirements related to such projects,
- Generator power factor requirements, and
- Wind generator requirements.

5.1 Behind the Meter Generation Projects

Behind the Meter Generation refers to one or more generating units that are located with load at a single electrical location such that no transmission or distribution facilities owned or operated by any Transmission Owner or Electric Distributor are used to deliver energy from the generating unit(s) to the load; provided, however, that Behind the Meter Generation does not include (i) at any time, any portion of such generating unit(s)' capacity that is designated as a Capacity Resource; or (ii) in any hour, any portion of the output of the generating unit(s) that is sold to another entity for consumption at another electrical location or into the PJM Interchange Energy Market. Behind the Meter Generation rules permit load serving entities in PJM to net operating Behind the Meter Generation against load in the calculation of charges for energy, capacity, transmission service, ancillary services and PJM administrative fees. This total netting approach is intended to encourage the use of Behind the Meter Generation during times of scarcity and high prices, thus increasing the opportunity for load to compete in PJM markets.

5.1.1 Behind the Meter Generation Interconnection Requests

Any Behind the Meter Generation that desires to be designated, in whole or in part, as a Capacity Resource or Energy Resource must submit a Generation Interconnection Request. (OATT at Part VI, in Section 36.1.01 – formerly Subpart A at 36.1A, in Part IV)

5.1.2 Metering of Behind the Meter Generation

Behind the meter generation consisting of one or more generating units individually rated at ten megawatts or greater or that otherwise have been identified by PJM as requiring metering for operational security reasons must have both revenue quality metering and telemetry equipment for operational security purposes. Behind the meter generation consisting of multiple generating units that are individually rated less than ten megawatts but together total more than ten megawatts at a single site and are identified by PJM as requiring revenue quality metering and telemetry equipment may meet these metering requirements by being metered as a single unit. (Operating Agreement, Section 14.5)
5.1.3 Behind the Meter Generation Effects on Market Operations

Market Buyers shall be charged for all load and associated ancillary services based on the Market Buyer's total load (net of operating Behind the Meter Generation, but not to be less than zero.) (Operating Agreement, Schedule 1)

Prior to the commencement of the Planning Period, Parties may elect to place ALM associated with Behind the Meter Generation under the direction of PJM. This election shall remain in effect for the entire Planning Period. In the event such an election is made, such Behind the Meter generation will not be netted from load for the purposes of calculating Accounted-For Obligations under the appropriate PJM Regional Reliability Assurance Agreement.

5.2 Generator Power Factor Requirements

Except as PJM may determine otherwise for small generation resources of 20 MW or less, all generators interconnected with the PJM System shall be designed to maintain a composite power delivery at continuous rated power output and reactive capability, at the generator terminal, corresponding to the power factor requirements stated in the PJM Tariff. (OATT at Part VI, Att. O, App. 2, Section 4.7.1 – formerly 54.7.1 in Part IV)

5.2.1 Application of Power Factor Requirements to Increases of Existing Generation

PJM Tariff provisions require existing generators to be designed to operate at a specified leading and lagging power factor as measured at the generator terminals.

- Power Factor requirements also apply to capacity or energy increases to existing generation. (OATT at Part VI, Att. O, App. 2, Section 4.7.1.2)
- Increases to existing generators must be designed to maintain the grandfathered Mvar capability for the existing and pre-upgraded gross generator output capability and the Section 4.7.1.2 power factor requirement for all incremental MW increases.

Grandfathered Mvar capability will be determined using the following methodology and considerations.

- If an agreement exists and contains a reference to required Mvar capability, the methodology in the agreement will determine the grandfathered Mvar capability.
- Consideration will be given to the potential interpretations of the language in the agreement. Non-standard or vague terms and conditions will be discussed by PJM and the parties named in the agreement.
- If no agreement exists or there is no reference to required Mvar capability in an existing agreement, PJM will use alternate methods to determine the grandfathered Mvar capability of the machine.
- Examples of potential alternate methods that may be used at PJM’s discretion.
- Use of the D-Curve provided by the manufacturer and is on file with PJM.
- Review of the data with the GO and provide an opportunity for the GO provide additional analytical evidence as to the actual Mvar capability, if different from the manufacturer design data.
• Consideration of available test data with acknowledgement that tests are not always performed under ideal conditions and the system may limit the capability during testing. Input from the GO will also be considered as part of the evaluation by PJM.
• Consideration of historical operational data.

Attachment H to this Manual 14A details a process, adhering to the requirements of the PJM OATT, to mitigate the reactive deficiency arising when an increase of capacity or energy to an existing generator results in the generator not being able to meet the PJM power factor requirements for the existing and/or incremental capacity or energy.

5.3 Wind-Powered Generation Projects

Because of the intermittent nature of wind-power generation, a specific procedure is required to determine an appropriate capacity value for wind generator output. Further, the use of induction-type generators for wind-powered projects requires the application of specific reactive power requirements.

5.3.1 Wind Generation Capacity Credit Rules

5.3.2 Wind Generation—Specific Technical Requirements

Without exception, all Customer Facilities will be subject to the provisions of the PJM OATT at Part VI, in Section 4.7.2 and Section 4.7.3 in Att. O, App. 2 – formerly 54.7.2 and 54.7.3 in Part IV, which describes real-time obligations to supply reactive power and the consequences of deviations from voltage schedules and/or reactive power schedules.

Wind projects connected to lower voltage systems must be designed to operate to a voltage schedule, reactive schedule or power factor schedule designed to meet local transmission owner criteria. When applicable, non-standard terms and conditions will be included in a project’s Interconnection Service Agreement to address individual power factor requirements.
Attachment B: PJM Request Cost Allocation Procedures

B.1 Purpose

One of the responsibilities of PJM as an RTO is to allocate the cost responsibility for all system reinforcement projects including projects required for Customer New Service Requests, baseline transmission reliability upgrades and market efficiency upgrades. The cost allocation procedures used by PJM to allocate costs due to requests are described below. Manual 14B addresses baseline-driven upgrade cost allocation procedures.

B.2 Scope

The RTEP encompasses two types of enhancements: Network Upgrades and Direct Connection Attachment Facilities. Network Upgrades can be required in order to accommodate the interconnection of a merchant project (generation or transmission) or to eliminate a Baseline problem as a result of system changes such as load growth, known transmission owner facility additions, etc. The PJM Cost Allocation Procedures are presented in two parts: “PJM Generation and Transmission Interconnection Cost Allocation Methodologies” discusses the cost allocation methodology for projects required for generator and transmission interconnections, below and: “Schedule 12 Cost Allocation Process for Baseline Transmission Reliability and Market Efficiency Upgrades” discusses the cost allocation process for baseline transmission reliability and market efficiency upgrade project requirements in Manual 14B.

The results of the System Impact Studies reveal Direct Connection Attachment Facilities required for new generation to “get to the bus”, Local and Network Upgrades to mitigate any “network impact” effects which the addition of such new generation or new transmission facilities may have on the power system itself.

- Each respective generator or transmission project bears the cost responsibility for Direct Connection Attachment facilities required for interconnection.
- The cost responsibility for Local and Network Upgrades identified through System Impact Study analysis is allocated among parties according to the following:
- For Local and Network Upgrades which are required due to overloads associated with the System Impact Studies of an individual New Services Queue, and have a cost less than $5,000,000, the cost of the Local and Network Upgrades will be shared by all proposed projects which have been assigned a Queue Position in the New Services Queue in which the need for the Local and Network Upgrades was identified. The Load Flow Cost Allocation methods discussed in this manual, including cutoffs, still apply to the individual projects.
- For Local and Network Upgrades which are required due to the overloads associated with the System Impact Studies of an individual New Services Queue, and have a cost of $5,000,000 or greater, the cost of the Local and Network Upgrades will be allocated according to the order of the New Service Requests in the New Services Queue and the MW contribution of each individual Interconnection Request for those projects which cause or contribute to the need for the Local or Network Upgrades. The Load Flow Cost Allocation methods discussed in this manual, including cutoffs, still apply to the individual projects.
B.2.1 Definitions

- **New Service Queue Close Date** – The date on which a New Service Queue ends. Currently, in the PJM Open Access Transmission Tariff, the New Service Queue Close Dates are April 30th and October 31st.
- **New Service Customer** – The responsible party for a generator, merchant transmission, or other transmission upgrade project that is in the PJM New Service Queue.
- **Queue Date** – The date on which PJM receives a valid New Service Request from a New Service Customer.

B.3 PJM Generation and Transmission Interconnection Cost Allocation Methodologies

The cost allocation procedure will continue to be evaluated and modified, if required, as the interconnection process proceeds.

B.3.1 Load Flow Cost Allocation Method

New Service Customer requests are studied as a single study for all active projects in an individual New Services Queue. Network Upgrades are identified to maintain system reliability.

Individual Local & Network Upgrades which cost less than $5,000,000

All New Service Customers with active New Service Requests in an individual New Services Queue will be allocated a cost for these Network Upgrades based upon the following criteria:

- The first New Service Customer to cause the facility identified in the study which exceeds 100% loading of the applicable rating and develops the need for the Network Upgrade will in all cases have some cost allocation.
- Contingent to the individual New Service Request contributing MW impact being greater than 5 MW AND greater than 1% of the applicable line rating OR (if its Distribution Factor (DFAX) on the facility is greater than 5% AND its MW impact on the facility’s rating is greater than 3%), the contribution of a New Service Customer is determined by the voltage level of the facility that it impacts:
 - For a transmission facility whose rated voltage level is below 500 kV, a New Service Customer will have some cost allocation if its DFAX on the facility is greater than 5% OR if its MW impact on the facility’s rating is greater than 5%.
 - For a transmission facility whose rated voltage level is 500 kV or above, a New Service Customer will have some cost allocation if its DFAX on the facility is greater than 10% OR if its MW impact on the facility’s rating is greater than 5%.
- Allocation of costs to New Service Customers for a Network Upgrade which has a cost of less than $5,000,000 will not occur outside of the New Services Queue in which the need for the Network Upgrade was identified.
- Allocation of costs to New Service Customers for a Network Upgrade which has a cost of less than $5,000,000 will be based on the total MW impact on the facility requiring a Network Upgrade as determined in the System Impact Study.

Individual Local & Network Upgrades which cost $5,000,000 or greater
All New Service Customers after and including the New Service Customer under study, that contribute to the need for the Network Upgrade are identified and their MW impact on the need for the Network Upgrade is determined. The MW impact will be based on the condition that causes the need for a Network Upgrade.

- The first New Service Customer to cause the need for the Network Upgrade will in all cases have some cost allocation. The cost allocation for this New Service Customer will only consider the loading above the facility’s capability.
- Contingent to the contributing MW impact being greater than 5 MW AND greater than 1% of the applicable line rating, the contribution of a New Service Customer following the first New Service Customer to cause the need for the Network Upgrade is determined by the voltage level of the facility that it impacts:
 - For a transmission facility whose rated voltage level is below 500 kV, a New Service Customer will have some cost allocation if its Distribution Factor (DFAX) on the facility is greater than 5% OR if its MW impact on the facility’s rating is greater than 5%.
 - For a transmission facility whose rated voltage level is 500 kV or above, a New Service Customer will have some cost allocation if its DFAX on the facility is greater than 10% OR if its MW impact on the facility’s rating is greater than 5%.
- New Service Customers will be assigned costs in proportion to their contributing MW impacts.

For Network Upgrades with an “as-built” cost of $5.0 million or greater, a New Service Customer will be responsible for allocated costs, within previously stated cost allocation guidelines, if their New Service Queue Close Date occurs less than 5 years following the execution of the first Interconnection Service Agreement or Upgrade Construction Service Agreement which identifies the need for this Network Upgrade.

No depreciation of the “as-built” Network Upgrade cost will be used when allocating costs between New Service Customers.

Cost allocation for the engineering design of Network Upgrades will terminate based on the completion of the applicable Facilities Study.

A complete list of Distribution Factors for all PJM modeled substations will be developed during System Impact Studies for each identified Network Upgrade. This Distribution Factor list will be used for all cost allocation pertaining to the identified Network Upgrade.

B.3.2 Short Circuit Cost Allocation Method

All New Service Customer projects are studied in queue order.

A New Service Customer will have some cost allocation if it results in a greater than 3% increase in fault current at the substation where a Network Upgrade is required.

A New Service Customer will be assigned costs in proportion to its fault level contribution or the fault level increase as a result of the inclusion of a new Network Upgrade required by that New Service Customer.

For Queue D and thereafter, the first New Service Customer to cause the need for a Network Upgrade due to increased fault current will in all cases have some cost allocation. The cost allocation for this New Service Customer will only consider the loading above the equipment’s capability.
For Network Upgrades with an “as-built” cost of $5.0 million or greater, a New Service Customer will be responsible for allocated costs, within previously stated cost allocation guidelines, if their New Service Queue Close Date occurs less than 5 years following the execution of the first Interconnection Service Agreement, or Upgrade Construction Service Agreement which identifies the need for this Network Upgrade.

No depreciation of the “as-built” Network Upgrade cost will be used when allocating costs between New Service Customers.

Cost allocation for the engineering design of Network Upgrades will terminate based on the completion of the applicable Facilities Study.

PJM will consider application of an individual component cost vs. an aggregate cost when determining the cost allocation window.

B.3.3 Cost Allocation Method for Generator and/or Generator Step Up (GSU) Changes

The generator and generator step up transformer (GSU) characteristics provided by the developer prior to the initiation of the System Impact Studies for a given queue will be used for all cost allocation during the System Impact Study phase. If a developer changes the generator or GSU characteristics after initiation of the System Impact Studies, any additional system problems and any resulting reinforcements will be assigned completely to the Generation Interconnection project that made the changes. Future queued generation may share some cost allocation based on when the generator or GSU changes were provided to PJM.

- **Example 1:** Impact studies for Queue Z started on May 10, 2010. Five 230 kV breakers at substation Alpha were required to be replaced due to several projects in Queue Z. Project Z2 which had some cost allocation for the five 230 kV breakers provided new GSU data on May 25, 2010. The new GSU has higher impedance. If all five breakers are determined to still be needed with the new GSU impedance, the original cost allocation will not change. If only four breakers are now required, the cost allocation for the four breakers that are still required will not change.

- **Example 2:** Impact studies for Queue Z started on May 10, 2010. Five 230 kV breakers at substation Alpha were identified to be replaced due to several projects in Queue Z. Project Z2 which had some cost allocation for the five 230 kV breakers provided new GSU data on May 25, 2010. The new GSU has a lower impedance. Now six 230 kV breakers at substation Alpha need to be replaced. Project Z2 will be assigned 100% of the cost for the sixth breaker and the cost allocation for the original five 230 kV breakers will not change.

- The rules concerning generator and GSU changes will be applied to generators in Queue B and thereafter.
B.3.4 Generation Project Excess MW Capabilities

The machine data provided by generation projects often contain MW capabilities that exceed the queued Capacity Interconnection Rights for that project. These additional MWs may result in a system that does not meet ReliabilityFirst Criteria for certain contingencies not “observed” in operations such as bus faults, and ReliabilityFirst Standard IIC contingencies (tower line, line fault with stuck breaker, faulted breaker). Consequently, after all generation projects in a given queue have executed a Generation Interconnection Facility Study Agreement, the PJM system will be evaluated using the MW capabilities provided by the developers to determine whether there are any bus fault or ReliabilityFirst Standard IIC violations. Any additional system problems will need to be rectified through either limiting the generator capability via hardware or upgrade of the Transmission System to eliminate the violation.

- The rules concerning excess project MW capabilities will be applied to generators in Queue B and thereafter.
Attachment C: PJM Generation and Transmission Interconnection Planning Team Role Clarity Diagram

PJM Team Role Clarity Diagram for the Generation and Transmission Interconnection Process

Feasibility Study Phase	Impact Study Phase	Facilities Study Phase	Agreement Execution Phase	Agreement Implementation Phase	Operation Phase
Interconnection Project Manager | Interconnection Project Manager | Interconnection Project Manager | Interconnection Project Manager | Interconnection Coordinator | Generation Operations Support
 - Interconnection Customer
 - Transmission Owner(s)
 - Finance
 - Interconnection Analysis
 - Client Manager
 - Interconnection Administration
 - Interconnection Customer
 - Transmission Owner(s)
 - Finance
 - Interconnection Analysis
 - Client Manager
 - Interconnection Administration

Legend:
- Transmission Owner
- Interconnection Customer
- PJM

Feasibility Study Report Issued; Impact Study Agreement Executed
Impact Study Report Issued; Facilities Study Agreement Executed
Facilities Study Report Issued; Agreement(s) Issued
Agreement(s) Executed
Project Initial Commercial Operation
Attachment D: General Description of Facilities Study Procedure

Introduction

A Facilities Study is an engineering study conducted by the Transmission Provider to describe the modifications required to the Transmission Provider’s (PJM’s) Transmission System to provide the requested Generator and/or Transmission Interconnection Service. PJM may contract with consultants, including the Interconnected Transmission Owner (ITO) and any other affected Transmission Owners (TO), to obtain services or expertise.

The purpose of the Facilities Study is to provide, commensurate with any mutually agreed parameters regarding the scope and degree of specificity described in Schedule A of the Facilities Study Agreement, conceptual (or preliminary) design, and, as appropriate, detailed design, plus cost estimates and project schedules, to implement the conclusions of the System Impact Study regarding the Attachment Facilities, Network Upgrades and Local Upgrades (i.e. upgrades related to non-OATT designated facilities) necessary to accommodate the Interconnection Customer's Interconnection Request(s).

Examples of typical Facilities Study deliverables are preliminary single line diagrams and general arrangement drawings for substation work, and delineation of proposed study area and proposed conductor and structure designs for transmission line work. Remaining detailed design activities would be completed during the construction phase of the project.

The Facilities Study Agreement (FSA) between the Interconnection Customer/Developer (“the Customer”) and PJM will identify the scope of facility additions and upgrades to be included in this study. The FSA may also include milestones for completion of the Customer’s facility study, where such work completion is critical to PJM’s Facilities Study schedule.

General Guidelines

Facilities Study work will be initiated by a Kickoff meeting attended by the ITO, affected TO(s), the Customer, and PJM. The following types of information will be communicated at the Kickoff meeting:

The Customer shall provide a schedule for construction and anticipated commercial operation of the Customer’s facilities. The Customer’s schedule shall include the date when backfeed power is required, and the dates for anticipated test and commercial operation of each generating unit or transmission facility.

Interconnection specific information, including but not limited to:

- a one-line diagram showing the location of the Point of Interconnection,
- a customer facility location/site plan,
- a list of Interconnection Facilities and Ownership,
- if applicable, a list and ownership of Merchant Network Upgrades,
- a one-line diagram showing location and ownership of Metering Equipment,
- the Applicable Technical standards that apply to the Customer Facility and the Interconnection Facilities, and
• the Maximum Facility Output and/or the Nominal Rated Capability of the Customer Facility.

The scope of the Customer's, PJM’s, ITO’s and other affected TO’s facilities study work will be delineated, and a schedule for completion of Facilities Study elements will be established. The scheduled completion of the Facilities Study shall not extend beyond the time estimate provided by the FSA.

A tentative schedule for Status meetings will be established. Status meetings may be necessary in those instances where information about one or more completed elements of the Facilities Study may be critical to the Customer’s decision to continue the Facilities Study.

Results of PJM’s Facilities Study shall be reported to the Customer in the form of a Facilities Study Report (“the Report”). The Report must contain a good-faith estimate of costs and construction schedules for each new or upgraded facility. In addition, the Report must contain sufficient detail about the engineering design of each facility. This will provide the Customer with information necessary to perform due diligence on the work to be performed by PJM, the ITO and other affected TO(s). The Report, less confidential or sensitive material, will be integrated with other Reports from other Transmission Owners (if applicable), and will also be posted on PJM’s Web site.

All Report materials must be capable of being included in an MS Word document, formatted for 8 ½ in. by 11 in. printing. The Report shall identify the Customer’s project by the queue number assigned to the project on PJM’s web site. For example: “Project A57”.

Facilities Study reports submitted to PJM shall consist of two primary sections:

Transmission Owner Facilities Study Summary
Transmission Owner Facilities Study Results

A. Transmission Owner Facilities Study Summary

1. Description of Project

Provide a general description of the Customer's project that resulted in the need for the addition and/or upgrade of facilities. The information under the General paragraph of the System Impact Study Report shall be used as the basis for the Project description. Changes to the information provided in the System Impact Study shall be noted and recorded.

2. Amendments to the System Impact Study data or System Impact Study Results

In general, significant changes to a Customer’s project will not be allowed within the existing queue position for the Customer’s interconnection request. However, changes to generator data or generator step-up transformer data, withdrawal of an interconnection Request with a lower queue number, or other changes allowed by PJM’s business rules can cause the need to re-evaluate the Customer’s System Impact Study and amend the results.
3. Interconnection Customer’s Submitted Milestone Schedule

The Customer’s submitted project schedule will be documented in this portion of the Report. This schedule will be used as the basis for developing the schedules for the purchase of equipment and the construction of facilities upgrades and additions contained in PJM’s scope of Facilities Study work.

4. Scope of Customer’s Work

In general, the scope of the Customer’s facility study work will be limited to the direct connection facilities up to, but not including, the point of interconnection to a TO’s facilities. The Customer’s facilities study results will be included in the Report to the extent required to adequately support PJM’s Facility Study results.

5. Description of Facilities Included in the Facilities Study

A general description of transmission lines, substations, protection systems, etc. that are included in the Facilities Study Report.

6. Total Costs of Transmission Owner Facilities included in Facilities Study

A summary level statement indicating the total estimated costs for both Attachment Facilities and Network Upgrades included in the Facilities Study.

7. Summary of Milestone Schedules for Completion of Work Included in Facilities Study:

Summary level schedule for detailed design, material & equipment procurement, and construction & testing for Attachment Facilities and Network Upgrades included in Facilities Study. This section should include a statement of comparison (i.e. alignment or misalignment) with Interconnection Customer’s milestone schedule.

B. Transmission Owner Facilities Study Results

1. Transmission Lines – New

The Report shall include a “purpose and necessity” statement as well as a general description of alternative routes, terminal points, geographic description of terrain traversed by the new line, right-of-way width by segment, potential use of common corridors where such use exists, and a description of the permits required.

The following information must also be described; design criteria (may be summarized and reference published documents), nominal voltage rating, physical characteristics (overhead, underground, single circuit, double circuit, AC, DC, etc), line MVA normal and emergency rating, BIL, line impedance (positive and zero sequence), line and shield conductor type and size, type of support structure, and grounding design.

Applicable Transmission Owner Technical Standards should be referenced in the Report.

A specific reference to “PJM Transmission and Substation Design Subcommittee Technical Requirements” (note: upon approval) must be made for new or upgraded facilities.

Material specifications and a materials list, if available, may be included in the report or referenced.

All permit requirements must be identified.
Attachments required: geographic map with Customer facility location/site plan, with proposed transmission line study area superimposed.

Attachments optional: drawings for typical structure types.

2. Transmission Line – Upgrades

As applicable, the same information, as listed above for “Transmission Lines – New”, distinguishing between existing and new equipment.

Attachments: As applicable, same as above for “Transmission Lines – New”.

3. New Substation/Switchyard Facilities

The Report shall include a “purpose and necessity” statement, a general description of the functional station design and layout, proposed location, and a description of the potential permits required.

Also included shall be a description of the structural design, the electrical design including rating specifications and rating for all major electrical equipment (e.g. power transformers, circuit breakers, switches, instrument transformers, capacitor voltage transformers, etc.), and the protective relaying, communications, metering, and instrumentation requirements.

Applicable Transmission Owner Technical Standards should be referenced in the Report.

A specific reference to “PJM Transmission and Substation Design Subcommittee Technical Requirements” (note: upon approval) must be made for new or upgraded facilities.

A Specific reference to the “PJM Relay Philosophy and Design Standards” (note: upon approval) must be made for new or upgraded protective relay equipment.

Material specifications and a materials list, if available, may be included in or referenced in the Report.

All permit requirements must be identified.

Attachments required: One-line diagram for each substation / switchyard where facilities are to be added or upgraded. General arrangement diagram showing the physical layout of the new substation facilities.

Optional Attachment: Relay, Instrumentation, and Control one-line diagram.

4. Upgrades to Substation / Switchyard Facilities

As applicable, the same information listed above for “New Substation / Switchyard Facilities”, distinguishing between existing and new equipment.

Attachments: As applicable, same as above for “New Substation / Switchyard Facilities”.

5. Metering & Communications

General requirements for revenue and telemetry metering, SCADA RTU, and telecommunications, coordinated with PJM requirements.

6. Environmental, Real Estate and Permitting Issues

Assessment of environmental impacts related to Attachment Facilities and/or Network Upgrades (i.e. Environmental Impact Study requirements, environmental permitting,
sediment & erosion control issues), real estate ownership / easement issues, siting and Right-of Way issues for Transmission Owner side of Point of Interconnection.

7. **Summary of Results of Study**

Cost Estimates

A table listing construction cost estimates for each new or upgraded facility shall be provided. As applicable, identify and include all taxes and additional charges such as CIAC.

At a minimum, cost estimates shall be included with the following level of detail, along with the total costs (note: keep applicable CIAC tax gross-up amounts separate from total costs). Include both direct and indirect costs in each cost category:

- **Attachment Facilities:**
 - Detailed Design Costs
 - Material and Equipment Costs
 - Construction and Testing Costs
 - Miscellaneous Costs (i.e., real estate fees, environmental studies, contingencies, project management/oversight – specify details)
 - CIAC Tax Gross-up (if applicable)

- **Each Network Upgrade:**
 - Detailed Design Costs
 - Material and Equipment Costs
 - Construction and Testing Costs
 - Miscellaneous Costs (i.e., real estate fees, environmental studies, project management/oversight, contingencies – specify details)
 - CIAC Tax Gross-up (if applicable)

Additional level of detail for cost estimates shall be provided if indicated in Schedule A of the Facilities Study Agreement.

Schedules

A milestone schedule, including major milestones (e.g. completion of final design, prepare specifications, solicit bids, construction completion) shall be provided for all facilities within PJM’s and the TO’s scope of work.

A statement concerning the ability to meet the Customer’s scheduled milestones must be included.

Additional level of detail for project scheduled shall be provided if indicated in the Facilities Study Agreement.

Assumptions

A list of assumptions, uncertainties and / or qualifiers, that may adversely impact the estimated costs and/or schedules must be identified.
Some examples of items to be detailed in this section are environmental permitting, real estate/easement acquisition, public / customer opposition, equipment availability/system constraints/time of year limitations, scope definition with respect to accelerated schedule, contractor cost variability.

8. **Information Required for Interconnection Service Agreement**

A table with a cost breakdown for the FERC filing of the Interconnection Service Agreement must be provided. The table shall include the total cost for all facilities to be constructed by the TO. The costs must be itemized in the following categories:

- **Attachment Facilities**
 - Direct Charges Labor
 - Direct Charges Material
 - Indirect Charges Labor
 - Indirect Charges material
 - Carrying Charges*

- **Network Facilities**
 - Direct Charges Labor
 - Direct Charges Material
 - Indirect Charges Labor
 - Indirect Charges material
 - Carrying Charges*

* The Carrying Charge Rate must be specified.

Note: The cost breakdown indicated above is for use in the ISA in accordance with FERC guidelines, and is in addition to the cost breakdown detailed in Section 7.

The following are definitions for the above cost types:

Direct Costs: These are costs directly associated with the project. These costs need to be separated into “Direct Labor” costs which include the cost of labor to design/build/install the upgrades or facilities, and “Direct Material” costs which include the cost of the physical upgrades and equipment.

Indirect Costs: These costs include A&G expenses such as the salary of the payroll clerk.

Carrying Charges: These costs are the time value of money associated with the project (i.e., AFUDC). The interest rate must be specified.
E.1 Scope

The PJM Small Generator Interconnection Applicable Technical Requirements and Standards ("Small Generator Standards") shall apply to all new generator interconnections, within the PJM footprint, with an aggregate size of 10 MW or less at the point of interconnection.

The Small Generator Standards shall be read and construed as to be consistent with the PJM Open Access Transmission Tariff ("Tariff"). In the event of any inconsistency between the terms and conditions of the Small Generator Standards and the terms and conditions of the Tariff, the terms of the Tariff shall control. All terms contained in the Small Generator Standards shall be defined as defined by the Tariff. While PJM strives to ensure that the information reflected herein is complete, accurate and reliable, it expressly disclaims any warranty, whether express or implied, as to information contained. Entities relying on the information contained herein do so at their own risk.

E.2 Purpose

To align the applicable technical requirements used within PJM with the IEEE Standard 1547 for Interconnecting Distributed Resources with Electric Power Systems, and to facilitate the pre-certification of manufactured generation equipment and systems for use within PJM.

E.3 Background and Discussion

Developed by the PJM Small Generator Interconnection Working Group ("SGIWG"), the Small Generation Standards define the uniform technical requirements that each Interconnected Transmission Owner ("ITO") and Electric Distribution Company ("EDC") requires for interconnecting to their facilities. The requirements as defined herein will govern for the interconnection of distributed generation 10 MW or less.

ITOs and EDCs may, by mutual agreement, elect to waive certain IEEE 1547 requirements and associated exceptions and conditions stated herein, but may not add requirements to IEEE 1547 other than the exceptions and conditions contained herein. For small generators qualifying for interconnection under state rules, the state-approved technical requirements and procedures shall govern. In the event that a small generator has interconnected under state rules and thereafter elects to participate in any PJM market, such small generator must comply with the terms of PJM's Small Resource Interconnection Procedure Manual and these Small Generation Standards. The small generator must submit a completed Feasibility Study Request (Attachment N of the Tariff) and will be responsible for any subsequent study costs. Additionally, the small generator will be required to execute PJM's three-party Interconnection Service Agreement with PJM and the local Transmission Owner, and to the extent applicable, an Electric Distribution Company, as the case may be.
E.4 General Application Note for Transmission System Interconnections

In its present form IEEE Standard 1547 is primarily intended to address generator interconnections of 10 MVA or less to radial distribution systems. In order to extend the use of IEEE Standard 1547 beyond this scope to include connection to transmission facilities, it is necessary to clarify the meaning of Section 4.2.1 to assure that system protection requirements are compatible with the established reliability criteria used for those systems.

IEEE Standard 1547 Section 4.2.1 (Area EPS Faults) requires that “the DR unit shall cease to energize the Area EPS for faults on the Area EPS circuit to which it is connected.” For transmission Interconnections, this implies that the protection scheme(s) be compatible and coordinate with the Area EPS protection scheme(s) used for the line or substation to which they are interconnected, or be compatible and coordinate with new protection equipment installed due to the connection of the generation to this facility.

1 In the context used here, transmission systems are systems 69 kV or greater or networked lower voltage systems that are used for backbone energy delivery within smaller geographic areas, much the same as most 69 kV systems.
E.5 PJM Tariff / IEEE 1547 Definition Cross-Reference

<table>
<thead>
<tr>
<th>IEEE Standard 1547</th>
<th>PJM Tariff</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCC (Point of Common Coupling)</td>
<td>POI (Point of Interconnection)</td>
</tr>
<tr>
<td>Point of DR Connection</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>EPS (Electric Power System)</td>
<td>Interconnected Transmission Owner Facilities</td>
</tr>
<tr>
<td>Area EPS Operator</td>
<td>Interconnected Transmission Owner</td>
</tr>
<tr>
<td>Not Applicable</td>
<td>Transmission Provider (PJM)</td>
</tr>
<tr>
<td>DG (Distributed Generation)</td>
<td>Interconnected Generation Customer Facilities which are not connected to the Bulk Power Transmission System</td>
</tr>
<tr>
<td>DR (Distributed Resources)</td>
<td>Interconnected Generation Facility which is not connected to the Bulk Power Transmission System</td>
</tr>
<tr>
<td>Interconnection Equipment</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Interconnection System</td>
<td>Interconnection Facilities</td>
</tr>
<tr>
<td>Not Applicable</td>
<td>Interconnection Customer Facilities</td>
</tr>
<tr>
<td>Electric Power System, local</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Electric Power System, area</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Cease to Energize (Cessation of energy outflow capability)</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>
Note: The illustration below is for cross-reference of PJM Tariff and IEEE 1547 terms only.
E.6 Applicable Technical Requirements and Standards

IEEE Standard 1547 shall constitute the total technical requirements and standards for interconnection of small generators of 10 MW and below with the following noted exceptions, additions, and clarifications. IEEE Standard 1547.1 constitutes the requirement for test conformance to IEEE Standard 1547.

<table>
<thead>
<tr>
<th>IEEE Standard Requirement</th>
<th>Exceptions or Additions</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.1 Voltage Regulation</td>
<td>None. See Application Note 1.</td>
</tr>
<tr>
<td>4.1.2 Integration with Area EPS Grounding</td>
<td>None. See Application Note 2.</td>
</tr>
<tr>
<td>4.1.3 Synchronization</td>
<td>None. See Application Note 3.</td>
</tr>
<tr>
<td>4.1.4.1 Distribution Secondary Grid Networks (under development)</td>
<td>None. See Application Note 4.</td>
</tr>
<tr>
<td>4.1.4.2 Distribution Secondary Spot Networks</td>
<td>Exception. ComEd only allows Spot Network interconnections on an exception basis or where state commission regulations specify requirements.</td>
</tr>
<tr>
<td>4.1.5 Inadvertent Energization of the Area EPS</td>
<td>None.</td>
</tr>
<tr>
<td>4.1.6 Monitoring</td>
<td>None. See Application Note 5.</td>
</tr>
<tr>
<td>4.1.7 Isolation Device</td>
<td>None. See Application Note 6.</td>
</tr>
<tr>
<td>4.1.8.1 Protection from EMI</td>
<td>None.</td>
</tr>
<tr>
<td>4.1.8.2 Surge Withstand Performance</td>
<td>None.</td>
</tr>
<tr>
<td>4.1.8.3 Paralleling Device Withstand</td>
<td>None.</td>
</tr>
<tr>
<td>4.2.1 Area EPS Faults</td>
<td>PEPCO and PSEG exception for Islanding protection. See Application Notes 7 and 12.</td>
</tr>
<tr>
<td>4.2.2 Area EPS Reclosing Coordination</td>
<td>None. See Application Note 13.</td>
</tr>
<tr>
<td>4.2.3 Voltage</td>
<td>None. See Application Note 8.</td>
</tr>
<tr>
<td>4.2.4 Frequency</td>
<td>None.</td>
</tr>
<tr>
<td>IEEE Standard Requirement</td>
<td>Exceptions or Additions</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>4.2.5 Loss of Synchronism</td>
<td>None.</td>
</tr>
<tr>
<td>4.2.6 Reconnection to Area EPS:</td>
<td>None. See Application Note 9.</td>
</tr>
<tr>
<td>(a) Voltage Requirement</td>
<td>None. See Application Note 9.</td>
</tr>
<tr>
<td>(b) Frequency Requirement</td>
<td>None. See Application Note 9.</td>
</tr>
<tr>
<td>4.3.1 Limitation of DC Injection</td>
<td>None.</td>
</tr>
<tr>
<td>4.3.2 Limitation of Flicker induced by the DR</td>
<td>None. See Application Note 10.</td>
</tr>
<tr>
<td>4.3.4 Harmonics</td>
<td>PPL exception. See Application Note 11.</td>
</tr>
<tr>
<td>4.4.1 Unintentional Islanding</td>
<td>PEPCO and PSEG exceptions. See Application Note 12.</td>
</tr>
<tr>
<td>5.1 Design Test</td>
<td>None. See Application Note 14.</td>
</tr>
<tr>
<td>5.2 Production Tests</td>
<td>None. See Application Note 14.</td>
</tr>
<tr>
<td>5.3 Interconnection Installation Evaluation</td>
<td>None.</td>
</tr>
<tr>
<td>5.4 Commissioning Tests</td>
<td>None.</td>
</tr>
<tr>
<td>5.5 Periodic Tests</td>
<td>None.</td>
</tr>
</tbody>
</table>
E.6.1 Application Notes

4.1.1 Voltage Regulation.

Depending on size of generation (relative to EPS strength) and location of interconnection, the interconnected generation may be required to provide or absorb reactive power and/or follow a voltage schedule to maintain an acceptable voltage profile on the EPS with the addition of the new generating facility.

4.1.2 Integration with Area EPS grounding.

Where new transformers are required:

- AP requires a wye-grounded connection on the T.O. side of the DG step up transformer; and
- PEPCO’s requirement for an isolation transformer including its configuration at 13.8 kV and above, will be determined on a case by case basis and will depend on the generating facility's location and system configuration.

AP and PEPCO requirements specified above do not apply if a generator is being connected to a system on the low voltage side of an existing Interconnection Customer transformer.

Other Transmission Owners within PJM will accept a delta or wye-ungrounded connection provided that adequate protection is provided by the DG to detect a ground and limit any overvoltage to an acceptable level on the TO’s system. Adequate protection includes voltage monitoring on the high side of the DG main transformer using phase to ground connected VTs. Also see Application Note 5 for an additional AEP Application Note for grounding coordination related to operation of isolating devices.

4.1.3 Synchronization.

IEEE 1547 Synchronization voltage fluctuation requirement of +/- 5% is applicable as stated. Flicker requirement 4.3.2 guidance is provided by IEEE Standard 519 and IEEE Flicker Task Force P1453. However, the requirement which must be met for 4.3.2 is to not cause voltage and/or frequency disturbances which are objectionable to other EPS customers during actual operation of DR.
4.1.4.1 Distribution Secondary Grid Networks.

IEEE 1547 presently does not address the requirements for Secondary Grid Networks. These interconnection requests will be evaluated on a case by case basis.

4.1.6 Monitoring.

“Each DR unit of 250 kVA or more or DR aggregate of 250 kVA or more at a single PCC shall have provisions for monitoring its connection status, real power output, reactive power output, and voltage at the point of DR connection.” Local monitoring provisions, such as panel meters and indicating lights, may be acceptable to meet these requirements in certain cases.

A. An Internet-based SCADA alternative (see Informative Annex #2) was developed as a reliable and economical alternative to direct SCADA communications with the TO. In addition to generally lower installed cost for the “Internet SCADA alternative,” the Internet ongoing communication costs may be more cost effective to other alternatives, especially those that require leased telephone circuits.

NOTE: Informative Annex #2 is available on the PJM Web site (http://www.pjm.com/planning/rtep-development/expansion-plan-process.aspx) and select from among the 10 specific documents listed under the heading “Information Annex #2 References for Manual 14D, Attachment H.”

B. When full-time dedicated SCADA communications are required (see Transmission Owner (“TO”) listing below and refer to the SCADA REQUIREMENTS spreadsheet - Informative Annex #1) the DG Owner, PJM or the TO will provide and/or install a suitable SCADA Remote Terminal Unit in accordance with the specifications provided in Informative Annex #2 or an alternative mutually suitable to the DG Owner, Transmission Owner and PJM.

C. The PJM TOs agree to accept the “Internet SCADA alternative” (see Informative Annex #2), in lieu of direct SCADA communications with the TO, except in circumstances where the “Internet SCADA alternative” does not meet certain TO technical requirements specified and justified by the TO.

D. If the TO, PJM and DR owner mutually agree, specifications for other suitable interfaces between the DG and TO SCADA can be acceptable. Where applicable, this approach would allow a DR owner to use a SCADA protocol of their choice and provide an interface closer to the Transmission Owner’s SCADA facility. Such an installation must provide adequate communication performance, suitable to PJM and the TO.

Installation of communications facilities (internet service, leased telephone circuits, fiber optics, etc.), communications facility Operation and Maintenance, and other ongoing costs are the responsibility of the Interconnection Customer.

Installation of communications facilities (typically leased telephone circuits), communications facility Operation and Maintenance, and other ongoing costs are the responsibility of the Interconnection Customer.
PJM requires real-time telemetry data (MW and MVAR) for Capacity Resources, Energy Resources 10MW and above, or Energy Resources able to set LMP. PJM also requires interval revenue metering data (KWH and KVARH data at 5 minute intervals provided hourly).

See the following for specific interconnection requirements based on Transmission Owner Zone:

Allegheny Power—Requirement for SCADA is determined on a case-by-case basis by Allegheny Power.

American Electric Power—Real-time telemetry (SCADA) generally required for generation greater than 2.5 MW connected to the distribution system and all connections at transmission voltages.

Baltimore Gas and Electric—Requires BG&E specified telemetry (periodic, not real time), installed by BG&E, for all generator interconnections.

Commonwealth Edison Company—Requires real-time telemetry for any interconnection of 10 MW or greater, or for interconnections where transfer trip is required (generally 2.5 MW and above) for the interconnection.

Dayton Power and Light—Determines real-time telemetry (SCADA) requirements on a case-by-case basis.

Dominion—Requires a SCADA RTU compatible with Dominion’s SCADA system when the ratio of “Light Local Load” to Maximum Rated Generation Capacity ratio is less than 5.

Duquesne Light Company—At DLC's discretion the Interconnection Customer can be required to install and maintain a dedicated communications link, compatible with DLC's equipment, to provide telemetry (SCADA) to DLC's Operation Center. The preferred communications protocol for RTU communications is DNP 3.0. The installed SCADA shall comply with the current NERC Cyber Security standards.

First Energy—FE determines real-time telemetry (SCADA) requirements on a case by case basis for interconnection to the radial distribution system. Real time telemetry is required for all interconnections to the Transmission System, generally 23 kV and above.

Old Dominion Electric Cooperative—ODEC requires real-time SCADA for DG resources in the 2-10 MW range, to include MW and MVAR and status of the interconnecting circuit breaker. This does not necessarily imply a full RTU but could be a data link with the plant / unit control system. DNP 3.0 is the supported protocol.

Orange and Rockland—All facilities over 1,000 kW connected to the distribution system must have equipment to continuously telemeter the following data to Orange and Rockland's Energy Control Center via a leased telephone line. This data will be provided through the installation of a REMOTE TERMINAL UNIT (RTU) in the applicant's facility. The RTU shall use DNP 3.0 protocol (unless otherwise stated).

PECO Energy requires real-time telemetry for interconnections of 5 MW or greater.
PHI Companies (Atlantic City Electric Co., Delmarva Power & Light Co. and Potomac Electric Power Co.)—Atlantic City Electric Co. and Delmarva Power & Light Co. require a RTU for all generator interconnections, and real-time MWH and MVH telemetry for all interconnections for which generators participate in PJM markets. For generators not participating in PJM markets real-time telemetry is required for generators 3 MW and above.

Note: The specific location and circumstances of a generator interconnection may make telemetry necessary, even when telemetry would not ordinarily be required.

PEPCO requires a RTU for all generator interconnections, and real time telemetry for all interconnections that participate in PJM markets. For generators not participating in PJM markets real-time telemetry is required for generators 10 MW and above.

PPL—Requires full-time dedicated SCADA RTU compatible with PPL EU’s SCADA system for interconnections 2.5 MW and above or at 69 kV and above.

PSEG—Real-time telemetry (SCADA) requirement is determined on a case-by-case basis. Smaller MW size generator interconnections usually require a low-cost alternative system.

UGI—Requires real-time telemetry (SCADA) compatible with the UGI SCADA system for all interconnections 1MW or greater and for all 66 kV and above interconnections.

4.1.7 Isolation Device Requirement.

When the Area EPS operating practices require an isolation device, that device must be readily accessible to the Area EPS operator, lockable in the open position, and must provide a visible break in the electrical connection between the generator and the Area EPS. The Isolation Device must be rated for the voltage and current requirements of the installation. The Isolation Device may be electrically located anywhere between the point of common coupling and the generator. However, the customer should consider the impact of the electrical location of the Isolation Device. If the Isolation Device is electrically at or near the generator, and the Area EPS Operator uses the Isolation Device to provide clearance for worker safety, the customer will be unable to operate its generator to maintain electric supply to all or a portion of its load on the Local EPS during an outage of the Area EPS.

A drawout breaker may be used to meet the Isolation Device requirement if it is lockable in the withdrawn position and has a visible position indicator.

For facilities interconnecting at voltages exceeding 600 volts, when required by the EDC, the Isolating Device required to allow EDC personnel to safely isolate the generator must have a ground grid designed and installed in accordance with IEEE 80 and to specifications to be provided by the EDC. This ground grid limits the ground potential rise should a fault occur during switching operations. Operation of this Isolation Device must be restricted to EDC personnel and properly trained operators designated by the Customer. Designated Customer personnel may be required to learn and adhere to the EDC’s “Switching and Tagging” procedures.

4.2.1 Area EPS Faults.
Area EPS Fault Protection requirement for typical interconnection: (Figures 7A, 7B and 7C on the following pages are intended to be representative of typical connections to radial and networked lines, specific requirements will be determined by PJM and the T.O during PJM Feasibility and Impact Studies on a case-by-case basis.)

Figure 7A – One-Line Diagram for a Typical Interconnection to a Radial Distribution System

<table>
<thead>
<tr>
<th>Typical Protective Relaying Functional Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
</tr>
<tr>
<td>59</td>
</tr>
<tr>
<td>81O</td>
</tr>
<tr>
<td>81U</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>32*</td>
</tr>
<tr>
<td>50/51**</td>
</tr>
<tr>
<td>21**</td>
</tr>
<tr>
<td>50/51G***</td>
</tr>
</tbody>
</table>

* If required due to reverse power limitations.
** 50/51 or 21 but not both required.
*** Only if transformer / generator connection allows ground fault current contribution to EPS ground fault

Additional Protective Relaying Functional Requirements (as Required)

- Dead line closing control (27 and/or 25 function) at EPS source breaker(s), line recloser(s), etc.
- Larger facilities may require the installation of additional equipment such as directional relaying at the substation feeding the circuit.
- Also see Application Notes 7 and 10 for transfer trip and unbalance functional requirements.
- Voltage Unbalance Protection—In accordance with ANSI C84.1, Annex D, Section D.2 Recommendation, voltage unbalance at the point of common coupling caused by the DG equipment under no load conditions shall not exceed 3% (calculated by dividing the maximum deviation from average voltage by the average voltage, with the result multiplied by 100).
Note: The present version of IEEE 1547 is primarily intended to be applicable to interconnection of DR on radial distribution systems (Section 1.3 Limitations - “Installation of DR on radial primary and secondary distribution systems is the main emphasis of this standard,…”). From a practical standpoint, this represents an upper limit of 2.5 to 5 MW on typical 13 kV EDC distribution circuits, unless it is a dedicated circuit constructed for the sole purpose of interconnecting the DR. Larger facilities will generally require interconnection to the EDC’s sub-transmission or transmission system. These larger facilities may require additional or specific protection equipment necessary to coordinate with the EDC’s protection practices.

Additional AEP Application Note: In its review of the proposed small generator interconnection request, AEP may determine that a lesser percent unbalance limit is required due to voltage unbalance already present from existing customer loads, such as certain compressor motors and power electronic loads, in the electrical vicinity.

Figure 7B – One-Line Diagram for a Typical Interconnection to a Looped (Network) System

Typical and Additional Protective Relaying Functional Requirements

- Same as Figure 7A above and others as may be required to be compatible with and coordinate with EPS transmission system protection.

- In general, requirements developed to connect 10 MVA and smaller generation to looped networked sub-transmission systems will be more involved and diverse than those needed for radial distribution systems. Additional considerations may be required.

Figure 7C – One-Line Diagram for a Typical Interconnection to a Radial Transmission System

Typical and Additional Protective Relaying Functional Requirements

- Same as Figure 7A above and others as may be required to be compatible with and coordinate with EPS transmission system protection.
Figure 7A – One-Line Diagram for a Typical Interconnection to a Radial Distribution System

- **HV Network System**: Connects to the high voltage network.
- **Distribution Substation**: Converts high voltage to lower voltage for distribution.
- **Radial Distribution Line**: A single-circuit transmission line.
- **POI (PCC)**: Point of Interconnection (Point of Common Coupling).
- **Retail Meter (MWH)**: Measures the energy consumption.
- **POI Total Meter* (MW, MVAR, MWH, MVARH)**: Total energy measurement.
- **Bi-directional**: Indicates energy flow in both directions.
- **Transfer Trip (may be required)**: A mechanism to ensure safe disconnection.
- **Load Meter† (MW, MVAR, MWH, MVARH)**: Measures load demand.
- **Gen Meter* (MW, MVAR, MWH, MVARH)**: Measures generator output.
- **Gen CB**: Generator circuit breaker.
- **Site Load**: Load connected to the distribution system.
- **Fused / CB**: Circuit breaker for protection.
- **Synchronous / Induction**: Type of generator.
- **N.O.**: Normal operation.
- **Visible, lockable disconnect switch and fault interrupting device (fuse or circuit breaker)**: Ensures safety.

*Note**: Generally metering required at 2 of 3 locations shown, except BTM qualified facilities only require Net Meter. Capacity Resources require telemetry for real-time data at 2 of 3 locations.

Note: Wye grid / wye grid VT connection. One single phase 810/U required. Three 27 and 59 required unless 59G is used with separate wye grid / open delta VT source.

Note: 50/51 or 21, and/or 32 50/51G if applicable.
Figure 7B – One-Line Diagram for a Typical Interconnection to a Looped (Network) System

Substation

HV Network System

Other Customers

Substation

HV Network System

Load Meter* (MW, MVAR, MWH, MVARH)

Fuse / CB

Site Load

Gen Meter* (MW, MVAR, MWH, MVARH)

Gen CB

Synchronous / induction

or Inverter based package with gen / control / interrupting device

Total Net bi-directional Meter* (MW, MVAR, MWH, MVARH)

POI (PCC)

If Required

Visible, lockable disconnect switch & fault interrupting device (fuse or circuit breaker).

Dead / reclosing and / or synch check logic.

Note: DTT (Direct Transfer Trip) may be required to trip breaker G upon opening of circuit breakers A and / or B.
See Application Note 12.
Figure 7C – One-Line Diagram for a Typical Interconnection to a Radial Transmission System

- Substation
- HV Network System
- Other Customers
- Substation

- Load Meter*: (MW, MVAR, MWH, MVARH)
- Gen Meter*: (MW, MVAR, MWH, MVARH)
- Synchronous / induction
- Site Load
- Gen CB
- Total Net bi-directional Meter*: (MW, MVAR, MWH, MVARH)
- POI (PCC)
- Visible, lockable disconnect switch & fault interrupting device (fuse or circuit breaker)
- Fault line clearing & or sync-check logic
- Fault line clearing & or sync-check logic

Note: DTT (Direct Transfer Trip) may be required to trip breaker G upon opening of circuit breakers A and / or B. See Application Note 12.

* Generally metering required at 2 of 3 locations shown, except BTM qualified facilities only require Net Meter. Capacity Resources require telemetry for real-time data at 2 of 3 locations.
4.2.3 Voltage.

In cases where the DG interface is via an ungrounded transformer connection at the PCC, the voltage sensing must be done on the T.O. side of the transformer. This voltage sensing must be Phase - Ground connected for all three phases.

Voltage Unbalance Protection. In accordance with ANSI C84.1, Annex D, Section D.2 Recommendation, voltage unbalance at the point of common coupling caused by the DG equipment under no load conditions shall not exceed 3% (calculated by dividing the maximum deviation from average voltage by the average voltage, with the result multiplied by 100).

4.2.6 Reconnection to Area EPS.

For larger generating units, an Area EPS may require verbal communication with the System Operator before returning generation to the system.

4.3.2 Limitation of Flicker induced by DR.

Requirement 4.3.2 guidance is provided by IEEE Standard 519 and IEEE Flicker Task Force P1453. However, the requirement which must be met for 4.3.2 is to not cause voltage and/or frequency disturbances which are objectionable to other EPS customers during actual operation of DR.

4.3.3 Harmonics.

In addition to the IEEE 1547 Harmonics requirement [i.e., each DG installation must, at its PCC, meet the injected harmonic current distortion limits provided in IEEE 1547 Table 3 (excerpt IEEE 519 Table 10.3)] when multiple DG units are operating at different PCCs, each alone may meet the preceding current injection limit. However, the aggregate impact of all the DG units could still cause voltage distortion, which would impact other non-DG customers. Therefore, the aggregate voltage distortion at EACH PCC must also not exceed IEEE 519, Table 11.1. If the limits described in IEEE 519, Table 11.1 are exceeded, the offending DG is responsible for any appropriate corrective actions taken by the interconnecting transmission owner to mitigate the problem. Studies will be performed to determine if excessive harmonic distortion will occur prior to installation of the DG. However, it may not be possible to predict the net level of voltage distortion before each new DG installation on a given circuit. Voltage distortion in excess of IEEE 519 can be used as a benchmark to trigger corrective action (including disconnection of DG units) if service interference exists.

Additional PPL Application Note: PPL has a requirement for any one Customer (load, generation, etc.) to limit the voltage THD (Total Harmonic Distortion) to 2.5% or less for distribution voltages and 1.5% at 69 kV. PPL allows a smaller fixed limit for each customer thereby sharing allowable harmonic contribution rather than applying a first-come first-served principle to successive interconnection requests.
4.4.1 Unintentional Islanding.

The Unintentional Islanding requirement can be met by the following:

A. Transfer trip.

B. Sensitive Frequency and Voltage relay settings, with a short tripping time delay, where the maximum DR aggregate generation net output to the EPS is considerably less than the expected minimum islanded EPS load. Typically the islanded load must be greater than two to three times the maximum net islanded DR output.*

C. DR certified to pass an anti-islanding test.

D. Reverse or minimum power flow Relay limited.

E. Other anti-islanding means such as forced frequency or voltage shifting.

* Exceptions to B above:

PSEG—Option B only applicable to aggregate DR interconnections of 1MW and below.

PEPCO—Option B generally not applicable for DR interconnections which export energy to the PEPCO system regardless of generation and load mismatch.

1. In accordance with Section 4.2.2 Area EPS reclosing coordination, a 2-second response time may not be adequate to coordinate with the Area EPS reclosing practices. This may result in damage to the generator upon reclosing of the EPS source. In some instances, on a case-by-case basis, the EPS operator may allow the reclosing time to be increased or add synchronism check supervision to provide coordination. Increasing the reclosing time in some cases will have an unreasonable impact on other customers. Other means, such as transfer trip, must then be used to insure isolation of the generator before automatic circuit reclose.

2. Options for Satisfying 5.1 Design and 5.2 Production Test Requirements.

Design and Production tests requirements may be satisfied with certified equipment, although certified equipment is not required, consistent with the following criteria:

A. The small generating facility equipment proposed for use separately or packaged with other equipment in an interconnection system shall be considered certified for interconnected operation if (1) it has been tested in accordance with IEEE 1547.1 and the appropriate codes and standards referenced below by any Nationally Recognized Testing Laboratory (NRTL) recognized by the United States Occupational Safety and Health Administration to test and certify interconnection equipment pursuant to the relevant codes and standards listed below, (2) it has been labeled and is publicly listed by such NRTL at the time of the interconnection application, and (3) such NRTL makes readily available for verification all test standards and procedures it utilized in performing such equipment certification, and, with consumer approval, the test data itself. The NRTL may make such information available on its Web site and by encouraging such information to be included in the manufacturer’s literature accompanying the equipment.

B. The Interconnection Customer must verify that the intended use of the equipment falls within the use or uses for which the equipment was tested, labeled, and listed by the NRTL.
C. Certified equipment shall not require further type-test review, testing, or additional equipment to meet the requirements of this interconnection procedure; however, nothing herein shall preclude the need for an on-site commissioning test by the parties to the interconnection nor follow-up production testing by the NRTL or periodic tests per IEEE 1547 Section 5.5.

D. If the certified equipment package includes only interface components (switchgear, inverters, or other interface devices), then an interconnection customer must show that the generator or other electric source being utilized with the equipment package is compatible with the equipment package and is consistent with the testing and listing specified for this type of interconnection equipment.

E. Provided the generator or electric source, when combined with the equipment package, is within the range of capabilities for which it was tested by the NRTL, and does not violate the interface components' labeling and listing performed by the NRTL, no further design review, testing or additional equipment on the customer side of the point of common coupling shall be required to meet the requirements of this interconnection procedure.

F. An equipment package does not include equipment provided by the utility.

G. Any equipment package approved and listed in a state by that state's regulatory body for interconnected operation in that state prior to the effective date of these small generator interconnection technical requirements shall be considered certified under these procedures for use in that state.
E.7 Relevant Codes and Standards

- IEEE 1547 Standard for Interconnecting Distributed Resources with Electric Power Systems (including use of IEEE 1547.1 testing protocols to establish conformity)
- UL 1741 Inverters, Converters, and Controllers for Use in Independent Power Systems
- IEEE Std 929-2000 IEEE Recommended Practice for Utility Interface of Photovoltaic (PV) Systems
- NFPA 70 National Electrical Code
- ANSI C84.1-1995 Electric Power Systems and Equipment -Voltage Ratings (60 Hertz)
- IEEE Std 100-2000, IEEE Standard Dictionary of Electrical and Electronic
- NEMA MG 1-1998, Motors and Small Resources, Revision 3
- NEMA MG 1-2003 (Rev 2004), Motors and Generators, Revision 1
Scope

The PJM Small Generator Interconnection Applicable Technical Requirements and Standards (“Small Generator Standards – Attachment E-1”) shall apply to all new generator interconnections, within the PJM footprint, with an aggregate size of greater than 10 MW up to 20 MW at the point of interconnection.

Attachment E-1 shall be read and construed as to be consistent with the PJM Open Access Transmission Tariff (“Tariff”). In the event of any inconsistency between the terms and conditions of Attachment E-1 and the terms and conditions of the Tariff, the terms of the Tariff shall control. All terms contained in Attachment E-1 shall be defined as defined by the Tariff. While PJM strives to ensure that the information reflected herein is complete, accurate and reliable, it expressly disclaims any warranty, whether express or implied, as to information contained. Entities relying on the information contained herein do so at their own risk.

Purpose

To align the applicable technical requirements for Small Generator Interconnections (Small Generators are 20 MW and less per PJM’s FERC-approved Tariff) used within PJM with the IEEE Standard 1547 for Interconnecting Distributed Resources with Electric Power Systems to facilitate transparency for perspective Generator Interconnection Customers, pre-certification entities (see 5.1 and 5.2) and equipment manufacturers doing business within the PJM footprint.

Because IEEE Standard 1547 and PJM’s Applicable Standard “Attachment H” to PJM Manual 14B are limited to a maximum of 10 MW and primarily intended for generator interconnections to radial distribution systems, PJM stakeholders, through the Small Generator Interconnection Working Group, recognized a need to fill the gap between 10 MW and 20 MW by developing a companion Applicable Standard based on the core IEEE 1547 requirements with changes and additions as required to address the larger MW size and greater diversity of Electric Power System configurations to be included.

Background and Discussion

Attachment H-1 was developed by the PJM Small Generator Interconnection Working Group (“SGIWG”). The Small Generation Standards define the uniform technical requirements that each Interconnected Transmission Owner (“ITO”) and Electric Distribution Company (“EDC”) require for interconnecting to their facilities. The requirements as defined herein will govern for the interconnection of distributed generation greater than 10 MW up to 20 MW. Attachment E-1 is a companion document to Attachment E: Small Generator (10 MW or Less) Technical Requirements and Standards.

ITOs and EDCs may, by mutual agreement, elect to waive certain IEEE 1547 requirements and associated exceptions and conditions stated herein, but may not add requirements to
IEEE 1547 other than the exceptions and conditions contained herein. For Small Generators qualifying for interconnection under state rules, the state-approved technical requirements and procedures shall govern. In the event that a Small Generator has interconnected under state rules and thereafter elects to participate in any PJM market, such Small Generator must comply with the terms of PJM's Small Resource Interconnection Procedure Manual and these Small Generation Standards. The Small Generator must submit a completed Feasibility Study Request (Attachment "N" of the Tariff), and will be responsible for any subsequent study costs. Additionally, the Small Generator will be required to execute PJM's three-party Interconnection Service Agreement with PJM and the local Transmission Owner, and to the extent applicable, an Electric Distribution Company as the case may be.

General Application Note for Transmission System Interconnections

In its present form IEEE Standard 1547 is primarily intended to address generator interconnections of 10 MVA or less to radial distribution systems. In order to extend the use of IEEE Standard 1547 beyond this scope to include connection to transmission facilities, it is necessary to clarify the meaning of Section 4.2.1 to assure that system protection requirements are compatible with the established reliability criteria used for those systems.

IEEE Standard 1547 Section 4.2.1 (Area EPS Faults) requires that “the DR unit shall cease to energize the Area EPS for faults on the Area EPS circuit to which it is connected.” For Transmission Interconnections this implies that the protection scheme(s) be compatible and coordinate with the Area EPS protection scheme(s) used for the line or substation to which it is interconnected or compatible and coordinates with new protection equipment installed due to the connection of the generation to this facility.

Generator installations greater than 10 MW are not typically interconnected to radial distribution circuits of nominal 13 kV or less. 10 MW to 20 MW generator interconnections will generally be to system voltages of 26 kV and higher which may be operated radially with normally open ties to other lines or networked and operated more similar to higher voltage transmission systems.

1 In the context used here, transmission systems are systems 69 kV or greater, or networked lower voltage systems which are used for backbone energy delivery within smaller geographic areas much the same as most 69 kV systems.
PJM Tariff / IEEE 1547 Definition Cross-Reference

<table>
<thead>
<tr>
<th>IEEE Standard 1547</th>
<th>PJM Tariff</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCC (Point of Common Coupling)</td>
<td>POI (Point of Interconnection)</td>
</tr>
<tr>
<td>Point of DR Connection</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>EPS (Electric Power System)</td>
<td>Interconnected Transmission Owner Facilities</td>
</tr>
<tr>
<td>Area EPS Operator</td>
<td>Interconnected Transmission Owner</td>
</tr>
<tr>
<td>Not Applicable</td>
<td>Transmission Provider (PJM)</td>
</tr>
<tr>
<td>DG (Distributed Generation)</td>
<td>Interconnected Generation Customer Facilities which are not connected to the Bulk Power Transmission System</td>
</tr>
<tr>
<td>DR (Distributed Resources)</td>
<td>Interconnected Generation Facility which is not connected to the Bulk Power Transmission System</td>
</tr>
<tr>
<td>Interconnection Equipment</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Interconnection System</td>
<td>Interconnection Facilities</td>
</tr>
<tr>
<td>Not Applicable</td>
<td>Interconnection Customer Facilities</td>
</tr>
<tr>
<td>Electric Power System, local</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Electric Power System, area</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Cease to Energize (Cessation of energy outflow capability)</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>
Note: Illustration below is for cross-reference of PJM Tariff and IEEE 1547 terms only.
Applicable Technical Requirements and Standards

IEEE Standard 1547 shall constitute the total technical requirements and standards for interconnection of small generators greater than 10 MW up to 20 MW with the following noted exceptions, additions, and clarifications. IEEE Standard 1547.1 constitutes the requirement for test conformance to IEEE Standard 1547.

<table>
<thead>
<tr>
<th>IEEE Standard Requirement</th>
<th>Exceptions or Additions</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.1 Voltage Regulation</td>
<td>None. See Application Note 1.</td>
</tr>
<tr>
<td>4.1.2 Integration with Area EPS Grounding</td>
<td>None. See Application Note 2.</td>
</tr>
<tr>
<td>4.1.3 Synchronization</td>
<td>None. See Application Note 3.</td>
</tr>
<tr>
<td>4.1.4.1 Distribution Secondary Grid Networks (under development)</td>
<td>Not applicable for generator interconnections 10 MW and above.</td>
</tr>
<tr>
<td>4.1.4.2 Distribution Secondary Spot Networks</td>
<td>Generally not applicable for generator interconnections of 10 MW and greater. Rare exceptions to be handled on a case-by-case basis.</td>
</tr>
<tr>
<td>4.1.5 Inadvertent Energization of the Area EPS</td>
<td>None.</td>
</tr>
<tr>
<td>4.1.6 Monitoring</td>
<td>None. See Application Note 4.</td>
</tr>
<tr>
<td>4.1.7 Isolation Device</td>
<td>None. See Application Note 5.</td>
</tr>
<tr>
<td>4.1.8.1 Protection from EMI</td>
<td>None.</td>
</tr>
<tr>
<td>4.1.8.2 Surge Withstand Performance</td>
<td>None.</td>
</tr>
<tr>
<td>4.1.8.3 Paralleling Device Withstand</td>
<td>None.</td>
</tr>
<tr>
<td>4.2.1 Area EPS Faults</td>
<td>PEPCO and PSEG exception for Islanding protection. See Application Notes 6, 7 & 11.</td>
</tr>
<tr>
<td>4.2.2 Area EPS Reclosing Coordination</td>
<td>None. See Application Note 12.</td>
</tr>
<tr>
<td>4.2.3 Voltage</td>
<td>None. See Application Note 7.</td>
</tr>
<tr>
<td>4.2.4 Frequency</td>
<td>None.</td>
</tr>
<tr>
<td>IEEE Standard Requirement</td>
<td>Exceptions or Additions</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>4.2.5 Loss of Synchronism</td>
<td>None.</td>
</tr>
<tr>
<td>4.2.6 Reconnection to Area EPS Voltage Requirement</td>
<td>None. See Application Note 8.</td>
</tr>
<tr>
<td></td>
<td>None. See Application Note 8.</td>
</tr>
<tr>
<td>4.3.1 Limitation of DC Injection</td>
<td>None.</td>
</tr>
<tr>
<td>4.3.2 Limitation of Flicker induced by the DR</td>
<td>None. See Application Note 9.</td>
</tr>
<tr>
<td>4.3.4 Harmonics</td>
<td>PPL exception. See Application Note 10.</td>
</tr>
<tr>
<td>4.4.1 Unintentional Islanding</td>
<td>PEPCO and PSEG exceptions.</td>
</tr>
<tr>
<td></td>
<td>See Application Note 11.</td>
</tr>
<tr>
<td>5.1 Design Test</td>
<td>None. See Application Note 13.</td>
</tr>
<tr>
<td>5.2 Production Tests</td>
<td>None. See Application Note 13.</td>
</tr>
<tr>
<td>5.3 Interconnection Installation Evaluation</td>
<td>None.</td>
</tr>
<tr>
<td>5.4 Commissioning Tests</td>
<td>None.</td>
</tr>
<tr>
<td>5.5 Periodic Tests</td>
<td>None.</td>
</tr>
</tbody>
</table>
Application Notes

4.1.1 Voltage Regulation.

Depending on size of generation (relative to EPS strength) and location of interconnection, the interconnected generation may be required to provide or absorb reactive power and/or follow a voltage schedule to maintain an acceptable voltage profile on the EPS with the addition of the new generating facility.

4.1.2 Integration with Area EPS grounding.

Where new transformers are required:

- AP requires a wye-grounded connection on the T.O. side of the DG step up transformer; and
- PEPCO’s requirement for an isolation transformer including its configuration at 13.8 kV and above, will be determined on a case-by-case basis and will depend on the generating facility’s location and system configuration.

AP and PEPCO requirements specified above do not apply if a generator is being connected to a system on the low voltage side of an existing Interconnection Customer transformer.

Other Transmission Owners within PJM will accept a delta or wye-ungrounded connection provided that adequate protection is provided by the DG to detect a ground and limit any overvoltage to an acceptable level on the TO’s system. Adequate protection includes voltage monitoring on the high side of the DG main transformer using phase to ground connected VTs. Also see Application Note 5 for an additional AEP Application Note for grounding coordination related to operation of isolating devices.

4.1.3 Synchronization.

IEEE 1547 Synchronization voltage fluctuation requirement of +/- 5% is applicable as stated. Flicker requirement 4.3.2 guidance is provided by IEEE Standard 519 and IEEE Flicker Task Force P1453. However, the requirement which must be met for 4.3.2 is to not cause voltage and/or frequency disturbances which are objectionable to other EPS customers during actual operation of DR.

4.1.6 Monitoring.

Aggregate DR interconnection greater than 10 MW at a single PCC shall have SCADA provisions for monitoring its connection status, real power output, reactive power output, and voltage at the point of DR connection. (See Informative Annex #1 for specific monitored quantities required by each Area EPS Operator.)

A. An Internet-based SCADA alternative (see Informative Annex #2), was developed as a reliable and economical alternative to direct SCADA communications with the Area EPS Operator. In addition to generally lower installed cost for the “Internet SCADA alternative,” the Internet ongoing communication costs may be more cost effective to other alternatives, especially those that require leased telephone circuits.
B. When full-time dedicated SCADA communications are required (see Informative Annex #1) the DG Owner, PJM or the Area EPS Operator will provide and/or install a suitable SCADA Remote Terminal Unit in accordance with the specifications provided in Informative Annex #2 or an alternative mutually suitable to the DG Owner, Area EPS Operator and PJM.

C. The PJM Transmission Owners (TOs) agree to accept the “Internet SCADA alternative” (see Informative Annex #2) in lieu of direct SCADA communications with the TO, except in circumstances where the “Internet SCADA alternative” does not meet certain TO technical requirements specified and justified by the TO.

D. If the TO, PJM and DR owner mutually agree, specifications for other suitable interfaces between the DG and TO SCADA can be acceptable. Where applicable, this approach would allow a DR owner to use a SCADA protocol of their choice and provide an interface closer to the TO’s SCADA facility. Such an installation must provide adequate communication performance, suitable to PJM and the TO.

E. The Interconnection Customer is responsible for the protection of the communications circuit in accordance with IEEE 487-2000, or later revisions, and any additional requirements of the communications circuit provider.

F. Area EPS Operators will typically require SCADA monitoring at the Point of Interconnection as well as at the generating units.

4.1.7 Isolation Device Requirement.

When the Area EPS operating practices require an isolation device, that device must be readily accessible to the Area EPS operator, lockable in the open position, and must provide a visible break in the electrical connection between the generator and the Area EPS. The Isolation Device must be rated for the voltage and current requirements of the installation. The Isolation Device may be electrically located anywhere between the point of common coupling and the generator. However, the customer should consider the impact of the electrical location of the Isolation Device. If the Isolation Device is electrically at or near the generator, and the Area EPS Operator uses the Isolation Device to provide clearance for worker safety, the customer will be unable to operate their generator to maintain electric supply to all or a portion of their load on the Local EPS during an outage of the Area EPS.

A drawout breaker may be used to meet the Isolation Device requirement if it is lockable in the withdrawn position and has a visible position indicator.

The Isolating Device required to allow Area EPS Operator personnel to safely isolate the generator must have a ground grid designed and installed in accordance with IEEE 80 and to specifications to be provided by the EDC. This ground grid limits the ground potential rise should a fault occur during switching operations. Operation of this Isolation Device must be restricted to the Area EPS Operator’s personnel and properly trained operators designated by the Customer. Designated Customer personnel may be
required to learn and adhere to the Area EPS Operator’s “Switching and Tagging” procedures.

4.2.1 Area EPS Faults.

Area EPS Fault Protection requirement for typical interconnection: (Figures 6A, 6B and 6C on the following pages are intended to be representative of typical connections to radial and networked lines. Specific requirements will be determined by PJM and the Area EPS Operator during PJM Feasibility and Impact Studies on a case-by-case basis.)

Figure 6A – One-Line Diagram for a Typical Interconnection to a Radial Distribution System

Typical Protective Relaying Functional Requirements

<table>
<thead>
<tr>
<th></th>
<th>Undervoltage (3 phases, 1 phase if 50/51G can be applied)</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Overvoltage (3 phases, 1 phase if 50/51G can be applied)</td>
</tr>
<tr>
<td>59</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Overfrequency (1 phase required)</td>
</tr>
<tr>
<td>81O</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Underfrequency (1 phase required)</td>
</tr>
<tr>
<td>81U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Synchronizing check (1 phase required)</td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power* (If required, 1 or 3 phase depending on type)</td>
</tr>
<tr>
<td>32*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phase instantaneous and time overcurrent (3 phases if required), or</td>
</tr>
<tr>
<td>50/51**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phase distance relay (3 phases if required)</td>
</tr>
<tr>
<td>21**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ground instantaneous and time overcurrent (1 if applicable)</td>
</tr>
<tr>
<td>50/51G***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* If required due to reverse power limitations.</td>
</tr>
<tr>
<td></td>
<td>** 50/51 or 21 but not both required.</td>
</tr>
<tr>
<td></td>
<td>*** Only if transformer / generator connection allows ground fault current contribution to EPS ground fault.</td>
</tr>
</tbody>
</table>

Additional Protective Relaying Functional Requirements (as Required)

- Dead line closing control (27 and / or 25 function) at EPS source breaker(s), line recloser(s), etc.
- Larger facilities may require the installation of additional equipment such as directional relaying at the substation feeding the circuit.
- Also see Application Notes 7 and 11 for transfer trip and unbalance functional requirements.
- Voltage Unbalance Protection. In accordance with ANSI C84.1, Annex D, Section D.2 Recommendation, voltage unbalance at the point of common coupling caused by the DG equipment, under no load conditions shall not exceed 3% (calculated by dividing the maximum deviation from average voltage by the average voltage, with the result multiplied by 100).
Note: The present version of IEEE 1547 is primarily intended to be applicable to interconnection of DR on radial distribution systems (Section 1.3 Limitations - “Installation of DR on radial primary and secondary distribution systems is the main emphasis of this standard,...”). From a practical standpoint, this represents an upper limit of 2.5 to 5 MW on typical 13 kV EDC distribution circuits, unless it is a dedicated circuit constructed for the sole purpose of interconnecting the DR. Larger facilities will generally require interconnection to the EDC’s sub-transmission or transmission system. These larger facilities may require additional or specific protection equipment necessary to coordinate with the EDC’s protection practices.

Additional AEP Application Note: In its review of the proposed small generator interconnection request, AEP may determine that a lesser percent unbalance limit is required due to voltage unbalance already present from existing customer loads, such as certain compressor motors and power electronic loads, in the electrical vicinity.

Figure 6B – One-Line Diagram for a Typical Interconnection to a Looped (Network) System

Typical and Additional Protective Relaying Functional Requirements

- Same as Figure 6A above and others as may be required to be compatible with and coordinate with EPS transmission system protection.
- In general, line protection requirements to connect generation greater than 10 MW to looped networked sub-transmission systems will be more involved and diverse than those needed for connection to radial distribution systems. Additional considerations may be required.

Figure 6C – One-Line Diagram for a Typical Interconnection to a Radial Transmission System

Typical and Additional Protective Relaying Functional Requirements

- Same as Figure 6A above and others as may be required to be compatible with and coordinate with EPS transmission system protection.
Figure 6A – One-Line Diagram for a Typical Interconnection to a Radial Distribution System

Note* - Generally metering required at 2 of 3 locations shown, except BTM qualified facilities only require Net Meter. Capacity Resources require telemetry for real-time data at 2 of 3 locations.

Note** - Wye gnd / wye gnd VT connection. One single phase 810/U required. Three 27 and 59 required unless 59G is used with separate wye grid / open delta delta VT source.

Visible, lockable disconnect switch and fault interrupting device (fuse or circuit breaker). A similar switch may also be used at or near the DG provided that it is in series with the DG connection to the EPS.

-or-

POI (PCC)
Figure 6B – One-Line Diagram for a Typical Interconnection to a Looped (Network) System

- Generally metering required at 2 or 3 locations shown, except ETM qualified facilities only require Net Meter.
- Capacity Resources require telemetry for real-time data at 2 of 3 locations.

- Load Meter* (MW, MVAR, MWH, MVARH)
- Gen Meter* (MW, MVAR, MWH, MVARH)
- Fuse / CB
- Sub / off A
- POI (PCC)
- Sub / off B
- Trip Gen CB
- Dead line clearing and/or synch check logic
- Visible, lockable disconnect switch & fault interrupting device (fuse or circuit breaker)
- Total Net bi-directional Meter* (MW, MVAR, MWH, MVARH)
- Site Load

Note: DTT (Direct Transfer Trip) may be required to trip breaker G upon opening of circuit breakers A and/or B. See Application Note 12.
Figure 6C – One-Line Diagram for a Typical Interconnection to a Radial Transmission System
4.2.3 Voltage.

In cases where the DG interface is via an ungrounded transformer connection at the PCC, the voltage sensing must be done on the T.O. side of the transformer. This voltage sensing must be Phase - Ground connected for all three phases.

Voltage Unbalance Protection. In accordance with ANSI C84.1, Annex D, Section D.2 Recommendation, voltage unbalance at the point of common coupling caused by the DG equipment, under no load conditions shall not exceed 3% (calculated by dividing the maximum deviation from average voltage by the average voltage, with the result multiplied by 100).

4.2.6 Reconnection to Area EPS.

For larger generating units, an Area EPS may require verbal communication with the System Operator before returning generation to the system.

4.3.2 Limitation of Flicker induced by DR.

Requirement 4.3.2 guidance is provided by IEEE Standard 519 and IEEE Flicker Task Force P1453. However, the requirement that must be met for 4.3.2 is to not cause voltage and/or frequency disturbances that are objectionable to other EPS customers during actual operation of DR.

4.3.3 Harmonics.

In addition to the IEEE 1547 Harmonics requirement (i.e., each DG installation must, at its PCC, meet the injected harmonic current distortion limits provided in IEEE 1547 Table 3 [excerpt IEEE 519 Table 10.3]) when multiple DG units are operating at different PCCs, each alone may meet the preceding current injection limit; however, the aggregate impact of all the DG units could still cause voltage distortion that would adversely impact other non-DG customers. Therefore, the aggregate voltage distortion at EACH PCC must also not exceed IEEE 519 limits. If the limits described in IEEE 519 are exceeded, the offending DG (in most cases the last to connect) is responsible for any appropriate corrective actions taken by the interconnecting transmission owner to mitigate the problem. Studies will be performed to determine if excessive harmonic distortion will occur prior to installation of the DG. However, it may not be possible to predict the net level of voltage distortion before each new DG installation on a given circuit. Voltage distortion in excess of IEEE 519 can be used as a benchmark to trigger corrective action (including disconnection of DG units) if service interference exists.

Additional PPL Application Note: PPL has a requirement for any one Customer (load, generation, etc.) to limit the voltage THD (Total Harmonic Distortion) to 2.5% or less for distribution voltages and 1.5% at 69 kV. PPL allows a smaller fixed limit for each customer, thereby sharing allowable harmonic contribution rather than applying a first-come first-served principle to successive interconnection requests.

4.4.1 Unintentional Islanding.

The Unintentional Islanding requirement can be met by the following:

A. Transfer trip.
B. Sensitive Frequency and Voltage relay settings, with a short tripping time delay, where the maximum DR aggregate generation net output to the EPS is considerably less than the expected minimum islanded EPS load. Typically, the islanded load must be greater than two to three times the maximum net islanded DR output.*

C. DR certified to pass an anti-islanding test.

D. Reverse or minimum power flow relay limited.

E. Other anti-islanding means such as forced frequency or voltage shifting.

*Exceptions to B above:

PSEG – Option B only applicable to aggregate DR interconnections of 1MW and below.

PEPCO – Option B generally not applicable for DR interconnections that export energy to the PEPCO system regardless of generation and load mismatch.

4.2.2 Area EPS Reclosing Coordination.

In accordance with Section 4.2.2 Area EPS reclosing coordination, a 2-second response time may not be adequate to coordinate with the Area EPS reclosing practices. This may result in damage to the generator upon reclosing of the EPS source. In some instances, on a case-by-case basis, the EPS operator may allow the reclosing time to be increased or add synchronism check supervision to provide coordination. Increasing the reclosing time in some cases will have an unreasonable impact on other customers. Other means, such as transfer trip, must then be used to insure isolation of the generator before automatic circuit reclose.

Options for Satisfying 5.1 Design and 5.2 Production Test Requirements.

Design and Production tests requirements may be satisfied with certified equipment, although certified equipment is not required, consistent with the following criteria:

A. The small generating facility equipment proposed for use separately or packaged with other equipment in an interconnection system shall be considered certified for interconnected operation if (1) it has been tested in accordance with IEEE 1547.1 and the appropriate codes and standards referenced below by any Nationally Recognized Testing Laboratory (NRTL) recognized by the United States Occupational Safety and Health Administration to test and certify interconnection equipment pursuant to the relevant codes and standards listed below, (2) it has been labeled and is publicly listed by such NRTL at the time of the interconnection application, and (3) such NRTL makes readily available for verification all test standards and procedures it utilized in performing such equipment certification and with consumer approval, the test data itself. The NRTL may make such information available on its Web site and by encouraging such information to be included in the manufacturer’s literature accompanying the equipment.
B. The Interconnection Customer must verify that the intended use of the equipment falls within the use or uses for which the equipment was tested, labeled, and listed by the NRTL.

C. Certified equipment shall not require further type-test review, testing, or additional equipment to meet the requirements of this interconnection procedure; however, nothing herein shall preclude the need for an on-site commissioning test by the parties to the interconnection nor follow-up production testing by the NRTL or periodic tests per IEEE 1547 Section 5.5.

D. If the certified equipment package includes only interface components (switchgear, inverters, or other interface devices), then an interconnection customer must show that the generator or other electric source being utilized with the equipment package is compatible with the equipment package and is consistent with the testing and listing specified for this type of interconnection equipment.

E. Provided the generator or electric source, when combined with the equipment package, is within the range of capabilities for which it was tested by the NRTL, and does not violate the interface components' labeling and listing performed by the NRTL, no further design review, testing or additional equipment on the customer side of the point of common coupling shall be required to meet the requirements of this interconnection procedure.

F. An equipment package does not include equipment provided by the utility.

G. Any equipment package approved and listed in a state by that state’s regulatory body for interconnected operation in that state prior to the effective date of these small generator interconnection technical requirements shall be considered certified under these procedures for use in that state.
Relevant Codes and Standards

- IEEE 1547 Standard for Interconnecting Distributed Resources with Electric Power Systems (including use of IEEE 1547.1 testing protocols to establish conformity)
- UL 1741 Inverters, Converters, and Controllers for Use in Independent Power Systems
- IEEE Std 929-2000 IEEE Recommended Practice for Utility Interface of Photovoltaic (PV) Systems
- NFPA 70 National Electrical Code
- ANSI C84.1-1995 Electric Power Systems and Equipment -Voltage Ratings (60 Hertz)
- IEEE Std 100-2000, IEEE Standard Dictionary of Electrical and Electronic
- NEMA MG 1-1998, Motors and Small Resources, Revision 3
- NEMA MG 1-2003 (Rev 2004), Motors and Generators, Revision 1
Attachment F: Generation Interconnection Feasibility Study data

F.1 Scope
This Generation Interconnection Feasibility Study data attachment to Manual 14A is intended to provide a listing of the data which is required so that an Interconnection Customer may complete the data form located on the PJM website (link given below). Completion of the form on the web site, and submission of the additional data as listed at the link provided below, is necessary for an Interconnection Request to be deemed a valid request.

F.2 Data Requirements for PJM RTEPP Feasibility Studies
Feasibility Studies are conducted to identify transmission expansion needed to maintain the system reliability given your generation onto the network. The data submitted is required to perform the power flow, and short circuit analysis which are necessary for the Feasibility Study Phase.

PJM uses the following programs to perform the Feasibility Analysis:
1. PSS/E program from PTI, Inc. (power flow)
2. Aspen from Advanced Systems for Power Engineering, Inc. (short circuit)

All data must be provided on an individual unit basis.

For example, a combined cycle plant with two identical Combustion Turbines (CTs), and one Steam Turbine (ST), would have 2 submissions of the data request form. One submission for the CTs, and one submission for the ST.

If the final unit specifications are not certain an approximation must be made.

When more information is available, the Interconnection Customer must provide an update to PJM so that the typical model may be replaced with a detailed model based on the actual unit purchased.

Following is the information required to complete the data which is required for a Generation Interconnection Feasibility Study:

General and identifying information
- Interconnection Customer name *
- Name of Individual Completing Form *
- Email Address (Individual Completing the Form) *
- Phone # (Individual Completing the Form) *
- Queue Letter & Position / Unit ID *
- Primary Fuel Type *
- Interconnection Customer’s proposed location (if known) for Point of Interconnection (POI) to PJM System*
- Maximum Gross MW Output *
- Maximum Net MW Output *
- Station Service Load (MW/MVAR)
- Load connected to High Side of GSU (Yes/No)
- Load connected to Low Side of GSU (Yes/No)

Main Transformer Data
- Number of machines per GSU *
- Generator Step-up Transformer MVA Base *
- Generator Step-up Transformer Impedance (R+jX, or %, on transformer MVA Base) *
- Generator Step-up Transformer Reactance-to-Resistance Ratio (X/R)
- Generator Step-up Transformer FOA Rating (MVA)
- Generator Step-up Transformer Low-side Voltage (kV) *
- Generator Step-up Transformer High-side Voltage (kV) *
- Generator Step-up Transformer Off-nominal Turns Ratio
- Generator Step-up Transformer Number of Taps and Step Size

Transmission Line Data
- Line Length from Main Transformer High-Side to Interconnection Point
- Voltage Level (kV)
- Conductor Type
- Transmission Line MVA Base
- Positive Sequence Impedance (R+jX %, per mile on line MVA base)
- Zero Sequence Impedance (R+jX %, per mile on line MVA base)
- Zero Sequence Reactance-to-Resistance Ratio (X/R)
- Positive Sequence Charging Admittance (in % per mile on line MVA base)

Plant Data- Non-Wind Generators
- Generator MVA Base (upon which all reactances, resistance and inertia are calculated) *
- Generator Nominal Power Factor *
- Generator Terminal Voltage (kV) *
- Generator Saturated Sub-transient Reactance, X"d(v) (on MVA Base) *
Provide Site Plan (on tax map, USGS topo map, etc.) for Interconnection Customer's Facilities (electronic file if available) and a one-line diagram of the Facility electrical arrangement via email attachment to the email address(es) specified at the link on the PJM website listed above when the data on the data form at the link location listed above is submitted.

Wind Plant Data

PJM has on file the manufacturer data sheets for the following Wind Turbines:

- Acciona AW 1530 1.5 MW, 3.0 MW; Clipper C93 2.5 MW; Gamesa G8x/G90 2 MW; GE 1.5 MW, 1.6 MW, 2.5 MW, 2.75 MW, 4.0 MW; Generic Wind Model (WT3 and WT4) Mitsubishi MWT92/95 2.3 MW, Nordex N90 2.5 MW, N100 2.5 MW, N117 2.4 MW; Repower MM82 2.05 MW; Siemens 2.3 MW, 3.0 MW, 3.6 MW, 4.0 MW, 6.0 MW; Suzlon S88 2.1MW, S97 2.1 MW; Vestas V82 1.8 MW, V90 1.8 MW, 3.0 MW, V100 1.8 MW, V112 3.075 MW.

If the Interconnection Customer intends to install any of the turbines listed above, then that Interconnection Customer must only supply the information listed below which is applicable to a wind plant data request and which is accompanied by an asterisk. If an Interconnection Customer intends to install a turbine other than one (or more) of the models listed above, then all data which follows as being required by a wind plant will be required.

- Queue Letter/Position/Unit ID
- MW Size (each turbine) *
- MVA Base (each turbine) *
- Number of Turbines *
- Type of Turbines (Manufacture and Model Type) *
- Terminal Voltage (kV) *
- Saturated Sub-transient Reactance, X″d(v) (on MVA Base) *
- Control Mode (Power Factor Control/ Voltage Control)
- If the turbines will be operated in PF Control Model, Power Factor Range at the Generator Terminal
- Size of Additional Capacitor If Any
- Location of Additional Capacitor If Any
- Type of Additional Capacitor If Any (regular/ switching shunts)
- Steps of Switching Shunts
- Size of Dynamic Var If Any
- Location of Dynamic Var If Any
- Cable Length for Wind Farm Collection System
- Cable Type and Impedance Per Mile
- Embedded Relay for Each Turbine (Yes or No)
- Voltage relay (Yes or No)
- Manufacturer default Voltage relay setting
- Frequency relay (Yes or No)
- Manufacturer default Frequency relay setting

Wind Turbine Unit GSU (each turbine)
- Number of turbine’s per unit GSU*
- Generator Step-up Transformer MVA Base*
- Generator Step-up Transformer Impedance (R+jX, or %, on transformer MVA Base)*
- Generator Step-up Transformer Reactance-to-Resistance Ration (X/R)
- Generator Step-up Transformer FOA Rating (MVA)
- Generator Step-up Transformer Low-side Voltage (kV)*
- Generator Step-up Transformer High-side Voltage (kV)*
- Generator Step-up Transformer Off-nominal Turns Ratio
- Generator Step-up Transformer Number of Taps and Step Size
Attachment G: System Impact Study data

G.1 Scope

This System Impact Study data attachment to Manual 14A is intended to provide a listing of the data which is required so that an Interconnection Customer may complete the data form located on the PJM website (link given below). Completion of the form on the web site, and submission of the additional data as listed at the link provided below, is necessary for an Interconnection Request to be deemed a valid request.

Data Requirements for PJM RTEPP System Impact Studies

The data listed below must be submitted to ensure proper modeling of Interconnection Requests in the System Impact Study phase. System Impact Studies are conducted to identify transmission expansion needed to maintain the system reliability given the addition of your generation on to the network. The data that is submitted is required to perform the power flow, short circuit and dynamic simulation analyses which are necessary for the Impact Study phase.

PJM uses the following programs to perform the System Impact Study Analysis:

1. PSS/E from PTI, Inc. (power flow and dynamic simulation)
2. Aspen from Advanced Systems for Power Engineering, Inc. (short circuit)

Minimum requirement fields are indicated by *

All data must be provided on an individual unit basis.

For example, a combined cycle plant with two identical Combustion Turbines (CT), and one Steam Turbine (ST), would have 2 submissions of the data request form. One submission for the CT, and one submission for the ST.

If the final unit specifications are not certain an approximation must be made. When more information is available, the Interconnection Customer must provide an update to PJM so that the typical model may be replaced with a detailed model based on the actual unit purchased.
Interconnection Customer Name*
Name of Individual Completing Form*
Email Address (Individual Completing the Form) *
Phone # (Individual Completing the Form)*
Queue Letter & Position / Unit ID *
Primary Fuel Type *
Selected Point of Interconnection*
Maximum Summer (92º F ambient air temp.) Net MW Output*
Maximum Summer (92º F ambient air temp.) Gross MW Output *
Minimum Summer (92º F ambient air temp.) Gross MW Output *
Maximum Winter (30º F ambient air temp.) Gross MW Output *
Minimum Winter (30º F ambient air temp.) Gross MW Output *
Gross Reactive Power Capability at Maximum Gross MW Output
Submit Reactive Capability Curve (Leading and Lagging) *
Individual Unit Auxiliary Load at Maximum Summer MW Output (MW/MVAR) *
Individual Unit Auxiliary Load at Minimum Summer MW Output (MW/MVAR) *
Individual Unit Auxiliary Load at Maximum Winter MW Output (MW/MVAR) *
Individual Unit Auxiliary Load at Minimum Winter MW Output (MW/MVAR) *
Station Service Load (MW/MVAR)

Unit Generator Dynamics Data Request Form
MVA Base (upon which all reactance’s, resistance and inertia are calculated) *
Nominal Power Factor *
Terminal Voltage (kV) *

Unsaturated Reactances (on MVA Base)
Direct Axis Synchronous Reactance, Xd(i) *
Direct Axis Transient Reactance, X’d(i) *
Direct Axis Sub-transient Reactance, X”d(i) *
Quadrature Axis Synchronous Reactance, Xq(i) *
Quadrature Axis Transient Reactance, X’q(i) *
Quadrature Axis Sub-transient Reactance, X”q(i) *
Stator Leakage Reactance, XI *
Negative Sequence Reactance, X2(i) *
Zero Sequence Reactance, X0 *

Saturated Reactances (on MVA Base)
Saturated Sub-transient Reactance, X”d(v) (on MVA Base) *
Negative Sequence Reactance, X2(v)
Zero Sequence Reactance, X0(v)

Resistance Values
DC Armature Resistance, Ra (ohms) *
Positive Sequence Resistance, R1 (on MVA Base)
Negative Sequence Resistance, R2 (on MVA Base)
Zero Sequence Resistance, R0 (on MVA Base)
Time Constants (seconds)
- Direct Axis Transient Open Circuit, T^{do}
- Direct Axis Sub-transient Open Circuit, T^{do}*
- Quadrature Axis Transient Open Circuit, T^{qo}
- Quadrature Axis Sub-transient Open Circuit, T^{qo}*
- Inertia, H (kW-sec/kVA, on KVA Base) *
- Speed Damping, D^*
-Saturation Values at Per-Unit Voltage*
 a. $S(1.0)$
 b. $S(1.2)$

Main GSU Data Request Form
- Number of Machine’s per GSU *
- Generator Step-up Transformer MVA Base *
- Generator Step-up Transformer Impedance $(R+jX,$ as a percentage) *
- Generator Step-up Transformer Reactance-to-Resistance Ratio (X/R)
- Generator Step-up Transformer FOA Rating (MVA)
- Generator Step-up Transformer Low-side Voltage (kV) *
- Generator Step-up Transformer High-side Voltage (kV) *
- Generator Step-up Transformer Tertiary Voltage (kV)
- Generator Step-up Transformer Number of Taps and Step Size
- High Voltage Winding Connection (i.e. wye grounded, delta) *
- Low Voltage Winding Connection (i.e. wye grounded, delta) *
- Tertiary Voltage Winding Connection (i.e. wye grounded, delta)

Transmission Line Data
- Line Length from Main Transformer High-Side to the Point of Interconnection
- Voltage Level (kV)
- Conductor Type
- Transmission Line MVA Base
- Positive Sequence Impedance $(R+jX,$ or %, per mile on line MVA base)
- Positive Sequence Reactance-to-Resistance Ratio (X/R)
- Zero Sequence Impedance $(R+jX,$ or %, per mile on line MVA base)
- Zero Sequence Reactance-to-Resistance Ratio (X/R)
- Positive Sequence Charging Admittance (in % per mile on line MVA base)

Part D: Wind Plant Data
- Interconnection Customer name *
- Name of Individual Completing Form
- Email Address Individual Completing the Form) *
- Phone #(Individual Completing the Form) *
- Queue Letter/Position/Unit ID *
- Primary Fuel Type
- Maximum Net MW Output (plant) *
- Maximum Gross MW Output (plant) *
- Station Service Load (MW/MVAR)
PJM has on file the manufacturer data sheets for the following Wind Turbines:

Acciona AW 1530 1.5 MW, 3.0 MW; Clipper C93 2.5 MW; Gamesa G8x/G90 2 MW; GE 1.5 MW, 1.6 MW, 2.5 MW, 2.75 MW, 4.0 MW; Generic Wind Model (WT3 and WT4) Mitsubishi MWT92/95 2.3 MW, Nordex N90 2.5 MW, N100 2.5 MW, N117 2.4 MW; Repower MM82 2.05 MW; Siemens 2.3 MW, 3.0 MW, 3.6 MW, 4.0 MW, 6.0 MW; Suzlon S88 2.1MW, S97 2.1 MW; Vestas V82 1.8 MW, V90 1.8 MW, 3.0 MW, V100 1.8 MW, V112 3.075 MW.

If the Interconnection Customer intends to install any of the turbines listed above, then that Interconnection Customer must only supply the information listed below which is applicable to a wind plant data request and which is accompanied by an asterisk. If an Interconnection Customer intends to install a turbine other than one (or more) of the models listed above, then all data which follows as being required by a wind plant will be required.

Queue Letter/Position/Unit ID
MW Size (each turbine) *
MVA Base (each turbine) *
Number of Turbines *
Type of Turbines (Manufacture and Model Type) *
Terminal Voltage (kV) *
Positive Sequence Resistance, R1 (on MVA Base)
Saturated Sub-transient Reactance, X*d(v) (on MVA Base) *
Control Mode (Power Factor Control/Voltage Control)
If in PF Control Model, Power Factor Range at the Generator Terminal
Size of Additional Capacitor If Any
Location of Additional Capacitor If Any
Type of Additional Capacitor If Any (regular/switching shunts)
Steps of Switching Shunts
Size of Dynamic Var If Any
Location of Dynamic Var If Any
Cable Length for Wind Farm Collection System
Cable Type and Impedance Per Mile
Embedded Relay for Each Turbine (Yes or No)
Voltage relay (Yes or No)
Manufacturer default Voltage relay setting
Frequency relay (Yes or No)
Manufacturer default Frequency relay setting

Wind Turbine Unit GSU (each turbine)
Number of turbines per unit GSU
Generator Step-up Transformer MVA Base *
Generator Step-up Transformer Impedance (R+jX, or %, on transformer MVA Base) *
Generator Step-up Transformer Reactance-to-Resistance Ratio (X/R)
Generator Step-up Transformer FOA Rating (MVA)
Generator Step-up Transformer Low-side Voltage (kV) *
Generator Step-up Transformer High-side Voltage (kV) *
Generator Step-up Transformer Off-nominal Turns Ratio
Generator Step-up Transformer Number of Taps and Step Size
High Voltage Winding Connection (i.e. wye grounded, delta) *
Low Voltage Winding Connection (i.e. wye grounded, delta) *
Transmission Line Data:
Line Length from Main Transformer High-Side to the Point of Interconnection
Voltage Level (kV)
Conductor Type
Transmission Line MVA Base
Positive Sequence Impedance (R+jX, or %, per mile on line MVA base)
Positive Sequence Reactance-to-Resistance Ratio (X/R)
Zero Sequence Impedance (R+jX, or %, per mile on line MVA base)
Zero Sequence Reactance-to-Resistance Ratio (X/R)
Positive Sequence Charging Admittance (in % per mile on line MVA base)

PSS/E simulation information
The equipment models listed below are those available for use in PSS/E. Each model can have unique data requirements. The minimum modeling required for dynamic simulation is a generator model, and an exciter model. These must be identified / submitted by the Interconnection Customer.

The manufacturer of the equipment to be incorporated in the design of a facility should be able to provide the proper model or an equivalent for the Interconnection Customer to identify. If you cannot determine the exact PSS/E model, you must submit a Control/Block Diagram for the piece of equipment in question.

Generator Models
GENROE Round rotor generator model.
GENROU Round rotor generator model.
GENSAE Salient pole generator model.
GENSAL Salient pole generator model.
GENDCO Round rotor generator model with DC offset torque component.
GENCLS Classical generator model.
GENTRA Transient level generator model.
CIMTRI Induction generator model with rotor flux transients.
CIMTR3 Induction generator model with rotor flux transients.

Static Var Compensator (SVC) and Frequency Changer Models
CSVGNI SCR controlled static VAR source model.
CSVGNI3 SCR controlled static VAR source model.
CSVGNI4 SCR controlled static VAR source model.
CSVGNI5 WSCC controlled static VAR source model.
CSVGNI6 WSCC controlled static VAR source model.
FRECHG Salient pole frequency changer model.

If the model for the SVC to be employed by the Interconnection Customer is not present on the list above, then the Interconnection Customer must provide the model to PJM, otherwise the Interconnection Customer must identify to PJM the correct model to be used from the list above.
Excitation System Models

An exciter model is a minimum modeling requirement for dynamic simulation.

Additionally, the exciter model in certain cases is needed to ensure that the unit is transiently stable.

PJM maintains the following model information.

- EXDC2 1981 IEEE type DC2 excitation system model.
- EXAC1 1981 IEEE type AC1 excitation system model.
- EXAC1A Modified 1981 IEEE type AC1 excitation system model.
- EXAC2 1981 IEEE type AC2 excitation system model.
- EXAC3 1981 IEEE type AC3 excitation system model.
- EXAC4 1981 IEEE type AC4 excitation system model.
- EXST1 1981 IEEE type ST1 excitation system model.
- EXST2 1981 IEEE type ST2 excitation system model.
- EXST2A Modified 1981 IEEE type ST2 excitation system model.
- EXST3 1981 IEEE type ST3 excitation system model.
- ESAC1A 1992 IEEE type AC1A excitation system model.
- ESAC2A 1992 IEEE type AC2A excitation system model.
- ESAC3A 1992 IEEE type AC3A excitation system model.
- ESAC4A 1992 IEEE type AC4A excitation system model.
- ESAC5A 1992 IEEE type AC5A excitation system model.
- ESAC6A 1992 IEEE type AC6A excitation system model.
- ESDC1A 1992 IEEE type DC1A excitation system model.
- ESDC2A 1992 IEEE type DC2A excitation system model.
- ESST1A 1992 IEEE type ST1A excitation system model.
- ESST2A 1992 IEEE type ST2A excitation system model.
- ESST3A 1992 IEEE type ST3A excitation system model.
- EXPIC1 Proportional/integral excitation system model.
- IEEET1 1968 IEEE type 1 excitation system model.
- IEEET1A Modified 1968 IEEE type 1 excitation system model.
- IEEET1B Modified 1968 IEEE type I excitation system model.
- IEEET2 1968 IEEE type 2 excitation system model.
- IEEET3 1968 IEEE type 3 excitation system model.
- IEEET4 1968 IEEE type 4 excitation system model.
- IEEET5 Modified 1968 IEEE type 4 excitation system model.
- IEEET5A Modified 1968 IEEE type 4 excitation system model.
- IEEEX1 1979 IEEE type 1 excitation system model and 1981 IEEE type DC1 model.
- IEEEX2 1979 IEEE type 2 excitation system model.
- IEEEX3 1979 IEEE type 3 excitation system model.
- IEEEX2A 1979 IEEE type 2A excitation system model.
- SCRX Bus or solid fed SCR bridge excitation system model.
- SEXS Simplified excitation system model.
If the model for the excitation system to be employed by the Interconnection Customer is not present on the list above, then the Interconnection Customer must provide the model to PJM, otherwise the Interconnection Customer must identify to PJM the correct model to be used from the list above.

Prime Mover and Governor Models

The prime mover governor model is required to demonstrate long-term stability of the unit in response to frequency oscillations.

PJM maintains the following model information:

- CRCMGV Cross compound turbine governor model.
- DEGOV Woodward diesel governor model.
- DEGOV1 Woodward diesel governor model.
- GAST Gas turbine governor model.
- GAST2A Gas turbine governor model.
- GASTWD Woodward gas turbine governor model.
- HYGOV Hydro turbine governor model.
- IEEESGO 1973 IEEE standard turbine governor model.
- IEEEG1 1981 IEEE type 1 turbine governor model.
- IEEEG2 1981 IEEE type 2 turbine governor model.
- IEEEG3 1981 IEEE type 3 turbine governor model.
- SHAF25 25 mass torsional-elastic shaft model.
- TGOV1 Steam turbine governor model.
- TGOV2 Steam turbine governor model with fast valving.
- TGOV3 Modified IEEE type 1 turbine governor model with fast valving.
- TGOV5 Modified IEEE type 1 turbine governor model with boiler controls.
- WEHGOV Woodward Electric Hydro Governor Model.
- WESGOV Westinghouse Digital Governor for Gas Turbine.
- WPIDHY Woodward P.I.D. hydro governor model.

If the model for the governor system to be employed by the Interconnection Customer is not present on the list above, then the Interconnection Customer must provide the model to PJM, otherwise the Interconnection Customer must identify to PJM the correct model to be used from the list above.

Power System Stabilizer Models

Power System Stabilizer must be added to the exciter circuits to force stability. However, devices such as Power System Stabilizers, as well as Excitation Limiters and Compensating devices, are less frequently applied, and are modeled if the equipment will be used.

PJM maintains the following model information:

- IEEEST 1981 IEEE power system stabilizer model.
- IEE2ST Dual input signal power system stabilizer model.
- PTIST1 PTI microprocessor based stabilizer model.
- PTIST3 PTI microprocessor based stabilizer model.
- PSS2A 1992 IEEE duel input signal stabilizer model.
- STAB1 Speed sensitive stabilizer model.
- STAB2A ASEA power sensitive stabilizer model.
- STAB3 Power sensitive stabilizer model.
- STAB4 Power sensitive stabilizer model.
STBSVC WSCC supplementary signal for static VAR system.
ST2CUT Dual input signal power system stabilizer model.

Minimum Excitation Limiter Models PJM maintains the following model information.

- MNLEX1 Minimum excitation limiter model.
- MNLEX2 Minimum excitation limiter model.
- MNLEX3 Minimum excitation limiter model.

Maximum Excitation Limiter Models
PJM maintains the following model information.

- MAXEX1 Maximum excitation limiter model.
- MAXEX2 Maximum excitation limiter model.

Compensating Models
PJM maintains the following model information.

- COMP Voltage regulator compensating model.
- COMPCC Cross compound compensating model.
- IEEEVC 1981 IEEE voltage compensating model.
- REMCMP Remote bus voltage signal model.

Solar User Models
Satcon Powegate converters
Attachment G-1: Dynamic Model Study Request Form

RECITALS

1. This Agreement, dated as of ______________, _________, is entered into by and between __________________________ ("Customer") and PJM Interconnection, L.L.C. ("Transmission Provider"). Capitalized terms used in this agreement, unless otherwise indicated, shall have the meanings ascribed to them in the PJM Open Access Transmission Tariff ("PJM Tariff").

2. The Customer has notified the Transmission Provider that it plans to provide a new dynamic model or new version of an existing model for study of a Generation Interconnection Request(s).

3. The Customer shall provide sufficient information regarding the model and any facility information to enable Transmission Provider to evaluate the model for use in future System Impact Study.

PURPOSE OF THE STUDIES UNDER THIS AGREEMENT

4. Transmission Provider shall conduct studies to determine whether the model and information provided will be acceptable for the study of a Generation Interconnection Request. Upon completion of the studies, Transmission Provider shall provide the Customer with determination of the acceptability for use of the model for a Generation Interconnection Request. In the event that the Transmission Provider is unable to complete the studies within 90 days of the execution of this Agreement, and receipt of the relevant materials which includes any relevant specifications and modeling data, the Transmission Provider shall notify the Customer and explain the reasons for the delay.

CONFIDENTIALITY

5. The Transmission Provider shall keep confidential all information provided to it by the Customer used in the performance of the study of the new model.

6. Customer acknowledges that, consistent with Part VI of the PJM Tariff, the Transmission Provider may contract with consultants, including the Transmission Owners, to provide services or expertise in the study process and that the Transmission Provider may disseminate information to the Transmission Owners.
COST RESPONSIBILITY

7. The Customer shall reimburse the Transmission Provider for the actual cost of the studies. Customer shall supply an initial deposit of $10,000, with the execution of this agreement, in order to fund initial studies. All deposit monies shall be fully refundable following payment of all charges incurred in the study of this model.

DISCLAIMER OF WARRANTY, LIMITATION OF LIABILITY

8. In analyzing and preparing the studies, the Transmission Provider, the Transmission Owner(s), and any other subcontractors employed by the Transmission Provider shall have to rely on information provided by the Customer and possibly by third parties and may not have control over the accuracy of such information. Accordingly, NEITHER THE TRANSMISSION PROVIDER, THE TRANSMISSION OWNER(S), NOR ANY OTHER SUBCONTRACTORS EMPLOYED BY THE TRANSMISSION PROVIDER MAKES ANY WARRANTIES, EXPRESS OR IMPLIED, WHETHER ARISING BY OPERATION OF LAW, COURSE OF PERFORMANCE OR DEALING, CUSTOM, USAGE IN THE TRADE OR PROFESSION, OR OTHERWISE, INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE WITH REGARD TO THE ACCURACY, CONTENT, OR CONCLUSIONS OF THE NECESSARY STUDIES. The Customer acknowledges that it has not relied on any representations or warranties not specifically set forth herein and that no such representations or warranties have formed the basis of its bargain hereunder. Neither this Agreement nor the studies performed hereunder are intended, nor shall either be interpreted, to constitute agreement by the Transmission Provider or the Transmission Owner(s) to provide any transmission or interconnection service to or on behalf of the Customer either at this point in time or in the future.

9. In no event will the Transmission Provider, Transmission Owner(s) or other subcontractors employed by the Transmission Provider be liable for indirect, special, incidental, punitive, or consequential damages of any kind including loss of profits, whether under this Agreement or otherwise, even if the Transmission Provider, Transmission Owner(s), or other subcontractors employed by the Transmission Provider have been advised of the possibility of such a loss. Nor shall the Transmission Provider, Transmission Owner(s), or other subcontractors employed by the Transmission Provider be liable for any delay in delivery or of the non-performance or delay in performance of the Transmission Provider's obligations under this Agreement. Without limitation of the foregoing, the Customer further agrees that Transmission Owner(s) and other subcontractors employed by the Transmission Provider to prepare
or assist in the preparation of any Necessary Studies shall be deemed third party beneficiaries of this provision entitled "Disclaimer of Warranty/Limitation of Liability."

MISCELLANEOUS

10. Any notice or request made to or by either party regarding Agreement shall be made to the representative of the other party as indicated below.

Transmission Provider

PJM Interconnection, L.L.C.
955 Jefferson Avenue
Valley Forge Corporate Center
Norristown, PA 19403-2497

Customer

Attn ____________________
Phone ____________________
Email ____________________

11. No waiver by either party of one or more defaults by the other in performance of any of the provisions of this Agreement shall operate or be construed as a waiver of any other or further default or defaults, whether of a like or different character.

12. This Agreement or any part thereof, may not be amended, modified, or waived other than by a writing signed by all parties hereto.

13. This Agreement shall be binding upon the parties hereto, their heirs, executors, administrators, successors, and assigns.

IN WITNESS WHEREOF, the Transmission Provider and the Customer have caused this Agreement to be executed by their respective authorized officials.
Transmission Provider:

By:

Name Title Date

Printed Name of Signer:

Customer:

By:

Name Title Date

Printed Name of Signer:

ATTACHMENT #1
Generator Data

Add data to be used (Supply data under the form of the Impact Study Data Form through the PJM website as well as configuration information for the facility).
Attachment H: Generator Reactive Deficiency Mitigation Process

H.1 Scope

The mitigation process is to address a reactive deficiency of an existing synchronous generator caused by an increase of its output (capacity or energy) resulting in that the generator reactive capability cannot meet the existing PJM power factor requirements as stated in the PJM Tariff. The mitigation process and the associated business rules will also be applied to all new interconnection requests regarding an increase of capacity or energy to an existing generator.

The mitigation process is not intended for:

- Wind or non-synchronous generators,
- Existing generators not requesting an increase of capacity or energy,
- Previous requests for capacity or energy increases

The process is in compliance with the existing PJM tariff requirements and the associated business rules and does not require a change in the existing PJM tariff.

Reactive Deficiency Definition

A Reactive Deficiency is defined as the difference between the Mvar capability of a generator after the upgrade for meeting the PJM power factor requirements and the actual Mvar capability of a generator after the requested increase in capacity or energy.

For existing generators that do not have a signed FERC Proforma Interconnection Service Agreement (ISA), the Mvar capability before the upgrade is the grandfathered Mvar capability determined by PJM. For generators that have a signed ISA, the Mvar capability before the upgrade is determined by the Mvar for meeting the power factor requirements as stated at Part VI, Att. O, App. 2, Section 4.7.1 of the PJM Tariff.

For the incremental MW increase, the corresponding power factor requirements can be calculated according to the requirements stated at Part VI, Att. O, App. 2, Section 4.7.1.2 of the Tariff. Hence, the Mvar capability of a generator after the upgrade for meeting the PJM power factor requirements is defined as the sum of the grandfathered Mvar capability or the Mvar requirements stated in the Tariff and the Mvar requirement corresponding to the incremental MW increase.

After the upgrade, the actual Mvar capability of the generator is the Mvar, defined by the generator’s reactive capability curve, corresponding to the Maximum Facility Output of the generator before the upgrade plus the incremental MW increase.

The reactive deficiency, if any, is determined during the Feasibility and the System Impact Study phases of an interconnection request regarding an increase of capacity or energy to an existing generator. The Interconnection Customer will be notified of the deficiency and the proposed mitigation before the execution of the Construction or Interconnection Service Agreement.
Mitigation Process

Currently, the PJM Tariff allows the Interconnection Customer, at its expense, to install power factor correction or other equipment at the generation plant to mitigate the reactive deficiency and to enable the generator to meet the PJM reactive power design criteria during operation. (OATT at Part VI, Att. O, App. 2, Section 4.7.3) If the Interconnection Customer fails to mitigate the reactive deficiency, PJM can request the affected Transmission Owner to install Static Var Compensator (SVC) or similar dynamic reactive devices, at the Interconnection Customer’s expense in the form of a Reactive Deficiency Charge, to mitigate the identified reactive deficiency. A shunt capacitor application could be considered but its application will require PJM review on a case by case basis.

For a generator reactive deficiency less than 50 Mvar, the Reactive Deficiency Charge will be equal to the reactive deficiency (in Mvar) multiplied by the most recent average cost estimates (in $/Mvar) for installing SVCs on the PJM system. There will be two SVC cost estimates to be developed and updated annually by PJM – one for installations at or above 230kV and one for installations below 230kV. The applicable deficiency charge is based on the voltage at the high side of the generator step up transformer. In the event that a shunt capacitor application is allowed, the charge will be based on the most recent cost of similar shunt capacitor installation.

For a generator reactive deficiency greater than or equal to 50 Mvar, the affected Transmission Owner will be responsible to provide either the cost estimate (in $/Mvar) for installing a SVC in its system which will be used to calculate the Reactive Deficiency Charge or the cost estimate (in $) of a specific SVC or SVCs necessary to mitigate the reactive deficiency as determined by PJM and the affected Transmission Owner in the System Impact Study.

Reactive Deficiency Charge Payments

The Reactive Deficiency Charges can be paid in cash or via a letter of credit. The collected charges will be used to fund reactive projects in the Transmission Owner’s zone in which the Interconnection Customer’s generator is located. The affected Transmission Owners shall be responsible to construct, own and maintain these reactive projects.

If the Reactive Deficiency Charge for an individual Interconnection Request is less than $2M and is insufficient to fund a planned reactive project, PJM can choose to use the collected charge to provide partial funding to this project. Alternatively, PJM can hold the collected charges in an account until sufficient funds have been collected to fund the entire project.

If the Reactive Deficiency Charge for an individual Interconnection Request is more than the cost of a planned reactive project, PJM can choose to use the collected charge to fund this project and hold the remaining fund in cash (not to exceed $2M) or in a letter of credit as a security for use to fund future reactive projects. These funds will be used as soon as a reactive upgrade has been identified. Alternatively, PJM can develop a different reactive project to be funded entirely by the collected charge.

If the Reactive Deficiency Charge is more than $2M and a reactive project has not been developed, PJM will require the Interconnection Customer to provide a letter of credit for use to fund a reactive upgrade as soon as it has been identified.
Review of and Modification to the Mitigation Process

NERC standards require that PJM, as the Transmission Operator, shall acquire sufficient reactive resources within its area to protect the voltage levels under normal and contingency conditions. PJM will continue to assess the reactive capability of the system and serve as the backstop to recommend modifications to the mitigation process and the associated business rules when and if there are insufficient reactive resources on the system to maintain system reliability.
Annex 1: SCADA Requirements by Transmission Owner Region

<table>
<thead>
<tr>
<th>MW and Voltage Threshold for SCADA Requirement</th>
<th>Must match Legacy SCADA(^1)</th>
<th>SCADA POINTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribution</td>
<td>Transmission</td>
<td>Gen^ CB Control</td>
</tr>
<tr>
<td>PJM</td>
<td>All Capacity Resources, Energy Resources >10 MW and all Resources able to set LMP</td>
<td>No</td>
</tr>
<tr>
<td>AE</td>
<td>3MW & above</td>
<td>3MW & above</td>
</tr>
<tr>
<td>AP</td>
<td>case by case basis</td>
<td>All require full SCADA & RTU</td>
</tr>
<tr>
<td>AEP</td>
<td>generally > 2MW</td>
<td>All</td>
</tr>
<tr>
<td>BG&E</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>ComEd</td>
<td>2.5MW & up or 10MW & up</td>
<td>All</td>
</tr>
<tr>
<td>Dayton</td>
<td>As determined by Dayton</td>
<td>As determined by Dayton</td>
</tr>
<tr>
<td>Delmarva</td>
<td>3MW & above</td>
<td>3MW & above</td>
</tr>
<tr>
<td>Dominion</td>
<td>If Local Load to Gen MVA ratio < 5</td>
<td>3MW & above</td>
</tr>
<tr>
<td>Duquesne</td>
<td>Case by case, all 5 MW & above</td>
<td>1 MW & above</td>
</tr>
<tr>
<td>FE</td>
<td>case by case basis</td>
<td>All</td>
</tr>
<tr>
<td>ODEC</td>
<td>2 MW & above</td>
<td>2 MW & above</td>
</tr>
<tr>
<td>O&R</td>
<td>1 MW & above</td>
<td>All</td>
</tr>
<tr>
<td>PECO</td>
<td>5 MW & above</td>
<td>5 MW & above</td>
</tr>
<tr>
<td>PEPCO</td>
<td>All - case by case exceptions</td>
<td>All - case by case exceptions</td>
</tr>
<tr>
<td>PPL</td>
<td>2.5 MW & above</td>
<td>All - 69 kV & above</td>
</tr>
<tr>
<td>PSEG</td>
<td>case by case basis</td>
<td>All</td>
</tr>
<tr>
<td>UGI</td>
<td>1 MW & above</td>
<td>1 MW & above, and All 66 kV & above</td>
</tr>
</tbody>
</table>

\(^1\) PPL and Duquesne (69kV and above) and UGI (1MW and above or 66kV and above) require that customer matches their company's SCADA equipment. SGIWG Internet option not permitted.

\(^2\) May be generator CBs (interrupting devices) and/or main CB (interrupting device)

\(^3\) May also require installation of Power Quality monitoring device
Revision 14 (02/01/2013):
- Insert Section 2.2.1.1 and Attachment G-1 to incorporate requirements for the study of new dynamic model prior to their use in the System Impact Study for a Generation Interconnection Request
- Update Attachment C

Revision 13: (8/23/2012)
Made changes to Attachment H: Generator Reactive Deficiency Mitigation Process to include generation increases of 20 MW or less.

Revision 12: (05/22/2012)
Made changes to Table 3-1: Small Generation Interconnection Process deposit requirements (Interconnection requests of 2 – 20MW) and Table 3-2: Small Generation Interconnection Process deposit requirements (Interconnection Requests of 2MW or less).

Revision 11: (05/22/2012)
Revision 11 incorporates (1) language changes associated with the Interconnection Process Senior Task Force recommendations (2) language describing the calculation of Capacity Interconnection Rights being transferred to a new facility, and (3) minor language cleanup to provide additional clarity on existing process elements.

Revision 10: (04/05/2012)
Revision 10 incorporates (1) increased detail regarding section 1.8 Changes to Existing or Proposed Generation and (2) minor language cleanup to promote consistency throughout Manual 14A.

Revision 09: (04/12/2011)
Revision 09 incorporates (1) increased detail regarding Generator Power Factor Requirements, (2) a new Attachment H: Generator Reactive Deficiency Mitigation Process, and (3) a clarification to the interconnection cost allocation process.

Revision 08: (05/01/2009)
Revision 08 incorporates (1) corrections and clarifications to items entered under revisions 06 and 07, (2) changes to the deposit requirements for the System Impact Study and Facilities Study phases of interconnection project development, and (3) modifies references to the PJM web site following the PJM web site redesign.

Revision 07: (1/15/2009)
Revision 07 changes incorporate a description of the requirements associated with the submittal of site control in conjunction with the submission of an Interconnection Request for wind generation to be studied for interconnection in PJM. This change was produced as a result of recommendations from the Regional Planning Process Working Group. Additional revisions incorporate editorial corrections.
Revision 06: (08/08/2008)

Material related to the Interconnection process has been split from Manual 14B and located here. General material introducing the Manual 14 Series has been relocated to a new draft under construction which will be called Manual 14. Manual 14 will be devoted to introductory material for the entire PJM Manual 14 series.

The following Interconnection process material includes extensive revisions related to improvements to the Queue study processes and procedures pursuant to applicable FERC and stakeholder proceedings as well as an accumulation of ongoing “housekeeping” updates.

Revision 05 (06/07/06)

Revision 05 includes text revisions to state that PJM Transmission Expansion Planning 1) accommodates requests for new interconnections and 2) identifies the need for transmission system equipment replacements and/or upgrades through probability risk assessment (PRA) analysis of bulk power transformers as an input to the Regional Planning Process. Replaced references to “ECAR, MAAC and MAIN” with ReliabilityFirst,

Revisions were made on page 6, 7, 11 and 12.

Revision 04 (10/01/05)

Revision 04 includes text that has been amended to accommodate the following: (1) clarification of small generation procedures; (2) clarification of Project Manager and Client Manager roles; and (3) additional explanatory information on treatment of generator deactivations.

Revision 03 (10/01/04)

Revision 03 includes text revisions to accommodate the following: (1) changes necessitated by compliance with FERC Order 2003 on Standardized Generator Interconnection Agreements and Procedures; (2) changes necessitated by integration with AEP, Dayton, Dominion and Duquesne; (3) capacity and energy unit status text clarification; and (4) recent process changes to address behind-the-meter generation and economic planning.

Revision 02 (12/01/03)

Revision 02 includes changes to include the Merchant Transmission Interconnection process description; also, the role clarity diagram in Attachment B has been revised.

Changed all references from “PJM Interconnection, L.L.C.” to “PJM.”

Reformatted to new PJM formatting standard; Renumbered pages to consecutive numbering; Renumbered Exhibit numbers.

Revision 01 (02/26/03)

Change manual title from “PJM Manual for Generation Interconnection Process Overview” (M14A) to “PJM Manual for Generation and Transmission Interconnection Process Overview” (M14A); also, text changes throughout to conform to new Manuals M-14C and M-14D.
Revision 00 (12/18/02)

This document is the initial release of the PJM Manual for *Generation Interconnection Process Overview (M14A)*.

Manual M14, Revision 01 (03/03/01) has been restructured to create four new manuals:

1. M14A: “Generation Interconnection Process Overview”
3. M14C: “Generation Interconnection Facility Construction”
4. M14D: “Generation Operational Requirements”