Coastal Wind Link – 6 Sewaren/Larrabee Twin Collector

General Information

Tie-line impact

Interregional project

Proposing entity name **PSEGRT** Does the entity who is submitting this proposal intend to be the Yes Designated Entity for this proposed project? Joint proposal ID 6 Company proposal ID Coastal Wind Link - PSEG & Orsted PJM Proposal ID 208 Coastal Wind Link - 6 Sewaren/Larrabee Twin Collector Project title Project description The Sewaren/Larrabee 400kV Collector is an offshore transmission solution designed to deliver up to 2800 MW of clean, reliable OSW energy to the State of New Jersey. The Project is comprised of two (2) HVDC systems. The Project's offshore converter platforms (OCP) are designed to serve a total of 2800 MW of OSW (offshore wind) generation from lease areas in the NY Bight. The Project's POIs are located at PSE&G's Sewaren Switching Station and at PSE&G's Deans Substation. The Project will use a High Voltage (HV) system based on HVDC Voltage Source Converter (VSC) technology. Each HVDC system will consist of an OCP, a single HVDC export cable system (all elements bundled together into a single marine corridor), and an onshore HVDC converter. Each OCP includes a 275kV AC system containing (5) feeders, (2) shunt reactors, (2) 275kV/400kV transformers, and a ±400kV HVDC converter. The two (2) OCPs are linked via 275kV Interlink submarine cables. The onshore converter substation (OnSS) will have a ±400kV HVDC converter system, (3) 400/500kV single phase transformers (or three (3) 400/230kV), breakers, disconnects and a 230kV cable termination structure at Sewaren and a 500kV cable termination structure at Larrabee. Upon award of the project to the Project team, a project company ("Coastal Wind Link") will be formed as a joint venture between PSEGRT and Orsted NATH and will be the Designated Entity for the project. **Email** Raymond.DePillo@pseg.com 12/2030 Project in-service date

Yes

Nο

2021-NJOSW-208

Is the proposer offering a binding cap on capital costs?

Additional benefits

Project Components

- 1. S1 400kV Sewaren POI Upgrades
- 2. S2 400kV Sewaren AC Tie Line
- 3. S3 400kV Sewaren Onshore Converter
- 4. S4 400kV Sewaren Offshore/Onshore HVDC Cable
- 5. S5 400kV Sewaren Offshore Converter
- 6. L1 400kV Larrabee POI Upgrade
- 7. L2 400kV Larrabee AC Tie Line
- 8. L3 400kV Larrabee Onshore Converter
- 9. L4 Larrabee Offshore/Onshore HVDC Cable
- 10. L5 400kV Larrabee Offshore Converter
- 11. Interlink-SL Sewaren/Larrabee Interlink (HS-21 to HS-12) #1
- 12. Interlink-SL Sewaren/Larrabee Interlink (HS-21 to HS-12) #2

Yes

1) The selection of the POI was based on a comprehensive analysis of station headroom and network upgrades in order to determine the optimal POI for future phases of OSW generation. 2) PSEG investigated 200+ properties to site an onshore converter station. The Project team has secured exclusive rights on property to site the converter station. 3) The Project team has obtained detailed site information on the selected landing location including the location of existing utilities and cables to inform landfall design and is in ongoing discussions with the landowner to determine optimal site layout and secure property rights. 4) Optimization of UG route considered mileage, permitting ease, and critical crossings. Field visits allowed PSEG's underground transmission experts to advance route design and estimates. 5) Design of the subsea cable route incorporated feedback from the NJDEP and USACE, seabed conditions, shipping lanes, fishing areas, crossings with existing cables, construction concerns, known UXO areas, and known areas of wrecks. Site investigation experience off the coast of New Jersey has allowed the team to mature route design prior to detailed surveying. 6) The Project team has met with various agencies to discuss permitting scenarios for this first-of-a-kind offshore transmission system. A comprehensive permitting plan has been created to fast-track project execution, and the team has prepared the IHA and ROW/RUE applications necessary. 7) The team worked with leading OEMs to design a symmetrical monopole system. The project is interlink-capable, offering reliability benefits to NJ's future offshore transmission system, while lowering OREC costs, as curtailment risk is reduced.

Substation Upgrade Component

Component title S1 400kV Sewaren POI Upgrades

Project description

Substation name Sewaren Switching Station

Substation zone PSE&G

Substation upgrade scope

To bring up to 1400 MW of offshore wind energy into Sewaren Switching Station, the existing 230-kV A-Frame structure will be upgraded to house a tri-bundled conductor. This will require modifications involving the existing 230-kV A-Frames, which will be reinforced for the extra loading. (Refer to Appendix B for the Sewaren Switching Station POI one line and bus plan arrangement).

PSEG would be required to design and construct the 230-kV modifications to accommodate the offshore wind power injection. Connection to Sewaren would be via 230kV strain bus

Transformer Information

None

New equipment description

PSE&G would be required to design and construction modifications of the existing A-Frame, 230-kV overhead strain bus to 3 conductors per phase. New 230kV SF6 AC breaker, disconnect switches and Current Transformers will be installed Please see Appendix B for the full equipment list

Substation assumptions

The switching station is currently a five bay breaker and a half configuration with five 230-kV lines and a spare position in bus section 7. The site requires expansion due to additional 230-kV incoming lines as part of the network upgrades. However, the station can expand the breaker and half arrangement farther north, where the old 138-kV station and the retired generation collector bus used to be located.

Real-estate description

The scope associated with the POI upgrades can be located all on existing PSE&G property. Please refer to the proposal section 5 for the real estate description.

Construction responsibility

PSEG

Benefits/Comments

Component Cost Details - In Current Year \$

Engineering & design Competitive

Permitting / routing / siting Competitive

ROW / land acquisition Competitive

Materials & equipment Competitive

Construction & commissioning Competitive

Construction management Competitive

Overheads & miscellaneous costs Competitive

Contingency Competitive

Total component cost \$18,066,725.00

Component cost (in-service year) \$21,627,461.00

Greenfield Transmission Line Component

Component title S2 400kV Sewaren AC Tie Line

Project description Construct a 230kV OH AC tie-line between the onshore converter station and the 230kV Sewaren

Switching Station.

Point A Sewaren DC/AC Converter (OnSS)

Point B Sewaren Switching Station

Point C

Line construction type

	Normal ratings	Emergency ratings	
Summer (MVA)	1400.000000	1400.000000	
Winter (MVA)	1400.000000	1400.000000	
Conductor size and type	2 per phase - 2000mm² 500-kV Cu (enamel)/XLPE/Cu CWS		
Nominal voltage	AC		
Nominal voltage	230-kV		

Overhead

2021-NJOSW-208

General route description The AC connection between the two facilities will consist of a short (approximately 250 feet or less) 230-kV AC overhead transmission line (overhead strain bus connection) Terrain description The connection is within the existing switching station property Right-of-way width by segment The Sewaren OnSS will be located adjacent to the Sewaren POI (i.e., the Sewaren Switching Station). As a result, the AC connection between the two facilities will consist of a short (approximately 250 feet or less) 230-kV AC overhead transmission line (overhead strain bus connection). Electrical infrastructure crossings may be required depending on final line routing and design. Electrical transmission infrastructure crossings Civil infrastructure/major waterway facility crossing plan The extent of detail civil infrastructure planning will be determined pending final design. The PSEG/Ørsted Team conducted an assessment of anticipated permits associated with the Environmental impacts Project and supported the evaluation of siting, routing, and development scenarios throughout the Project development process. The permitting and environmental assessments included a review of Federal, regional, State, and local regulatory requirements that could potentially impact each of the individual Project components. These assessments reflect in-depth analyses of the proposed Project plan reviewed with available GIS data, a detailed understanding of applicable regulations, and significant professional experience with projects of similar scope and in this same locality. As part of this Project analyses, potential Project sites and routes were discussed with a myriad group of experienced planning, engineering and construction professionals to find a competitive route that minimized environmental and built environment concerns. Please see Appendix K. Tower characteristics Overhead strain bus will be installed between a-frames at Sewaren switching station and the onshore converter station Construction responsibility Proposer Benefits/Comments **Component Cost Details - In Current Year \$** Engineering & design Competitive Competitive Permitting / routing / siting ROW / land acquisition Competitive Competitive Materials & equipment Construction & commissioning Competitive

Construction management Competitive

Overheads & miscellaneous costs Competitive

Contingency Competitive

Total component cost \$648,594.00

Component cost (in-service year) \$793,896.00

Greenfield Substation Component

Component title S3 400kV Sewaren Onshore Converter

Project description

Substation name Sewaren Onshore Converter

Substation description

The converter station will be a ±400-kV DC/230-kV AC 1400 MW facility that will be fed by the HVDC export cable system and connected to Sewaren Switching Substation via the planned AC 230-kV OH cable.

Nominal voltage DC

Nominal voltage ±400-kV DC/230-kV AC 1400 MW facility

Transformer Information

	Name	Capacity (MVA)	
Transformer	Converter Transformer Ph1	493	
	High Side	Low Side	Tertiary
Voltage (kV)	456	230	34.5
	Name	Capacity (MVA)	
Transformer	Converter Transformer Ph2	493	
	High Side	Low Side	Tertiary

Namo

2021-NJOSW-208 6

Capacity (MV/A)

Vol	tage (kV)
Tra	nsformer
Vol	tage (kV)
Maj	jor equipment description
Sur	mmer (MVA)
Wir	nter (MVA)
Enν	vironmental assessment

456	230	34.5
Name	Capacity (MVA)	
Converter Transformer Ph3	493	
High Side	Low Side	Tertiary
456	230	34.5

Features and equipment include ±400-kV 1400MW Converter Station, Three (3) Active Single Phase Transformers, One (1) Spare Transformer, Cooler for Converter, Control Building, Spare Parts Building. For additional information on Switching, Metering, & Control Devices, AC power equipment, DC/AC inverters, relay and communication etc. please see section 3 in the bid and appendix B

Normal ratings	Emergency ratings
1400.000000	1400.000000
1400.000000	1400.000000

Overview - The Project Team conducted an assessment of anticipated permits associated with the Sewaren route and have supported the evaluation of routing and development scenarios throughout the project development process. The permitting and environmental assessments have included a review of Federal, regional, State, and local regulatory requirements that could potentially impact each of the individual project scenarios. For onshore facility siting and routing, the Project Team evaluated land ownership with a dedicated approach to minimize disturbance to Green Acres, wetlands, flood hazard areas, known historic and cultural sites, threatened and endangered species, known contaminated sites, and known sensitive receptors. The site is located in a Flood Zone will require design to meet FEMA+1. No Wetlands and no impacts to threatened and endangered species. Please see Appendix K.

Outreach plan

Land acquisition plan

Construction responsibility

Benefits/Comments

Component Cost Details - In Current Year \$

Engineering & design Competitive

Permitting / routing / siting Competitive

ROW / land acquisition Competitive

Materials & equipment Competitive

Construction & commissioning Competitive

The team has developed a comprehensive communication process for all transmission projects to adequately keep stakeholders engaged at all levels, including public officials, municipal officials, environmental organizations, business customers, residents, etc. This process ensures constant and detailed communication efforts throughout all phases of a project, including pre, mid and post-construction activities. This Combined Team is currently working together on the Ocean Wind project and combined has actual permitting experience for the offshore wind environment and vast New Jersey-based permitting experience with firsthand relationships across the Federal and State government. The team has been able to gain a thorough understanding of the various concerns typically raised by either directly impacted or peripheral parties, such as disruptions during construction, concerns around electromagnetic fields (EMF), property value, traffic impacts and other potential matters. However, more importantly, the team has been able to identify solutions for each potential concern, and has strong insight on how to mitigate public apprehension and construction impacts. The team has developed a specific outreach plan tailored towards the Offshore Wind Transmission Project that will be implemented to foster the success of the project. The team's strategy outreach plan uses multiple and concurrent communication methods to reach and inform and address diverse audiences and knowledge levels. A variety of communication tactics will be used, tailored to each stakeholder audience and its particular communication style and preference. Messages and actions will be customized for each stakeholder group. Communications will be designed to provide adequate information to stakeholders. All timings of these communications will be aligned with the project's schedule pre- and post-bid submission.

The subject property is a portion of the former power generating station for PSEG Power and current Sewaren Switching Station located along the Port Reading Reach of the Arthur Kill. This property is owned by a PSEG affiliate, PSEG Power, LLC. PSEG Power is a deregulated entity, and the Project Team has reached agreement with its sister company to secure rights to the necessary real estate if granted an award. The Project Team is confident that the unique rights available to us ensure that the Projects are constructible if awarded by PJM and the BPU.

Proposer

2021-NJOSW-208

8

Construction management Competitive

Overheads & miscellaneous costs Competitive

Contingency Competitive

Total component cost \$419,462,392.00

Component cost (in-service year) \$513,432,703.00

Greenfield Transmission Line Component

Component title S4 400kV Sewaren Offshore/Onshore HVDC Cable

Project description

General route description

Point A OCP HS-21

Point B Sewaren DC/AC Converter Station

Point C

Summer (MVA)	1400.000000	1400.000000	
Winter (MVA)	1400.000000	1400.000000	
Conductor size and type	Onshore - ±400-kV 2500mm^3000mm^2 XLPE submarine	Onshore - ±400-kV 2500mm^2 single-circuit XLPE HVDC cable Offshore: ±400-kV 2500mm^3000mm^2 XLPE submarine	
Nominal voltage	DC		

Normal ratings

Nominal voltage ±400-kV

Line construction type

Underground, Submarine

Ento contraction typo

"Onshore - Approximately 6.3 miles extending principally beneath public road ROWs from Keasbey, through Perth Amboy Township, to the new converter station in Sewaren Offshore - Approximately 92.1 miles in route length in a direction generally north, then west from HS-21 through the Atlantic Ocean then Raritan Bay and into the Raritan River to meet the shore

Emergency ratings

Terrain description Right-of-way width by segment Electrical transmission infrastructure crossings Civil infrastructure/major waterway facility crossing plan **Environmental impacts** Tower characteristics

Construction responsibility

Offshore: The HVDC submarine route was carefully selected to avoid challenging geotechnical conditions, physical obstructions, and known significant environmental features, while efficiently siting the offshore cable system. Onshore: Along almost all of the route, the onshore HVDC cables will be buried beneath public roads.

Offshore: Approximately 92.1 miles (HS-21 to the RA-1 Landfall). 60' typical cable width (disturbed) Onshore: 6.3 mile length installed UG with 5'-0" Minimum Width for duct banks

Electrical infrastructure crossings may be required depending on final line routing and design.

The installation process will typically involve the following tasks: - Trench Excavation/Duct Bank Installation. The cable trench will be excavated to dimensions of approximately 6 to 10 feet deep and 5 to 7 feet wide (for trench depths requiring shoring to stabilize the sidewalls). - Splice Vault Excavation/Installation. At intervals along the cable route, areas will be excavated for the installation of below-grade of reinforced-concrete splice vaults, within which cable sections will be connected. -Proofing/Cable Installation. After successful proofing, the transmission cables will be installed and spliced within the vaults. Special Crossings - Along the HVDC and AC cable routes, where open trenching is not viable, special crossing techniques will be used to install the cable while minimizing environmental impacts. - Jack & Bore (J&B). This method will be used to install the cable system beneath certain infrastructure or other features that cannot be open cut (e.g., a railroad or highway). - Bridge Attachment. This method is applicable in areas where an open-cut installation is not practical and the cable system can instead be attached to an existing bridge, thereby effectively spanning features such as water resources or highway underpasses. - Horizontal Directional Drilling (HDD). This method is typically used to install cable where open cut is not feasible (usually when crossing water bodies or highways), where there is no suitable bridge to attach to, and where J&B is not feasible (water body or too long of a crossing). Please see section 4.4 in the proposal for further information

The PSEG/Ørsted Team conducted an assessment of anticipated permits associated with the Project and supported the evaluation of siting, routing, and development scenarios throughout the Project development process. The permitting and environmental assessments included a review of Federal, regional, State, and local regulatory requirements that could potentially impact each of the individual Project components. These assessments reflect in-depth analyses of the proposed Project plan reviewed with available GIS data, a detailed understanding of applicable regulations, and significant professional experience with projects of similar scope and in this same locality. This Project was designed to minimize impacts to physical resources on shore, in large party by undergrounding the HVDC cable system primarily within road ROWs. This approach would result in only temporary impacts to wetlands and water bodies with no offshore and no permanent wetlands impacts expected. Please see Appendix K

N/A, the route will be entirely UG

Proposer

2021-NJOSW-208

Benefits/Comments

Component Cost Details - In Current Year \$

Engineering & design Competitive

Permitting / routing / siting Competitive

ROW / land acquisition Competitive

Materials & equipment Competitive

Construction & commissioning Competitive

Construction management Competitive

Overheads & miscellaneous costs Competitive

Contingency Competitive

Total component cost \$847,991,793.00

Component cost (in-service year) \$1,037,963,660.00

Greenfield Substation Component

Component title S5 400kV Sewaren Offshore Converter

Project description

Substation name Sewaren Offshore Converter Platform (OCP HS-21)

Substation description

The OCP that will feed the Sewaren OnSS will be located adjacent to the Hudson South BOEM

lease area in the New York Bight. The OCP is made up of two main components: the substructure and the topside. The substructure—the lattice structure that is fixed to the seabed—is commonly referred to as the jacket. The topside is the steel enclosure on top of the jacket that contains the

electrical equipment.

Nominal voltage DC

Nominal voltage ±400-kV

2021-NJOSW-208

Transformer Information

Environmental assessment

	Name	Capacity (MVA)	
Transformer	Converter Transformer T1	795	
	High Side	Low Side	Tertiary
Voltage (kV)	413	275	23
	Name	Capacity (MVA)	
Transformer	Converter Transformer T2	795	
	High Side	Low Side	Tertiary
Voltage (kV)	413	275	23
Major equipment description	The OCP will house the equipment necessary to receive AC electrical power from the connected wind farm, convert it to HVDC and export it to the onshore station via HVDC sub-sea and land cable. The main HV components include AC switchgear, transformers, DC converter towers, DC reactors and DC switchgear. Please refer to Appendix B for the full equipment list		
	Normal ratings	Emergency ratings	
Summer (MVA)	1400.000000	1400.000000	
Winter (MVA)	1400.000000	1400.000000	

Overview - The Project Team conducted an assessment of anticipated permits associated with the Sewaren route and have supported the evaluation of routing and development scenarios throughout the project development process. The permitting and environmental assessments have included a review of Federal, regional, State, and local regulatory requirements that could potentially impact each of the individual project scenarios. For offshore facility siting and routing, the Project Team reviewed available GIS data for the presence of marine mammals, fishing and shipping lanes, benthic habitat, anchorage areas, known obstructions, existing cables, and bathymetry. Please see Appendix K.

Outreach plan

Land acquisition plan

Construction responsibility

Benefits/Comments

Component Cost Details - In Current Year \$

Competitive Engineering & design

Permitting / routing / siting

ROW / land acquisition

Competitive Materials & equipment

Construction & commissioning Competitive

Competitive Construction management

The team has developed a comprehensive communication process for all transmission projects to adequately keep stakeholders engaged at all levels, including public officials, municipal officials, environmental organizations, business customers, residents, etc. This process ensures constant and detailed communication efforts throughout all phases of a project, including pre, mid and post-construction activities. This Combined Team is currently working together on the Ocean Wind project and combined has actual permitting experience for the offshore wind environment and vast New Jersey-based permitting experience with firsthand relationships across the Federal and State government. The team has been able to gain a thorough understanding of the various concerns typically raised by either directly impacted or peripheral parties, such as disruptions during construction, concerns around electromagnetic fields (EMF), property value, traffic impacts and other potential matters. However, more importantly, the team has been able to identify solutions for each potential concern, and has strong insight on how to mitigate public apprehension and construction impacts. The team has developed a specific outreach plan tailored towards the Offshore Wind Transmission Project that will be implemented to foster the success of the project. The team's strategy outreach plan uses multiple and concurrent communication methods to reach and inform and address diverse audiences and knowledge levels. A variety of communication tactics will be used, tailored to each stakeholder audience and its particular communication style and preference. Messages and actions will be customized for each stakeholder group. Communications will be designed to provide adequate information to stakeholders. All timings of these communications will be aligned with the project's schedule pre- and post-bid submission.

The project will complete a Right of Use / Right of Way (RUE/ROW) application with BOEM to be granted authorization to place the offshore collector platform in the area between Hudson South A and Hudson South B lease areas. The platforms will be placed outside of the lease areas such that additional authorization from the lease holders will not be necessary.

Proposer

Competitive

Competitive

2021-NJOSW-208 13 Overheads & miscellaneous costs

Competitive

Contingency

Competitive

Total component cost

\$1,098,162,935.00

Component cost (in-service year)

\$1,344,179,540.00

Substation Upgrade Component

L1 400kV Larrabee POI Upgrade

Component title

Project description

Provide attachment facilities for Larrabee to accommodate an injection off 1400MW of offshore wind energy

Substation name

Larrabee Substation

Substation zone

JCP&L

Substation upgrade scope

To bring up to 1400 MW of offshore wind energy into Larrabee Substation, a 500-kV position is required. This will require modifications involving an additional 230-kV breaker-and-half bay, and a 500-/230-kV transformer with associated 500-kV breaker. (Refer to Appendix B for the substation one line and bus plan arrangement.) JCP&L would be required to design and construct the 500-kV position to accommodate the offshore wind power injection. Connection to JCP&L would be via 500kV strain bus.

Transformer Information

None

New equipment description

(6)-500KV Cable terminations (2)-500KV A-frame Structures (4)-230KV A-frame structures (3)-500KV CCVT's (3)-500KV Lightning Arresters (1)-500KV 2000A Disc. Sw. (1)-500KV 2000A Disc. Sw. w/ground switch (6)-500KV strain bus assemblies w/2 shield wires (1)-500KV 2000A Circuit Breaker (4)-500/230KV single phase transformers (2)-poles for 500KV transfer bus (2)-strain bus assemblies for 500KV transfer bus (4)-Neutral structure frames for neutral bus connection at transf. (1)-230KV steel box structure (22)-230KV strain assemblies (4) for transfer bus from spare transformer, (18) for single phase transformers 1, 2, & 3 (3)-230KV CCVTS (3)-230KV Metering units (6)-230KV 4000A, disconnect switches (3)-230KV 4000A, circuit breakers (1)-230KV 3000A, circuit breaker (5)-230KV 3 phase-angled bus support structures (20)-230KV 3 phase-straight bus support structures (18)-230KV single phase bus supports (8)-Neutral Bus Support stands (23)-500KV single phase bus supports

2021-NJOSW-208

Substation assumptions

Larrabee Substation occupies a portion of a 39.6-acre site in Howell, New Jersey. It is currently a four bay breaker-and-a-half bay configuration. The station has eight 230-kV lines, with capacity greater than 600 MW each. Because of the size of the site, the substation can be expanded to accommodate additional bays, as needed for the clean wind energy AC connection, without the need to acquire additional property.

Real-estate description

The substation can be expanded to accommodate additional bays, as needed for the clean wind energy AC connection, without the need to acquire additional property. An agreement will need to be reached for an easement where Coastal Wind Link will install the 500kV cable termination structure, A-Frame and private fencing.

Construction responsibility

JCPL

Benefits/Comments

Component Cost Details - In Current Year \$

Engineering & design Competitive

Permitting / routing / siting Competitive

ROW / land acquisition Competitive

Materials & equipment Competitive

Construction & commissioning Competitive

Construction management Competitive

Overheads & miscellaneous costs Competitive

Contingency Competitive

Total component cost \$46,606,903.00

Component cost (in-service year) \$55,792,572.00

Greenfield Transmission Line Component

Component title L2 400kV Larrabee AC Tie Line

Project description Construct a 500kV underground AC tie-line between the onshore converter station and the 230kV

Larrabee Substation

Point A	Larrabee DC/AC Converter Station	
Point B	Larrabee Substation	
Point C		
	Normal ratings	Emergency ratings
Summer (MVA)	1400.000000	1400.000000
Winter (MVA)	1400.000000	1400.000000
Conductor size and type	500-kV 2500mm^2 AC single-circuit XLPE cable	
Nominal voltage	AC	
Nominal voltage	500-kV	
Line construction type	Underground	
General route description	Approximately 1.9 miles between the new HVDC/AC converter station and Larrabee Substation	
Terrain description	The majority of the 500-kV AC Tie-Line cable will be installed principally beneath municipal road ROWs.	
Right-of-way width by segment	The Project proposes to utilize	a duct bank width of 4'11" feet.

Electrical transmission infrastructure crossings

2021-NJOSW-208 16

Electrical infrastructure crossings may be required depending on final line routing and design.

Civil infrastructure/major waterway facility crossing plan
Environmental impacts

The installation process will typically involve the following tasks: - Trench Excavation/Duct Bank Installation. The cable trench will be excavated to dimensions of approximately 6 to 10 feet deep and 5 to 7 feet wide (for trench depths requiring shoring to stabilize the sidewalls). - Splice Vault Excavation/Installation. At intervals along the cable route, areas will be excavated for the installation of below-grade of reinforced-concrete splice vaults, within which cable sections will be connected. -Proofing/Cable Installation. After successful proofing, the transmission cables will be installed and spliced within the vaults. Special Crossings - Along the HVDC and AC cable routes, where open trenching is not viable, special crossing techniques will be used to install the cable while minimizing environmental impacts. - Jack & Bore (J&B). This method will be used to install the cable system beneath certain infrastructure or other features that cannot be open cut (e.g., a railroad or highway). - Bridge Attachment. This method is applicable in areas where an open-cut installation is not practical and the cable system can instead be attached to an existing bridge, thereby effectively spanning features such as water resources or highway underpasses. - Horizontal Directional Drilling (HDD). This method is typically used to install cable where open cut is not feasible (usually when crossing water bodies or highways), where there is no suitable bridge to attach to, and where J&B is not feasible (water body or too long of a crossing). Please see section 4.4 in the proposal for further information

The Project Team conducted an assessment of anticipated permits associated with the Larrabee route and have supported the evaluation of routing and development scenarios throughout the project development process. The permitting and environmental assessments have included a review of Federal, regional, State, and local regulatory requirements that could potentially impact each of the individual project scenarios. For onshore routing, the Team evaluated land ownership with a dedicated approach to minimize disturbance to Green Acres, wetlands, flood hazard areas, known historic and cultural sites, threatened and endangered species, known contaminated sites, and known sensitive receptors. Physical Resources - This Project was designed to minimize impacts to physical resources on shore, in large party by undergrounding the transmission line for the onshore portion of the route. The emissions from onshore activities will be minimal and will not require NJDEP air permits. The Project Team will work with the agencies, educational institutions, and other key stakeholders to identify breeding grounds, migratory routes or schooling areas in the vicinity of the cable route. Biological Resources - On shore, there is no anticipated tree removal along the transmission corridor, so bat habitat and designated timing restrictions are unlikely to be applicable. The proposed Larrabee converter station location will also not require any tree clearing, as it is on an already developed parcel and the route is proposed in street rights of ways. No terrestrial wildlife concerns are anticipated by the construction or operation of the onshore portion of the Project. Cultural Resources - The onshore portion of the Project is below grade and thus is not likely to impact above-ground historic properties. The Project Team is cognizant that there may be archeological concerns from a marine archaeology and a terrestrial perspective. The Project Team selected the onshore and offshore route and stations locations to minimize impacts to known locations of concern identified in publicly available data sets and in research on Prehistoric Site Potential and Historic Shipwrecks on the Outer Continental Shelf. Project Team is currently working together on the Ocean Wind Project. Lessons learned and stakeholder concerns and mitigation ideas from the Ocean Wind Project will be a baseline for partnerships and innovative measures for this Project's Plan. Please see Appendix K.

Tower characteristics N/A, the route will be entirely UG

Construction responsibility Proposer

Benefits/Comments

Component Cost Details - In Current Year \$

Engineering & design Competitive

Permitting / routing / siting Competitive

ROW / land acquisition Competitive

Materials & equipment Competitive

Construction & commissioning Competitive

Construction management Competitive

Overheads & miscellaneous costs Competitive

Contingency Competitive

Total component cost \$57,288,380.00

Component cost (in-service year) \$71,700,373.00

Greenfield Substation Component

Component title L3 400kV Larrabee Onshore Converter

Project description

Substation name Larrabee Onshore Converter

Substation description The converter station will be a ±400-kV DC/500-kV AC 1400 MW facility that will be fed by the

HVDC export cable system and connected to Larrabee Substation via the planned AC 500-kV

underground cable.

Nominal voltage DC

Nominal voltage ±400-kV DC/500-kV AC 1400 MW facility

Transformer Information

Major equipment description

	name	Capacity (WVA)	
Transformer	Converter Transformer Ph1	493	
	High Side	Low Side	Tertiary
Voltage (kV)	500	456	34.5
	Name	Capacity (MVA)	
Transformer	Converter Transformer Ph2	493	
	High Side	Low Side	Tertiary
Voltage (kV)	500	456	34.5
	Name	Capacity (MVA)	
Transformer	Converter Transformer Ph3	493	
	High Side	Low Side	Tertiary
Voltage (kV)	500	456	34.5

Name

Features & Equipment: ±400-kV 1400MW Converter Station, Three (3) Active Single Phase Transformers, One (1) Spare Transformer, Cooler for Converter, Control Building, Spare Parts Building Switching, Metering, & Control Devices - Two (2) 500-kV, 2000A Switches, One (1) 500-kV, 2000A Breaker 63kA, Three (3) Metering Current Transformers (CTs), Three (3) 500-kV Coupled Capacitor Voltage Transformers (CCVTs) AC Power Equipment - Three (3) 500/456-kV/34.5 Single Phase Transformers, 467MVA Per Transformer, Two (2) AC Station Service, 1250 KVA DC/AC Inverters- One (1) Star point unit reactor, One (1) Star point unit resistor, Six (6) VSC Converter Modules, Six (6) Converter Reactors, One (1) DC Braking Chopper, Two (2) Braking reactors, Two (2) DC Disconnectors with two (2) earthing switches For a list of full equipment, see Appendix B

Capacity (MVA)

Normal ratings Emergency ratings

2021-NJOSW-208

Summer (MVA)

Winter (MVA)

Environmental assessment

1400.000000 1400.000000

1400.000000 1400.000000

Overview - The Project Team conducted an assessment of anticipated permits associated with the Larrabee route and have supported the evaluation of routing and development scenarios throughout the project development process. The permitting and environmental assessments have included a review of Federal, regional, State, and local regulatory requirements that could potentially impact each of the individual project scenarios. The Larrabee converter station as designed, is not located in wetlands and will not require a Wetland Permit. For this Project, the only overhead structures will be built at the proposed Larrabee converter station in Lakewood, New Jersey. This proposed location is outside of the 100 year flood zone. At the Larrabee HVDC converter station location, there are no threatened and endangered species mapped through the Landscape Project dataset. Biological Resources - The proposed Larrabee converter station location will also not require any tree clearing, as it is on an already developed parcel and the route is proposed in street rights of ways. No terrestrial wildlife concerns are anticipated by the construction or operation of the onshore portion of the Project. Cultural Resources - The Project Team will consult with NJSHPO, USACE, and BOEM to minimize any impacts during the Project permitting process. Socioeconomic Resources - There will be limited visual impacts at both the offshore collector station and onshore converter station. The visual impacts from the Larrabee converter station can and will be mitigated by working with the landscape architect and engineering team members on appropriate design elements that tie into the area surrounds. See Appendix K

Outreach plan

Land acquisition plan

Construction responsibility

Benefits/Comments

Component Cost Details - In Current Year \$

Engineering & design

Permitting / routing / siting

The team has developed a comprehensive communication process for all transmission projects to adequately keep stakeholders engaged at all levels, including public officials, municipal officials, environmental organizations, business customers, residents, etc. This process ensures constant and detailed communication efforts throughout all phases of a project, including pre, mid and post-construction activities. This Combined Team is currently working together on the Ocean Wind project and combined has actual permitting experience for the offshore wind environment and vast New Jersey-based permitting experience with firsthand relationships across the Federal and State government. The team has been able to gain a thorough understanding of the various concerns typically raised by either directly impacted or peripheral parties, such as disruptions during construction, concerns around electromagnetic fields (EMF), property value, traffic impacts and other potential matters. However, more importantly, the team has been able to identify solutions for each potential concern, and has strong insight on how to mitigate public apprehension and construction impacts. The team has developed a specific outreach plan tailored towards the Offshore Wind Transmission Project that will be implemented to foster the success of the project. The team's strategy outreach plan uses multiple and concurrent communication methods to reach and inform and address diverse audiences and knowledge levels. A variety of communication tactics will be used, tailored to each stakeholder audience and its particular communication style and preference. Messages and actions will be customized for each stakeholder group. Communications will be designed to provide adequate information to stakeholders. All timings of these communications will be aligned with the project's schedule pre- and post-bid submission. As details are finalized, the team will create a stronger focus to establish and maintain positive relationships with local and county officials. Additionally, the team met with a comprehensive list of stakeholders prior to bid submittal.

The land acquisition strategy is a methodical approach of consulting with property owners to explain the potential Project and the Project Team's need to evaluate the property and secure potential rights to the property. To do so, the Project Team provided owners with a confidentiality and non-disclosure agreement, and subsequently negotiated agreements to obtain access to evaluate and secure potential property rights to each site through the Bid award date and beyond. Those agreements are further detailed in the body of the Project Team's Bid. In addition to real estate already owned by the Project Team, over the past year, the Project Team has secured exclusive rights on 16 different properties in support of the seven proposals that have been submitted. The Project Team is confident that the unique rights available to us from our real estate efforts ensure that the Projects are constructible if awarded by PJM and the BPU.

Proposer

Competitive

Competitive

ROW / land acquisition Competitive

Materials & equipment Competitive

Construction & commissioning Competitive

Construction management Competitive

Overheads & miscellaneous costs Competitive

Contingency Competitive

Total component cost \$457,758,536.00

Component cost (in-service year) \$572,916,494.00

Greenfield Transmission Line Component

Component title L4 Larrabee Offshore/Onshore HVDC Cable

Project description

Point A OCP HS-12

Point B Larrabee DC/AC Converter Station

Point C

	Normal ratings	Emergency ratings
Summer (MVA)	1400.000000	1400.000000
Winter (MVA)	1400.000000	1400.000000
Conductor size and type	Onshore - ± 400 -kV 2500mm^2 single-circuit XLPE HVDC cable Offshore - (2) ± 400 -kV 2500mm^2 XLPE submarine	
Nominal voltage	DC	
Nominal voltage	±400-kV	

Line construction type

Underground, Submarine

General route description

Terrain description

Right-of-way width by segment

Electrical transmission infrastructure crossings

Civil infrastructure/major waterway facility crossing plan

Onshore - Approximately 11.9 miles, extending principally beneath public road ROWs from Sea Girt, through Allenwood Township, to the new converter station in Lakewood Township (Ocean County) Offshore - Approximately 51.3-miles in route length in a direction generally west-northwest from HS-12 to meet the shore (38.2 miles in Federal waters and 13.1 miles in state waters)

Onshore - The majority of the HVDC cable system will be installed beneath municipal road ROWs using standard open-cut techniques that have historically proven to be both efficient and cost-effective. Along the HVDC cable routes, where open trenching is not viable, special crossing techniques will be used to install the cable while minimizing environmental impacts. Offshore - Submarine route traverses a typically uniform seabed in varying water depths; the route avoids major obstructions and excess morphology

Onshore - 1.37 miles in Brick, 1.87 mi in Howell, 1.61 miles in Lakewood, 0.92 miles in Manasquan, 1.13 miles in Sea Girt and 4.98 mi in Wall. 5' min duct bank Offshore - Approximately 51.3-miles in route length in a direction generally west-northwest from HS-12 to meet the shore (38.2 miles in Federal waters and 13.1 miles in state waters); the route will involve an all new ROU/ROW. The submarine power cable width is 60' typical. Reference B.7.1 for onshore

Electrical infrastructure crossings may be required depending on final line routing and design.

The installation process will typically involve the following tasks: - Trench Excavation/Duct Bank Installation. The cable trench will be excavated to dimensions of approximately 6 to 10 feet deep and 5 to 7 feet wide (for trench depths requiring shoring to stabilize the sidewalls). - Splice Vault Excavation/Installation. At intervals along the cable route, areas will be excavated for the installation of below-grade of reinforced-concrete splice vaults, within which cable sections will be connected. -Proofing/Cable Installation. After successful proofing, the transmission cables will be installed and spliced within the vaults. Special Crossings - Along the HVDC and AC cable routes, where open trenching is not viable, special crossing techniques will be used to install the cable while minimizing environmental impacts. - Jack & Bore (J&B). This method will be used to install the cable system beneath certain infrastructure or other features that cannot be open cut (e.g., a railroad or highway). - Bridge Attachment. This method is applicable in areas where an open-cut installation is not practical and the cable system can instead be attached to an existing bridge, thereby effectively spanning features such as water resources or highway underpasses. - Horizontal Directional Drilling (HDD). This method is typically used to install cable where open cut is not feasible (usually when crossing water bodies or highways), where there is no suitable bridge to attach to, and where J&B is not feasible (water body or too long of a crossing). Please see section 4.4 in the proposal for further information

Environmental impacts

Tower characteristics

Construction responsibility

Benefits/Comments

Component Cost Details - In Current Year \$

Engineering & design

Permitting / routing / siting

ROW / land acquisition

Materials & equipment

Construction & commissioning

Overview - The Project Team conducted an assessment of anticipated permits associated with the Larrabee route and have supported the evaluation of routing and development scenarios throughout the project development process. The permitting and environmental assessments have included a review of Federal, regional, State, and local regulatory requirements that could potentially impact each of the individual project scenarios. For onshore routing, the Team evaluated land ownership with a dedicated approach to minimize disturbance to Green Acres, wetlands, flood hazard areas, known historic and cultural sites, threatened and endangered species, known contaminated sites, and known sensitive receptors. Physical Resources - This Project was designed to minimize impacts to physical resources on shore, in large party by undergrounding the transmission line for the onshore portion of the route. The emissions from onshore activities will be minimal and will not require NJDEP air permits. The Project Team will work with the agencies, educational institutions, and other key stakeholders to identify breeding grounds, migratory routes or schooling areas in the vicinity of the cable route. Biological Resources - On shore, there is no anticipated tree removal along the transmission corridor, so bat habitat and designated timing restrictions are unlikely to be applicable. The proposed Larrabee converter station location will also not require any tree clearing, as it is on an already developed parcel and the route is proposed in street rights of ways. No terrestrial wildlife concerns are anticipated by the construction or operation of the onshore portion of the Project. Cultural Resources - The onshore portion of the Project is below grade and thus is not likely to impact above-ground historic properties. The Project Team is cognizant that there may be archeological concerns from a marine archaeology and a terrestrial perspective. The Project Team selected the onshore and offshore route and stations locations to minimize impacts to known locations of concern identified in publicly available data sets and in research on Prehistoric Site Potential and Historic Shipwrecks on the Outer Continental Shelf. This Project Team is currently working together on the Ocean Wind Project. Lessons learned and stakeholder concerns and mitigation ideas from the Ocean Wind Project will be a baseline for partnerships and innovative measures for this Project's Plan.

N/A, the route will be entirely UG

Proposer

Competitive

Competitive

Competitive

Competitive

Competitive

Construction management Competitive

Overheads & miscellaneous costs Competitive

Contingency Competitive

Total component cost \$555,253,260.00

Component cost (in-service year) \$694,937,891.00

Greenfield Substation Component

Component title L5 400kV Larrabee Offshore Converter

Project description Larrabee Offshore Converter

Substation name Larrabee Offshore Converter Platform (OCP HS-12)

24114200 01151161 00111611 14116111 (001 116 12)

The OCP that will feed the Larrabee OnSS will be located adjacent to the Hudson South BOEM lease area in the New York Bight. The OCP is made up of two main components: the substructure and the topside. The substructure—the lattice structure that is fixed to the seabed—is commonly referred to as the jacket. The topside is the steel enclosure on top of the jacket that contains the electrical equipment.

Nominal voltage DC

Nominal voltage ±400-kV

Transformer Information

Substation description

	Name	Capacity (MVA)	
Transformer	T1	795	
	High Side	Low Side	Tertiary
Voltage (kV)	413	275	23
	Name	Capacity (MVA)	
Transformer	T2	795	

Voltage (kV)

Major equipment description

Summer (MVA)

Winter (MVA)

Environmental assessment

High Side	Low Side	Tertiary
413	275	23

The OCP will house the equipment necessary to receive AC electrical power from the connected wind farm, convert it to HVDC and export it to the onshore station via HVDC sub-sea and land cable. The main HV components include AC switchgear, transformers, DC converter towers, DC reactors and DC switchgear. Please refer to Appendix B for the full equipment list

Normal ratings	Emergency ratings
1400.000000	1400.000000
1400.000000	1400.000000

Overview - The Project Team conducted an assessment of anticipated permits associated with the Larrabee route and have supported the evaluation of routing and development scenarios throughout the project development process. The permitting and environmental assessments have included a review of Federal, regional, State, and local regulatory requirements that could potentially impact each of the individual project scenarios. Biological Resources - The Project's offshore collector station will be much lower in elevation than the nearby proposed wind farms, thus the station unlikely to impact avian or bat migration. The Team performed an Aquatic Resource Characterization and Impact Assessment (Appendix M) to document the presence of marine mammals, sea turtles, fish and benthic resources in the generalized offshore area of the Project. Cultural Resources - The Project Team will consult with NJSHPO, USACE, and BOEM to minimize any impacts during the Project permitting process. Socioeconomic Resources - There will be limited visual impacts at both the offshore collector station and onshore converter station. The visual impacts from the Larrabee converter station can and will be mitigated by working with the landscape architect and engineering team members on appropriate design elements that tie into the area surrounds. See Appendix K

Outreach plan

Land acquisition plan

Construction responsibility

Benefits/Comments

Component Cost Details - In Current Year \$

Engineering & design Competitive

Permitting / routing / siting Competitive

ROW / land acquisition Competitive

Materials & equipment Competitive

Construction & commissioning Competitive

The team has developed a comprehensive communication process for all transmission projects to adequately keep stakeholders engaged at all levels, including public officials, municipal officials, environmental organizations, business customers, residents, etc. This process ensures constant and detailed communication efforts throughout all phases of a project, including pre, mid and post-construction activities. This Combined Team is currently working together on the Ocean Wind project and combined has actual permitting experience for the offshore wind environment and vast New Jersey-based permitting experience with firsthand relationships across the Federal and State government. The team has been able to gain a thorough understanding of the various concerns typically raised by either directly impacted or peripheral parties, such as disruptions during construction, concerns around electromagnetic fields (EMF), property value, traffic impacts and other potential matters. However, more importantly, the team has been able to identify solutions for each potential concern, and has strong insight on how to mitigate public apprehension and construction impacts. The team has developed a specific outreach plan tailored towards the Offshore Wind Transmission Project that will be implemented to foster the success of the project. The team's strategy outreach plan uses multiple and concurrent communication methods to reach and inform and address diverse audiences and knowledge levels. A variety of communication tactics will be used, tailored to each stakeholder audience and its particular communication style and preference. Messages and actions will be customized for each stakeholder group. Communications will be designed to provide adequate information to stakeholders. All timings of these communications will be aligned with the project's schedule pre- and post-bid submission. As details are finalized, the team will create a stronger focus to establish and maintain positive relationships with local and county officials. Additionally, the team met with a comprehensive list of stakeholders prior to bid submittal.

The project will complete a Right of Use / Right of Way (RUE/ROW) application with BOEM to be granted authorization to place the offshore collector platform in the area between Hudson South A and Hudson South B lease areas. The platforms will be placed outside of the lease areas such that additional authorization from the lease holders will not be necessary.

Proposer

Construction management Competitive

Overheads & miscellaneous costs Competitive

Contingency Competitive

Total component cost \$1,150,023,459.00

Component cost (in-service year) \$1,439,333,969.00

Greenfield Transmission Line Component

Component title Interlink-SL Sewaren/Larrabee Interlink (HS-21 to HS-12) #1

Project description Offshore AC Interlink to Connect two offshore platforms together

Point A OCP HS-21

Point B OCP HS-12

Point C

	Normal ratings	Emergency ratings
Summer (MVA)	450.000000	450.000000
Winter (MVA)	450.000000	450.000000
Conductor size and type	1800mm2 Submarine XLPE Cab	ole
Nominal voltage	AC	
Nominal voltage	275	
Line construction type	Submarine	
General route description	See Section 3 and Appendix A.	
Terrain description	See Section 3 and Appendix A.	
Right-of-way width by segment	See Section 3 and Appendix A.	

Electrical transmission infrastructure crossings

No crossings exist.

Civil infrastructure/major waterway facility crossing plan

No crossings exist.

Environmental impacts

The PSEG/Ørsted Team conducted an assessment of anticipated permits associated with the Project and supported the valuation of siting, routing, and development scenarios throughout the Project development process. The permitting and environmental assessments included a review of Federal, regional, State, and local regulatory requirements that could potentially impact each of the individual Project components. These assessments reflect in-depth analyses of the proposed Project plan reviewed with available GIS data, a detailed understanding of applicable regulations, and significant professional experience with projects of similar scope and in this same locality. As part of this Project analyses, potential Project sites and routes were discussed with a myriad group of experienced planning, engineering and construction professionals to find a competitive route that minimized environmental and built environment concerns. Please see Appendix K.

Tower characteristics

N/A

Construction responsibility

Proposer

Benefits/Comments

Component Cost Details - In Current Year \$

Engineering & design Competitive

Permitting / routing / siting Competitive

ROW / land acquisition Competitive

Materials & equipment Competitive

Construction & commissioning Competitive

Construction management Competitive

Overheads & miscellaneous costs Competitive

Contingency Competitive

Total component cost \$33,701,835.00

Component cost (in-service year) \$42,180,178.00

Greenfield Transmission Line Component

Component title Interlink-SL Sewaren/Larrabee Interlink (HS-21 to HS-12) #2

Project description

Point A OCP HS-21

Point B OCP HS-12

Point C

	Normal ratings	Emergency ratings
Summer (MVA)	450.000000	450.000000
Winter (MVA)	450.000000	450.000000
Conductor size and type	1800mm2 Submarine XLPE Con	nductor
Nominal voltage	AC	
Nominal voltage	275kV	

Nominal voltage 275kV

Line construction type Submarine

General route description See Section 3 and Appendix A.

Terrain description See Section 3 and Appendix A.

Right-of-way width by segment See Section 3 and Appendix A.

Electrical transmission infrastructure crossings No crossings exist.

Civil infrastructure/major waterway facility crossing plan
No crossings exist.

Environmental impacts

The PSEG/Ørsted Team conducted an assessment of anticipated permits associated with the Project and supported the valuation of siting, routing, and development scenarios throughout the Project development process. The permitting and environmental assessments included a review of Federal, regional, State, and local regulatory requirements that could potentially impact each of the individual Project components. These assessments reflect in-depth analyses of the proposed Project plan reviewed with available GIS data, a detailed understanding of applicable regulations, and significant professional experience with projects of similar scope and in this same locality. As part of this Project analyses, potential Project sites and routes were discussed with a myriad group of experienced planning, engineering and construction professionals to find a competitive route that minimized environmental and built environment concerns. Please see Appendix K.

Tower characteristics N/A

Construction responsibility Proposer

Benefits/Comments

Component Cost Details - In Current Year \$

Engineering & design Competitive

Permitting / routing / siting Competitive

ROW / land acquisition Competitive

Materials & equipment Competitive

Construction & commissioning Competitive

Construction management Competitive

Overheads & miscellaneous costs Competitive

Contingency Competitive

Total component cost \$33,701,835.00

Component cost (in-service year) \$42,180,178.00

Congestion Drivers

None

Existing Flowgates

FG#	From Bus No.	From Bus Name	To Bus No.	To Bus Name	СКТ	Voltage	TO Zone	Analysis type	Status
28-GD-W1	270072	FUR RUN_500	270073	FUR RUN_230	1	500/230	225	Gen Deliv (winter)	Included
28-GD-W2	270072	FUR RUN_500	270073	FUR RUN_230	2	500/230	225	Gen Deliv (winter)	Included
28-GD-S2-W	3 2 70072	FUR RUN_500	270073	FUR RUN_230	1	500/230	225	Gen Deliv (winter)	Included
28-GD-S2-W	3 2 70072	FUR RUN_500	270073	FUR RUN_230	2	500/230	225	Gen Deliv (winter)	Included
28-GD-W21	232012	HOPE CREEK	232014	LSPWR CABLE	1	230	225	Gen Deliv (winter)	Included
28-GD-W22	232012	HOPE CREEK	232014	LSPWR CABLE	2	230	225	Gen Deliv (winter)	Included
28-GD-S2-W	9 2 32012	HOPE CREEK	232014	LSPWR CABLE	1	230	225	Gen Deliv (winter)	Included
28-GD-S2-W	9 2 32012	HOPE CREEK	232014	LSPWR CABLE	2	230	225	Gen Deliv (winter)	Included
28-GD-S2-W	9 3 32014	LSPWR CABLE	232013	SILVER RUN	1	230	225	Gen Deliv (winter)	Included
28-GD-S2-W	1 2 32014	LSPWR CABLE	232013	SILVER RUN	1	230	225	Gen Deliv (winter)	Included
28-GD-S2-W	1 2 32014	LSPWR CABLE	232013	SILVER RUN	1	230	225	Gen Deliv (winter)	Included
28-GD-W23	232014	LSPWR CABLE	232013	SILVER RUN	1	230	225	Gen Deliv (winter)	Included
28-GD-W124	232014	LSPWR CABLE	232013	SILVER RUN	1	230	225	Gen Deliv (winter)	Included
28-GD-W125	232014	LSPWR CABLE	232013	SILVER RUN	1	230	225	Gen Deliv (winter)	Included
35-GD-W22	232012	HOPE CREEK	232014	LSPWR CABLE	1	230/230	225/225	Gen Deliv (winter)	Included
35-GD-W23	232012	HOPE CREEK	232014	LSPWR CABLE	2	230/230	225/225	Gen Deliv (winter)	Included
35-GD-S2-W	1 08 2012	HOPE CREEK	232014	LSPWR CABLE	1	230/230	225/225	Gen Deliv (winter)	Included
35-GD-S2-W	1 2 32012	HOPE CREEK	232014	LSPWR CABLE	2	230/230	225/225	Gen Deliv (winter)	Included
35-GD-S2-W	1 2 32014	LSPWR CABLE	232013	SILVER RUN	1	230/230	225/225	Gen Deliv (winter)	Included
35-GD-W24	232014	LSPWR CABLE	232013	SILVER RUN	1	230/230	225/225	Gen Deliv (winter)	Included
28-GD-S2-S8	206302	28OYSTER C	206297	28MANITOU	1	230	228	Gen Deliv (Summer)	Included
28-GD-S2-S9	206302	28OYSTER C	206297	28MANITOU	1	230	228	Gen Deliv (Summer)	Included
28-GD-S2-S1	1206302	28OYSTER C	206297	28MANITOU	2	230	228	Gen Deliv (Summer)	Included
28-GD-W18	206236	28GILBERT	208091	SFLD	1	230	228/229	Gen Deliv (winter)	Included
35-GD-S2-W	1 2 06236	28GILBERT	208091	SFLD	1	230/230	228/229	Gen Deliv (winter)	Included
28-GD-W9	206305	28RAR RVR	218331	KILMER_I	1	230	228/231	Gen Deliv (winter)	Included

FG#	From Bus No.	From Bus Name	To Bus No.	To Bus Name	СКТ	Voltage	TO Zone	Analysis type	Status
28-GD-W11	206305	28RAR RVR	218331	KILMER_I	1	230	228/231	Gen Deliv (winter)	Included
28-GD-W7	206305	28RAR RVR	218331	KILMER_I	1	230	228/231	Gen Deliv (winter)	Included
28-GD-W13	206305	28RAR RVR	218331	KILMER_I	1	230	228/231	Gen Deliv (winter)	Included
28-GD-W14	206305	28RAR RVR	218331	KILMER_I	1	230	228/231	Gen Deliv (winter)	Included
28-GD-S66	206316	28WINDSOR	219752	CLRKSVLL_1	1	230	228/231	Gen Deliv (Summer)	Included
28-GD-S2-S3	206316	28WINDSOR	219752	CLRKSVLL_1	1	230	228/231	Gen Deliv (Summer)	Included
28-GD-W15	214277	RICHMOND35	214012	WANEETA3	1	230	230	Gen Deliv (winter)	Included
28-GD-S2-W	9 2 14277	RICHMOND35	214012	WANEETA3	1	230	230	Gen Deliv (winter)	Included
28-GD-S2-W	9 2 00066	PCHBTM1N	270072	FUR RUN_500	1	500	230/225	Gen Deliv (winter)	Included
35-GD-S2-W	1 2 00066	PCHBTM1N	270072	FUR RUN_500	1	500/500	230/225	Gen Deliv (winter)	Included
35-GD-S2-W	1 2 14277	RICHMOND35	214012	WANEETA3	1	230/230	230/230	Gen Deliv (winter)	Included
35-GD-W16	214277	RICHMOND35	214012	WANEETA3	1	230/230	230/230	Gen Deliv (winter)	Included
35-GD-W5	200064	PCHBTM1S	200004	CNASTONE	1	500/500	230/232	Gen Deliv (winter)	Included
35-GD-W6	200064	PCHBTM1S	200004	CNASTONE	1	500/500	230/232	Gen Deliv (winter)	Included
35-GD-S2-W	1 2 00064	PCHBTM1S	200004	CNASTONE	1	500/500	230/232	Gen Deliv (winter)	Included
35-GD-S2-W	3 2 00064	PCHBTM1S	200004	CNASTONE	1	500/500	230/232	Gen Deliv (winter)	Included
35-GD-S2-W	5200064	PCHBTM1S	200004	CNASTONE	1	500/500	230/232	Gen Deliv (winter)	Included
28-GD-S2-W	9 2 18345	ALDENE_6	216911	SPRINGRD_3	1	230	231	Gen Deliv (winter)	Included
28-GD-W12	218345	ALDENE_6	216911	SPRINGRD_3	1	230	231	Gen Deliv (winter)	Included
28-GD-S72	219104	CLRKSVLL_2	217150	LAWRENCE	1	230	231	Gen Deliv (Summer)	Included
28-GD-L14	218306	DEANS	218304	BRUNSWCK	1	230	231	Light Load - Gen Deliv	Included
35-GD-L14	218306	DEANS	218304	BRUNSWCK	1	230	231	Light Load - Gen Deliv	Included
28-GD-S64	218306	DEANS	218304	BRUNSWCK	1	230	231	Gen Deliv (Summer)	Included
28-GD-S65	218306	DEANS	218304	BRUNSWCK	1	230	231	Gen Deliv (Summer)	Included
28-GD-W109	218306	DEANS	218304	BRUNSWCK	1	230	231	Gen Deliv (winter)	Included
28-GD-W108	218306	DEANS	218304	BRUNSWCK	1	230	231	Gen Deliv (winter)	Included
28-GD-W3	218306	DEANS	218304	BRUNSWCK	1	230	231	Gen Deliv (winter)	Included
28-GD-W8	218306	DEANS	218304	BRUNSWCK	1	230	231	Gen Deliv (winter)	Included

FG#	From Bus No.	From Bus Name	To Bus No.	To Bus Name	СКТ	Voltage	TO Zone	Analysis type	Status
28-GD-W6	218306	DEANS	218304	BRUNSWCK	1	230	231	Gen Deliv (winter)	Included
28-GD-S2-S1	218306	DEANS	218304	BRUNSWCK	1	230	231	Gen Deliv (Summer)	Included
28-GD-S2-S2	218306	DEANS	218304	BRUNSWCK	1	230	231	Gen Deliv (Summer)	Included
28-GD-S2-W	7218306	DEANS	218304	BRUNSWCK	1	230	231	Gen Deliv (winter)	Included
28-GD-S2-W	6218306	DEANS	218304	BRUNSWCK	1	230	231	Gen Deliv (winter)	Included
28-GD-S2-W	9 2 18306	DEANS	218304	BRUNSWCK	1	230	231	Gen Deliv (winter)	Included
28-GD-S2-W	9 2 18306	DEANS	218304	BRUNSWCK	1	230	231	Gen Deliv (winter)	Included
28-GD-S2-W	9 2 18306	DEANS	218304	BRUNSWCK	1	230	231	Gen Deliv (winter)	Included
28-GD-S73	200006	DEANS C	218306	DEANS	3	500/230	231	Gen Deliv (Summer)	Included
28-GD-W17	218333	LNELSN_I	218301	MIDDLESEX_I	1	230	231	Gen Deliv (winter)	Included
28-GD-S2-W	3 2 18333	LNELSN_I	218301	MIDDLESEX_I	1	230	231	Gen Deliv (winter)	Included
28-GD-S2-W	1 @2 8333	LNELSN_I	218301	MIDDLESEX_I	1	230	231	Gen Deliv (winter)	Included
35-GD-S2-S6	218307	ALDENE_2	218430	STANTER_1	1	230/230	231/231	Gen Deliv (Summer)	Included
35-GD-S2-S9	218307	ALDENE_2	218430	STANTER_1	1	230/230	231/231	Gen Deliv (Summer)	Included
35-GD-S2-S8	B218345	ALDENE_6	216911	SPRINGRD_3	1	230/230	231/231	Gen Deliv (Summer)	Included
35-GD-W13	218345	ALDENE_6	216911	SPRINGRD_3	1	230/230	231/231	Gen Deliv (winter)	Included
35-GD-S2-W	9 2 18345	ALDENE_6	216911	SPRINGRD_3	1	230/230	231/231	Gen Deliv (winter)	Included
35-GD-S2-W	1 2 18306	DEANS	218304	BRUNSWCK	1	230/230	231/231	Gen Deliv (winter)	Included
35-GD-S2-W	1 2 18306	DEANS	218304	BRUNSWCK	1	230/230	231/231	Gen Deliv (winter)	Included
35-GD-S2-W	1 @ 18306	DEANS	218304	BRUNSWCK	1	230/230	231/231	Gen Deliv (winter)	Included
35-GD-W4	218306	DEANS	218304	BRUNSWCK	1	230/230	231/231	Gen Deliv (winter)	Included
35-GD-W7	218306	DEANS	218304	BRUNSWCK	1	230/230	231/231	Gen Deliv (winter)	Included
35-GD-W9	218306	DEANS	218304	BRUNSWCK	1	230/230	231/231	Gen Deliv (winter)	Included
35-GD-S2-S2	218306	DEANS	218304	BRUNSWCK	1	230/230	231/231	Gen Deliv (Summer)	Included
35-GD-S14	218300	LINDEN	219046	TOSCO_3	1	230/230	231/231	Gen Deliv (Summer)	Included
35-GD-S13	218343	TOSCO_2	218441	VFT_2	1	230/230	231/231	Gen Deliv (Summer)	Included
28-GD-S2-S1	32927900	CARDIFF C	219100	NEWFRDM	1	230	231/234	Gen Deliv (Summer)	Included
28-GD-S2-W	1 22 7900	CARDIFF C	219100	NEWFRDM	1	230	231/234	Gen Deliv (winter)	Included

FG#	From Bus No.	From Bus Name	To Bus No.	To Bus Name	СКТ	Voltage	TO Zone	Analysis type	Status
28-GD-S2-W	1 22 7900	CARDIFF C	219100	NEWFRDM	1	230	231/234	Gen Deliv (winter)	Included
28-GD-S2-W	1 32 7900	CARDIFF C	219100	NEWFRDM	1	230	231/234	Gen Deliv (winter)	Included
28-GD-S2-W	1 22 7900	CARDIFF C	219100	NEWFRDM	1	230	231/234	Gen Deliv (winter)	Included
28-GD-S2-W	1 20 0073	FUR RUN_230	220963	CONASTON	2	230	232/225	Gen Deliv (winter)	Included
28-GD-S2-W	1 27 0073	FUR RUN_230	220963	CONASTON	1	230	232/225	Gen Deliv (winter)	Included
28-GD-W19	270073	FUR RUN_230	220963	CONASTON	1	230	232/225	Gen Deliv (winter)	Included
28-GD-W20	270073	FUR RUN_230	220963	CONASTON	2	230	232/225	Gen Deliv (winter)	Included
28-GD-S2-W	3 2 00064	PCHBTM1S	200004	CNASTONE	1	500	232/230	Gen Deliv (winter)	Included
28-GD-S2-W	3 2 00064	PCHBTM1S	200004	CNASTONE	1	500	232/230	Gen Deliv (winter)	Included
28-GD-S2-W	1200064	PCHBTM1S	200004	CNASTONE	1	500	232/230	Gen Deliv (winter)	Included
28-GD-S2-W	2200064	PCHBTM1S	200004	CNASTONE	1	500	232/230	Gen Deliv (winter)	Included
28-GD-S2-W	3200064	PCHBTM1S	200004	CNASTONE	1	500	232/230	Gen Deliv (winter)	Included
28-GD-S2-W	3 @ 00064	PCHBTM1S	200004	CNASTONE	1	500	232/230	Gen Deliv (winter)	Included
28-GD-W4	200064	PCHBTM1S	200004	CNASTONE	1	500	232/230	Gen Deliv (winter)	Included
28-GD-W5	200064	PCHBTM1S	200004	CNASTONE	1	500	232/230	Gen Deliv (winter)	Included
28-GD-W110	200064	PCHBTM1S	200004	CNASTONE	1	500	232/230	Gen Deliv (winter)	Included
28-GD-W111	200064	PCHBTM1S	200004	CNASTONE	1	500	232/230	Gen Deliv (winter)	Included
28-GD-W112	200064	PCHBTM1S	200004	CNASTONE	1	500	232/230	Gen Deliv (winter)	Included
28-GD-W16	200064	PCHBTM1S	200004	CNASTONE	1	500	232/230	Gen Deliv (winter)	Included
28-GD-S2-W	9 2 00064	PCHBTM1S	200004	CNASTONE	1	500	232/230	Gen Deliv (winter)	Included
28-GD-S2-W	3 2 00064	PCHBTM1S	200004	CNASTONE	1	500	232/230	Gen Deliv (winter)	Included
28-GD-S2-W	3 2 00064	PCHBTM1S	200004	CNASTONE	1	500	232/230	Gen Deliv (winter)	Included
28-GD-S2-S1	32/27934	CARDIFF2	227945	LEWIS #2	1	138	234	Gen Deliv (Summer)	Included
28-GD-S2-S1	3227945	LEWIS #2	227902	LEWIS #1	1	138	234	Gen Deliv (Summer)	Included
35-GD-S2-S8	A227900	CARDIFF C	219100	NEWFRDM	1	230/230	234/231	Gen Deliv (Summer)	Included
35-GD-S2-W	7227900	CARDIFF C	219100	NEWFRDM	1	230/230	234/231	Gen Deliv (winter)	Included
35-GD-S2-W	3 B 27900	CARDIFF C	219100	NEWFRDM	1	230/230	234/231	Gen Deliv (winter)	Included
35-GD-S2-W	1 @B 7900	CARDIFF C	219100	NEWFRDM	1	230/230	234/231	Gen Deliv (winter)	Included

FG#	From Bus No.	From Bus Name	To Bus No.	To Bus Name	СКТ	Voltage	TO Zone	Analysis type	Status
35-GD-S2-W	9 B 27900	CARDIFF C	219100	NEWFRDM	1	230/230	234/231	Gen Deliv (winter)	Included

New Flowgates

FG#	From Bus No.	From Bus Name	To Bus No.	To Bus Name	СКТ	Voltage	TO Zone	Analysis type
FG-208-1	216950	ROSELAND	206257	WHIPPANY	1	230	PSEG	Gen Deliv (winter)
FG-208-2	218469	METUCHEN	218357	PRSNAV_Z	1	230	PSEG	Gen Deliv (Summer)
FG-208-3	218357	PRSNAV_Z	218352	MDWRD_Z	1	230	PSEG	Gen Deliv (Summer)
FG-208-4	218352	MDWRD_Z	218304	BRUNSWCK	1	230	PSEG	Gen Deliv (Summer)
FG-208-5	218311	SEWAREN	218353	MINUEST_R	1	230	PSEG	Gen Deliv (Summer)
FG-208-6	218353	MINUEST_R	218300	LINDEN	1	230	PSEG	Gen Deliv (Summer)
FG-208-7	218469	METUCHEN	218355	NEWDOVR_H	1	230	PSEG	Gen Deliv (Summer)
FG-208-8	218355	NEWDOVR_H	218320	FANWOOD_1	1	230	PSEG	Gen Deliv (Summer)
FG-208-9	218300	LINDEN	217958	LINDEN345	1	345/230	PSEG	Gen Deliv (winter)
FG-208-10	219052	FANWOOD_2	218504	FRONTST_2	1	230	PSEG	Gen Deliv (winter)
FG-208-11	218502	FRONTST_4	216950	ROSELAND	1	230	PSEG	Gen Deliv (winter)

Financial Information

Capital spend start date 06/2022

Construction start date 11/2024

Project Duration (In Months) 102

Cost Containment Commitment

Cost cap (in current year) \$4,653,993,014.00

Cost cap (in-service year) \$5,759,618,884.00

Components covered by cost containment

- 1. S2 400kV Sewaren AC Tie Line Proposer
- 2. S3 400kV Sewaren Onshore Converter Proposer
- 3. S4 400kV Sewaren Offshore/Onshore HVDC Cable Proposer
- 4. S5 400kV Sewaren Offshore Converter Proposer
- 5. L2 400kV Larrabee AC Tie Line Proposer
- 6. L3 400kV Larrabee Onshore Converter Proposer
- 7. L4 Larrabee Offshore/Onshore HVDC Cable Proposer
- 8. L5 400kV Larrabee Offshore Converter Proposer
- 9. Interlink-SL Sewaren/Larrabee Interlink (HS-21 to HS-12) #1 Proposer
- 10. Interlink-SL Sewaren/Larrabee Interlink (HS-21 to HS-12) #2 Proposer

Cost elements covered by cost containment

Engineering & design Yes Permitting / routing / siting Yes ROW / land acquisition Yes Materials & equipment Yes Construction & commissioning Yes Construction management Yes Overheads & miscellaneous costs Yes Taxes No AFUDC No **Escalation** No

Additional Information

Project is offering a guaranteed availability date of December 31st 2029 for the first HVDC system, subject to the terms in the cost commitment legal language. Construction Cost Cap Amount will be adjusted for inflation beyond existing expectations based on changes in the Handy-Whitman Index; Cost Cap may increase or decrease based on changes to Handy-Whitman Index. Construction Cost Cap Amount will be adjusted based on changes in foreign exchange rates; Cost Cap may increase or decrease based on changes in foreign exchange rates. Construction Cost Cap may be adjusted based on changes to in taxes or duties that differ from assumptions. Specific cost cap commitments can be found in Section 1.7 of the SAA submittal and the attached legal language.

Is the proposer offering a binding cap on ROE?

Would this ROE cap apply to the determination of AFUDC?

Yes

Yes

Would the proposer seek to increase the proposed ROE if FERC finds that a higher ROE would not be unreasonable?

No

Is the proposer offering a Debt to Equity Ratio cap?

Yes

Additional cost containment measures not covered above

Project has proposed specific cost cap language in the SAA submittal, and is also submitting proposed legal language in the PJM planner. As an overview, the Project is capping costs which it can control, and excluding costs that it cannot. Excluded costs broadly fall into the following categories: Foreign exchange costs in excess of assumptions, inflation and tax costs in excess of assumptions, and excess costs driven by delays in government and regulatory approvals. As specified in the submitted legal language, the Project team would need to demonstrate to the BPU how these changes impacted the price and schedule of the Proposal before any adjustments would be made. Changes caused by delay, inaction, or lack of reasonable diligence on the part of the Project team would not be reason for a cost cap or schedule adjustment.

Additional Comments

None