

# **System Restoration**

PJM State & Member Training Dept.

www.pjm.com | Public PJM©2020

#### **Objectives**



#### Students will be able to:

- Identify the types and causes of blackouts
- Describe the tasks associated with a system assessment of conditions immediately following a disturbance
- Describe reporting requirements for PJM
- Describe strategies for system restoration
- Define cranking paths, critical loads and priority loads
- Describe the black start generation requirements

#### **Objectives**



- Explain how to maintain voltages during the restoration process
- Describe the effects load pickup has on frequency
- Define synchronized and dynamic reserves and their purpose during system restoration
- Identify the criteria used to determine stability of islands during system restoration
- Describe the criteria that has to be met in order to synchronize two islands
- Demonstrate how to coordinate frequency and tie line control with interconnected systems

#### **Great Northeast Blackout: November 9, 1965**

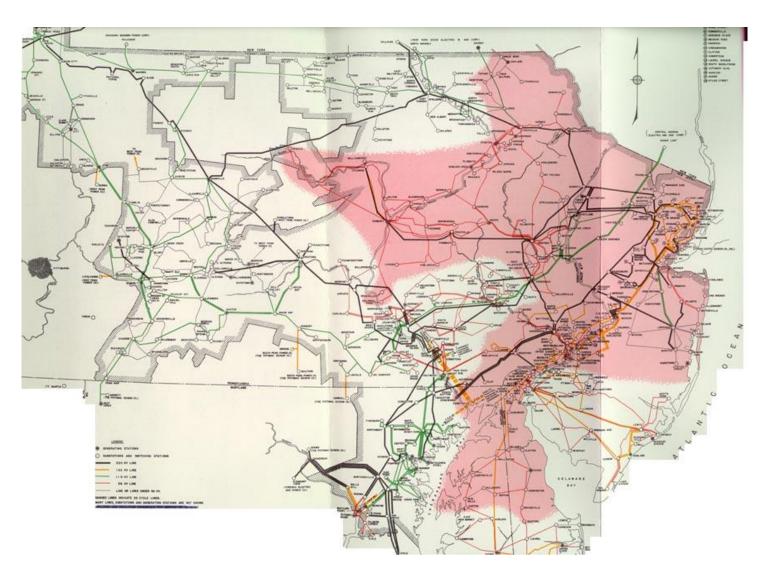
- A single transmission line from Niagara generating station tripped due to faulty relay setting
- Within 2.5 seconds, five other transmission lines became overloaded and tripped, isolating 1,800 MW of generation at Niagara Station
  - Generation then became unstable and tripped
- Northeast became unstable and separated into islands within 4 seconds
- Outages and islanding occurred throughout New York, Ontario, most of New England and parts of New Jersey and Pennsylvania



#### **Great Northeast Blackout: November 9, 1965**

- Most islands went black within 5 minutes due to generation/load imbalance
- Left 30 million people and 80,000 square miles without power for as long as 13 hours
- Estimated economic losses of over \$100,000,000
- Led to the formation of Northeast Power Coordinating Council (NPCC) in 1966 and North American Electric Reliability Council (NERC) in 1968
- Cause: Human error of setting a protective relay incorrectly

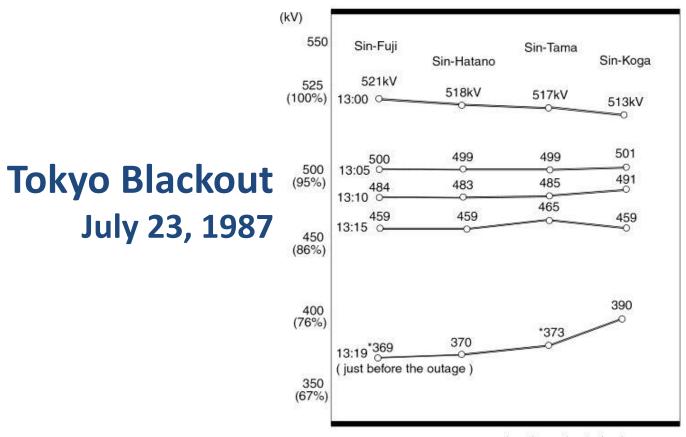
**Great Northeast Blackout November 9, 1965** 




#### PJM Blackout: June 5, 1967

- 3 major system improvements had been delayed beyond the beginning of the summer
  - Oyster Creek nuclear station
  - Keystone #1 unit
  - Keystone 500 kV transmission
- Loss of Nottingham-Plymouth line and Muddy Run Generation
  - Conductor sag
  - First time 4 MR units operated at the same time
- Loss of Brunner Island #2 Heavy loads and low voltages

#### PJM Blackout: June 5, 1967


- Loss of S. Reading-Hosensack, Brunner Island #1 Unit
- Cascading trippings of transmission resulted in system separation
- Load in affected area exceeded the scheduled operating capacity by more than 700 MW
- System stabilized at 53 Hertz
- Load shedding may have saved the island
  - No under-frequency load shedding was installed at the time
- All protective relaying worked properly
- Led to more extensive voltage monitoring and UPS for instrumentation and control

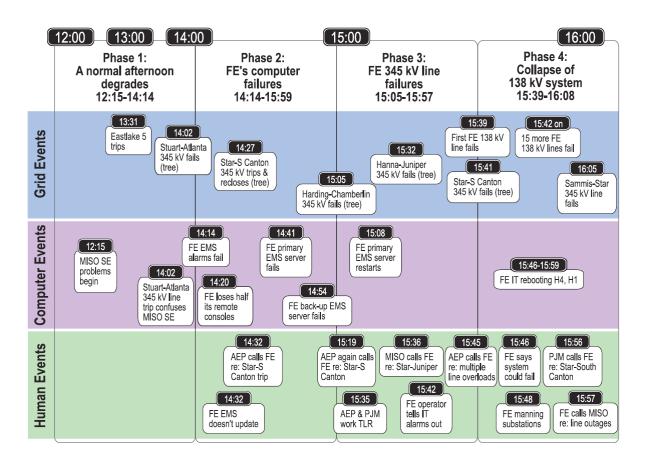


#### Tokyo Blackout: July 23, 1987

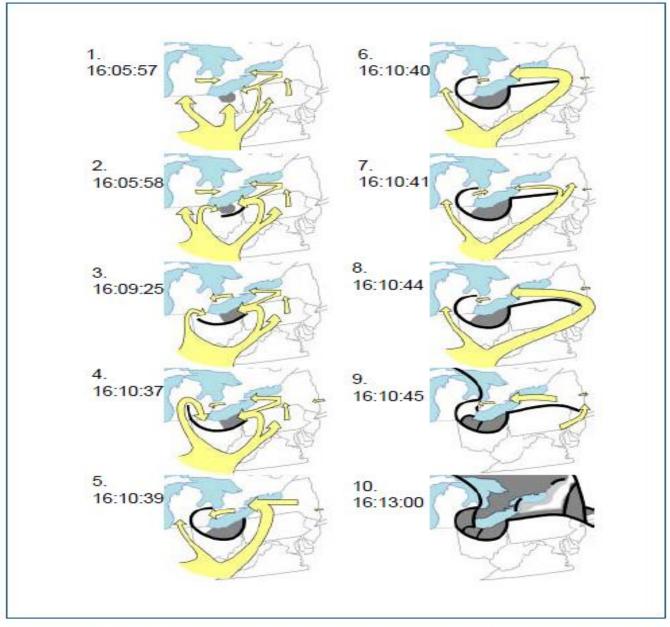
- Result of a voltage collapse
- After lunch load pickup came in at a rate of 400 MW/minute
  - Only sustained for a few minutes
- At 1300, 500 kV voltages were 513 521 kV
- At 1310, 500 kV voltages were 483 491 kV
- At 1319, 500 kV voltages were 369 390 kV
- At this point, the system collapsed
  - 8168 MW of load and 2.8 million customers lost
- Blackout took 19 minutes to develop and 3 hours, 20 minutes to restore

Fig. 4 Voltage Drops at Main Substations




\* = the estimated value

#### Northeast/Midwest United States and Canadian Blackout: August 14, 2003


- FE-ATSI was having issues with their EMS
- IT was aware of and working on the issues, but did not communicate with the operators on shift
- Alarm processing had stopped and the operators (and IT) were unaware that they would not be getting SCADA alarms for events
- 345kV and 138 kV line trippings occurred in the FE-ATSI territory and the EMS did not alarm, and were not represented on the FE-ATSI SCADA System

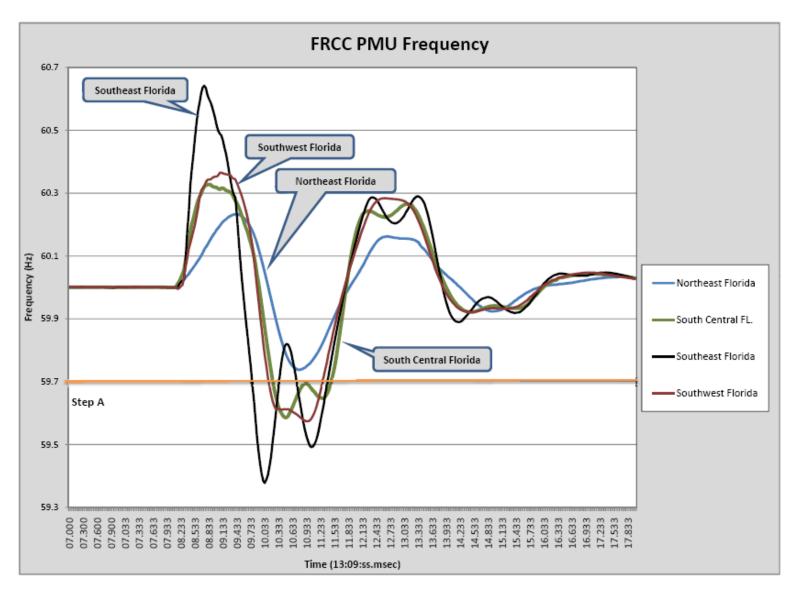
# Northeast/Midwest United States and Canadian Blackout: August 14, 2003 (Con't.)

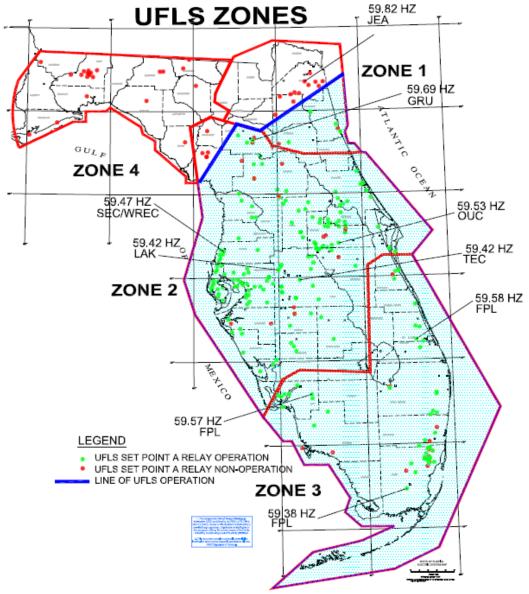
- PJM and MISO saw the resultant flow changes and attempted to question FE-ATSI about the system conditions
- Cascading line trips led to a voltage collapse scenario centered around the Cleveland area
- The low voltages and line trippings caused generating units to begin tripping offline
- The incidents of line trippings, unit trippings, and low voltages expanded throughout the Northeast and into Canada
- The entire event lasted less than 8 minutes



Cascade Sequence




Legend: Yellow arrows represent the overall pattern of electricity flows. Black lines represent approximate points of separation between areas within the Eastern Interconnect. Gray shading represents areas affected by the blackout.


#### Florida Blackout: Tuesday, February 26, 2008 at 13:09

- Delayed clearing of 3-phase 138kV switch fault at Florida Power and Light, a Miami-area substation (1.7 seconds)
  - Resulted in loss of:
    - 22 transmission lines
    - 1350 MW of load in area of fault
    - 2300 MW of distribution load across southern Florida as a result of under frequency load shedding (59.7 Hz)
    - 2500 MW of generation in area of fault
      - Including 2 Turkey Point Nuclear Units
    - Additional 1800 MW of generation across the region

### **History of Blackouts** (con't)

- Florida remained interconnected to Eastern Interconnection throughout the event
  - Majority of load restored within 1 hour
    - All customers restored within 3 hours
  - Final report contained 26 recommendations





#### FRCC Underfrequency Load Shedding (UFLS) Requirements

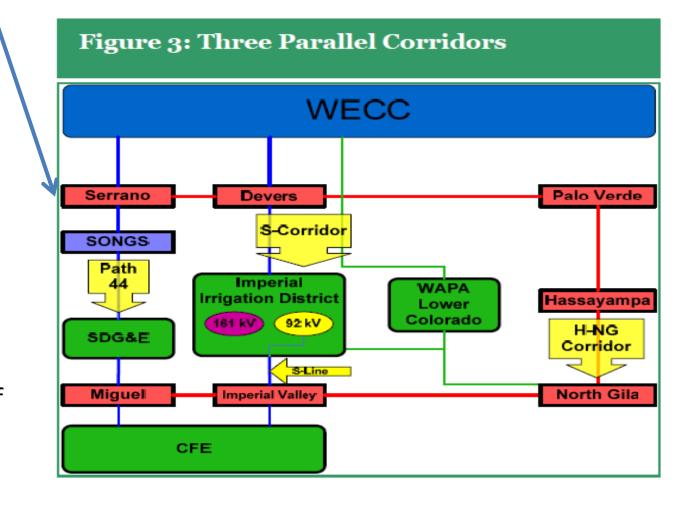
1. All load serving members of the FRCC must install automatic underfrequency relays which will disconnect 56% of their customer demand in accordance with the following schedule.

| UFLS | Frequency         | Time Delay <sup>1</sup> | Amount of Load (% of | Cumulative Amount |
|------|-------------------|-------------------------|----------------------|-------------------|
| Step | - (hertz)         | - (seconds)             | member system)       | of Load (%)       |
| A    | 59.7 <sup>2</sup> | 0.28                    | 9                    | 9                 |
| В    | 59.4              | 0.28                    | 7                    | 16                |
| C    | 59.1              | 0.28                    | 7                    | 23                |
| D    | 58.8              | 0.28                    | 6                    | 29                |
| E    | 58.5              | 0.28                    | 5                    | 34                |
| F    | 58.2              | 0.28                    | 7                    | 41                |
| L    | 59.4              | 10.0                    | 5                    | 46                |
| M    | 59.7              | 12.0                    | 5                    | 51                |
| N    | 59.1              | 8.0                     | 5                    | 56                |

- Local primary and backup relay protection removed from service on energized equipment while troubleshooting equipment malfunction
- Other failed indicators provided false information that led to this decision
  - Insufficient procedures
  - Oversight of field test personnel
    - Approval between field personnel and system operators when protection systems removed from service
    - Communication between control room personnel and control room supervision when protection systems removed from service
    - Protection system changes recommended
    - Training on infrequently received EMS alarms and unusual communication
    - 3-Part communication not consistently used during restoration led to minor confusion
    - Enhanced restoration procedures for under frequency load shed events
    - Under frequency load shed prevented more widespread event

#### Arizona-South California Outages: September 8, 2011

- Late in the afternoon, an 11-minute system disturbance occurred in the Pacific Southwest leading to:
  - Cascading outages
  - Approximately 2.7 million customers without power
- The outages affected parts of Arizona, Southern California, and Baja California, Mexico, and all of San Diego
- The disturbance occurred near rush hour on a business day, snarling traffic for hours


- The affected line:

   Hassayampa-N.Gila (H-NG)
   500 kV line,
   Arizona Public Service (APS)
  - A segment of the Southwest
     Power Link (SWPL)
    - A major transmission corridor
    - Transports power in an east-west direction
    - Generators in Arizona
    - Runs through the service territory of Imperial Irrigation District (IID), into the San Diego area

2200 MW of Nuclear Generation

230 kV

161 kV



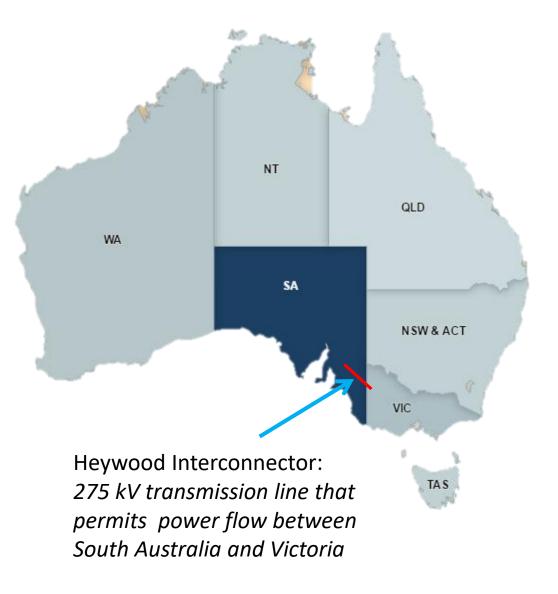
#### **Arizona-South California Outages**

- A technician missed two steps in a switching scheme, causing:
  - Flow redistributions, voltage deviations, and overloads
  - Resulted in transformer, transmission line, and generating unit trippings
  - Initiated automatic load shedding
- Path 44 carried all flows into the San Diego area, and parts of Arizona and Mexico
- The excessive loading on Path 44 initiated an inter-tie separation scheme at SONGS, leading to the loss of the SONGS nuclear units

#### Arizona-South California Outages (con't.)

- During the 11 minutes of the event, the WECC Reliability Coordinator issued no directives
- Only limited mitigating actions were taken by the TOP's of the affected areas
- All affected entities had access to power from their own or neighboring systems and, therefore, did not need to use "black start" plans
- Although there were some delays in the restoration process due to communication and coordination issues between entities, the process was generally effective

#### **Arizona-South California Outages** (con't.)


- Significant findings included:
  - Protection settings and coordination
  - Situational awareness of the operators
  - Lack of clarity among all involved operators concerning responsibilities for restoration efforts

#### **Australian Blackout**

 AEMO operates Australia's National Electricity Market (NEM) and the interconnected power system in Australia's eastern/south-eastern area

The National Electricity Market (NEM):


- Incorporates around 25,000 miles of transmission lines and cables
- Supplies 200 terawatt hours of electricity to businesses and households each year
- Supplies around 9 million customers
- Generates 45,000 MW
- Trades \$7.7 billion in the NEM in 2014-15



https://www.aemo.com.au/Electricity/National-Electricity-Market-NEM (2017)

# Parth. Adaltifus. Sanberra Sydney Melbourne Wind speeds in excess of 75 mph were recorded.

#### September 28th, 2016



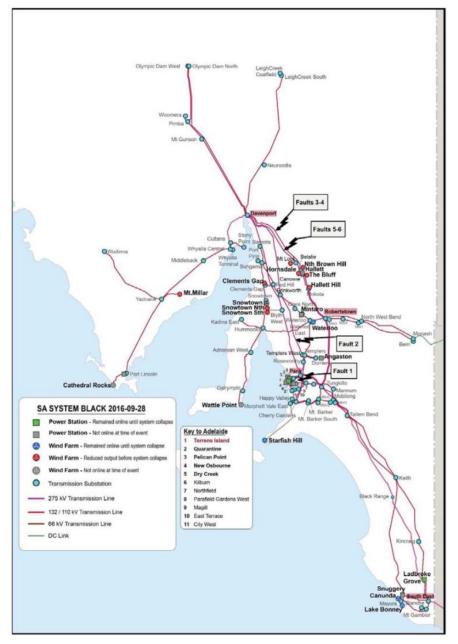
27



Extreme weather resulted in the loss of multiple transmission lines and 445 MW of generation of nine wind farms.

The combined loss of wind generation and interchange resulted in the interruption of 1,895 MW resulting in a system blackout.

Total customers outaged = 850,000








http://www.abc.net.au/news/2016-09-29/political-storm-erupts-after-sa-loses-power/7891098

- 6 transmission line faults occurred
  - Major voltage dips on the network over a 2-minute period
- The Murraylink HVDC tie line tripped due to under-voltage conditions
- The Victoria-Heywood Interconnector tripped, the remaining 275KV tie line to Victoria
- South Australia region blacked out

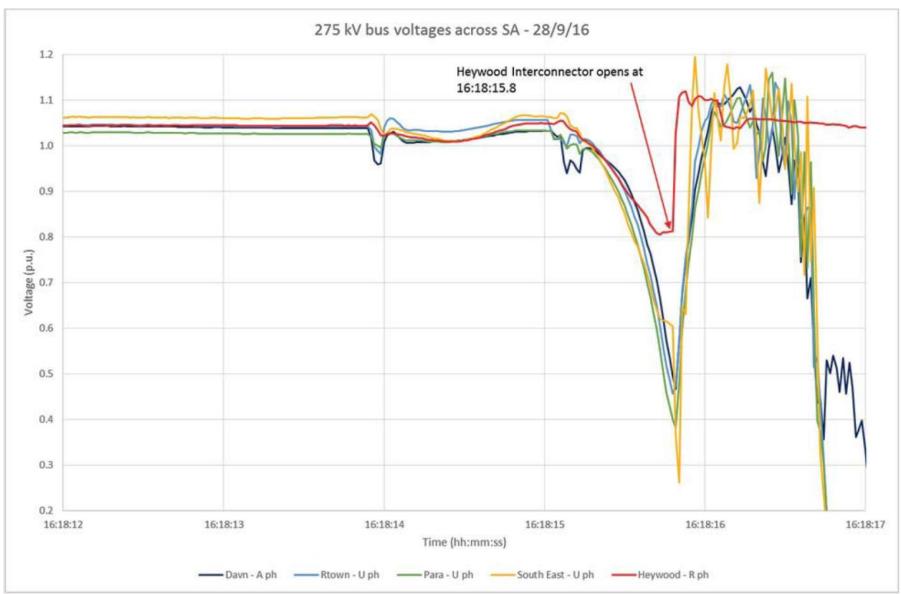


**AEMO (2016)** 

#### **Transmission Line Faults**

| Fault number | Time     | Details                                                                                                                                                                                                                                                         |
|--------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1            | 16:16:46 | Fault on Northfield-Harrow 66kV feeder in the Adelaide metropolitan area.  Trip and successful auto-reclose.  Voltage dipped to 85% at Davenport.                                                                                                               |
| 2            | 16:17:33 | Two phase to ground fault on the Brinkworth – Templers West 275kV transmission line. No reclose attempt.  Voltage dipped to 60% at Davenport.                                                                                                                   |
| 3            | 16:17:59 | Single phase to ground fault on the Davenport – Belalie 275kV transmission line. Faulted phase successfully auto-reclosed.  Voltage dipped to 40% at Davenport.                                                                                                 |
| 4            | 16:18:08 | Single phase to ground fault on the Davenport – Belalie 275kV transmission line. No autoreclose attempted as fault is within 30 seconds of the previous fault Line opened on all three phases and remained out of service.  Voltage dipped to 40% at Davenport. |
| 5            | 16:18:13 | Single phase to ground fault on the Davenport – Mt Lock 275kV transmission line. Voltage dipped to 40% at Davenport.                                                                                                                                            |
|              | 16:18:14 | Single phase to ground fault on the Davenport – Mt Lock 275kV transmission line due to unsuccessful auto-reclose. Fault still on line. Line opened on all three phases and remained out of service.  Voltage dipped to 40% at Davenport.                        |

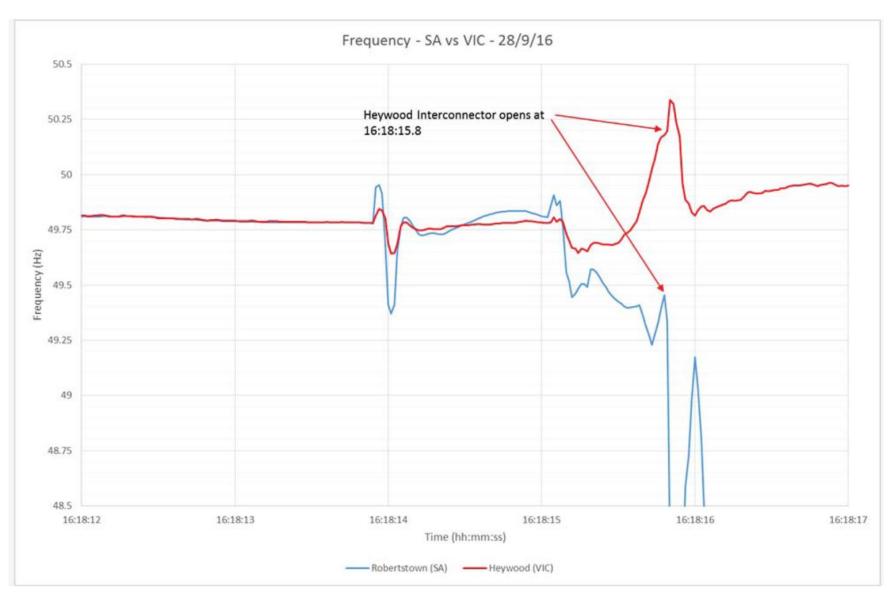
#### **Wind Farm Response**


- 445 MW of wind generation tripped offline due to relay activation, designed to protect the turbines against
  - Under voltage conditions (ride-through mode)
  - Wind operators were aware of these limitations but the grid operator was not

| Wind farm        | Pre-set limit to<br>ride-through<br>events in 120<br>seconds | Number of times<br>wind turbines<br>activated ride-<br>through mode | Last state of<br>wind turbines<br>prior to system<br>voltage collapse | Output pre-event<br>at 16:18:07<br>[MW] | Output<br>just prior to<br>separation at<br>16:18:15.4<br>[MW] |
|------------------|--------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------|
| Canunda          | 9                                                            | 1                                                                   | Operational                                                           | 27.7                                    | 27.2                                                           |
| Lake Bonney 1    | 42618                                                        | 0                                                                   | Operational                                                           | 77.7                                    | 76.5                                                           |
| Lake Bonney 2,3  | 9                                                            | 0                                                                   | Operational                                                           | 171.9                                   | 158.7                                                          |
| Waterloo         | 9                                                            | 5                                                                   | Operational                                                           | 96.6                                    | 72.9                                                           |
|                  |                                                              |                                                                     | Expected MW Reduction                                                 |                                         | 38.6                                                           |
|                  |                                                              |                                                                     |                                                                       |                                         |                                                                |
| Clements Gap     | 2                                                            | 3                                                                   | Disconnected                                                          | 14.5                                    | -0.5                                                           |
| Hallett          | 2                                                            | 3                                                                   | Most turbines disconnected                                            | 34.5*                                   | 1.7*                                                           |
| Hallett Hill     | 2                                                            | 3                                                                   | Most turbines disconnected                                            | 41.3*                                   | 19.5*                                                          |
| Mt Millar        | Not known                                                    | 5                                                                   | Stopped<br>Operation                                                  | 67.0**                                  | 2.8**                                                          |
| North Brown Hill | 2                                                            | 3                                                                   | Most turbines disconnected                                            | 85.5                                    | 11.0                                                           |
| Hornsdale        | 5                                                            | 6                                                                   | Stopped<br>Operation                                                  | 83.9                                    | -1.1                                                           |
| Snowtown North   | 5                                                            | 6                                                                   | Stopped<br>Operation                                                  | 65.5                                    | -0.8                                                           |
| Snowtown South   | 5                                                            | 6                                                                   | Stopped<br>Operation                                                  | 42.1                                    | -1.2                                                           |
| The Bluff        | 2                                                            | 3                                                                   | Most turbines disconnected                                            | 41.9                                    | -0.3                                                           |
|                  |                                                              |                                                                     | Unexpected MW Reduction                                               |                                         | 445.1                                                          |
|                  |                                                              |                                                                     |                                                                       |                                         |                                                                |
| Total MW output  |                                                              |                                                                     |                                                                       | 850.1                                   | 366.4                                                          |
| Total MW Loss    |                                                              |                                                                     |                                                                       |                                         | 483.7                                                          |

**AEMO (2016)** 

Voltage Profile


During Event



**AEMO (2016)** 

Frequency Profile

During Event



**AEMO (2016)** 

- Time for total customer restoration: 7 ½ hours
- System Restart Ancillary Service (SRAS) "black start" units did not operate as designed, even though they had been tested within the operating year
  - SRAS 1 could not start due to the switching sequence used.
     Corrective measures have been put in place and tested
  - SRAS 2 suffered a stator ground fault after 15 seconds of operation.
     This problem has been corrected
- AEMO power market prices spiked from \$60 to \$9000/MWhr\*
  - AEMO suspended market operations during the event
  - The Australian government is currently reviewing the role of renewable vs. traditional forms of generation

\*http://www.abc.net.au/news/2016-09-25/sa's-power-price-spike-sounds-national-electricity-alarm/7875970

# **History of Blackouts – Cyber Attack**

#### **Ukraine Blackout**

- December 23rd 2015
- Three Ukrainian distribution companies were attacked
  - 225,000 customers outaged
- Seven 110-kV and twenty-three 35-kV substations were disconnected for 3 hours



# **History of Blackouts – Cyber Attack**

- Initially thought to be solely the Black Energy 3 virus the attack included multiple elements to include:
  - Spear phishing of business networks
  - Telephone denial-of-service attack on the call center to delay/hamper restoration efforts
  - Use of a KillDisk program to delete targeted files and logs
  - Use of virtual private networks (VPNs) to enter networks
  - The use of keystroke loggers to perform credential theft and enter critical networks



**NERC (2016)** 

# **History of Blackouts – Cyber Attack**

Wired.com Article

The operator grabbed his mouse and tried desperately to seize control of the cursor, but it was unresponsive. Then as the cursor moved in the direction of another breaker, the machine suddenly logged him out of the control panel. Although he tried frantically to log back in, the attackers had changed his password preventing him from gaining re-entry. All he could do was stare helplessly at his screen while the ghosts in the machine clicked open one breaker after another, eventually taking about 30 substations offline. The attackers didn't stop there, however. They also struck two other power distribution centers at the same time, nearly doubling the number of substations taken offline and leaving more than 230,000 residents in the dark. And as if that weren't enough, they also disabled backup power supplies to two of the three distribution centers, leaving operators themselves stumbling in the dark.

https://www.wired.com/ 2016/03/inside-cunningunprecedented-hackukraines-power-grid/

### **History of Blackouts – Cyber Attack**

#### **Event Analysis**

The NERC report identifies the following as the root cause of the event:

"The outages were caused by the use of the control systems and their software through direct interaction by the adversary. All other tools and technology, such as BlackEnergy 3 and KillDisk, were used to enable the attack or delay restoration efforts."

# **History of Blackouts – Cyber Attack**

Clicking "Enable Content" gave the Black Energy 3 virus user access to energy networks

Black Energy 3
Macro




Figure 6: A Sample of a BlackEnergy 3 Infected Microsoft Office Document<sup>27</sup>

**NERC (2016)** 

## **History of Blackouts**

- Production
  - Loss of productivity
  - Loss of product or property
- Health
  - Food contamination
  - Medication problems
  - Anxiety
- Safety
  - Traffic accidents
  - Accidents due to visibility problems
  - Civil unrest



6535



# **Types and Causes of Blackouts**

# **Types of Blackouts**

- Localized
- Partial system
- Full system with/without outside help

Restoration strategy will be different for each type of outage!

## **Types of Blackouts**

#### Localized

- Can range from one distribution circuit to the loss of an entire substation
- Least severe of the types of blackouts
- Most common of the types of blackouts
- Generally affecting a small geographic area
- Examples include:
  - Distribution feeder outage
  - Distribution bus outage
  - Substation outage

## **Types of Blackouts – Localized**

- Most common causes
  - Faults on distribution system or in substation
  - Weather: lightning, rain, snow, ice, wind, heat, cold
  - Relay/SCADA malfunction
  - Human error: switching error
  - Vandalism
- Effect on other companies
  - If on distribution side, usually no effect on others
  - If on transmission side, others
    - May feel a system "bump"
    - May have oscillograph or DFR operation
    - May have over-trip of relays

## Types of Blackouts – Localized

#### Effect on PJM

- May notice a rise in ACE if large amount of load was lost
- May result in transmission problems if transmission was lost in the localized blackout

#### Restoration method

- Isolate faulted equipment
- Restore load and remaining equipment through switching

### **Types of Blackouts**

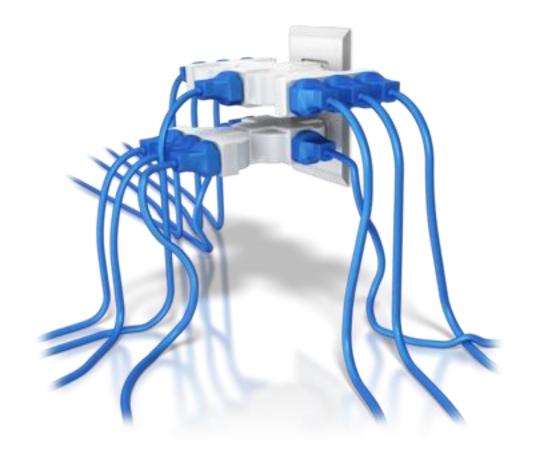
- Partial System
  - Spans more than one substation
  - May affect more than one Transmission Owner
  - Part of Transmission Owner's transmission system is still energized
  - Affects a large geographic area



## **Types of Blackouts – Partial System**

- Most common causes
  - Partial system voltage collapse
  - Cascading thermal overloads and trippings
  - Weather
  - Dynamic Instability
    - Multiple concurrent trippings of transmission, generation
    - Delayed fault clearing
- Effect on other companies
  - May also be partially blacked out
  - May experience voltage fluctuations (normally high)
  - May have transmission problems

## **Types of Blackouts – Partial System**


- Effect on PJM
  - Fluctuation in ACE (high or low)
  - Fluctuation in system voltages (normally high)
  - Fluctuation in frequency (high or low)
  - Transmission problems
  - Possible interchange adjustments
- Restoration method
  - Extent of outage will determine restoration method
    - Restore through switching from unaffected system
    - Start generation in blacked out area
      - Create islands
      - Synchronize when possible

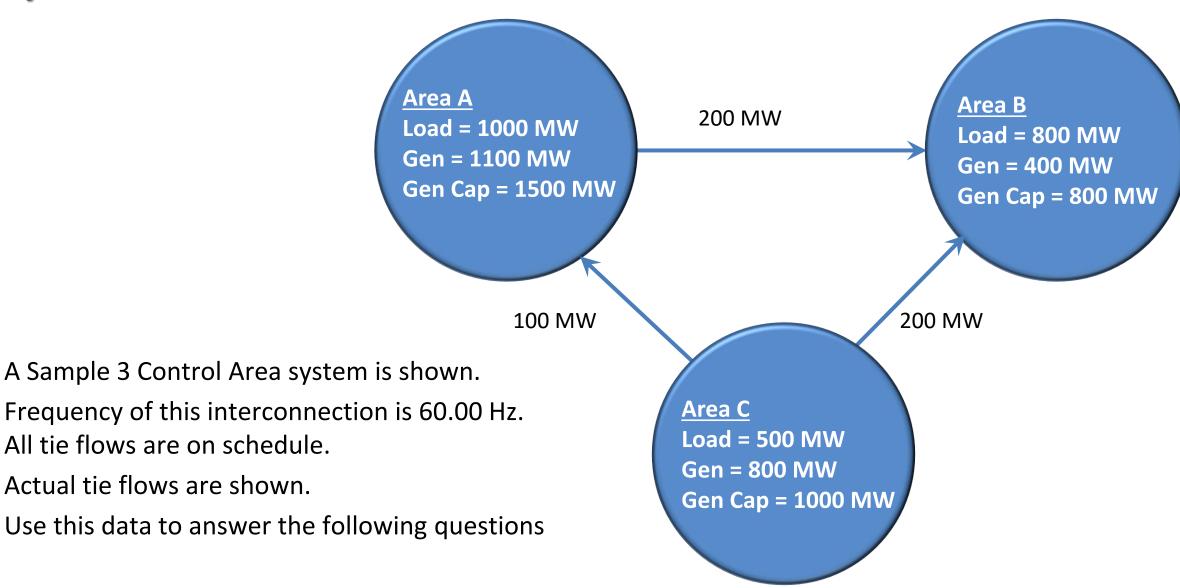
- One or more companies are totally blacked out
- Affects a very large geographic area and a large population of customers

49

- Each affected Transmission Owner may be in a different situation
  - Outside help available
  - No outside help available

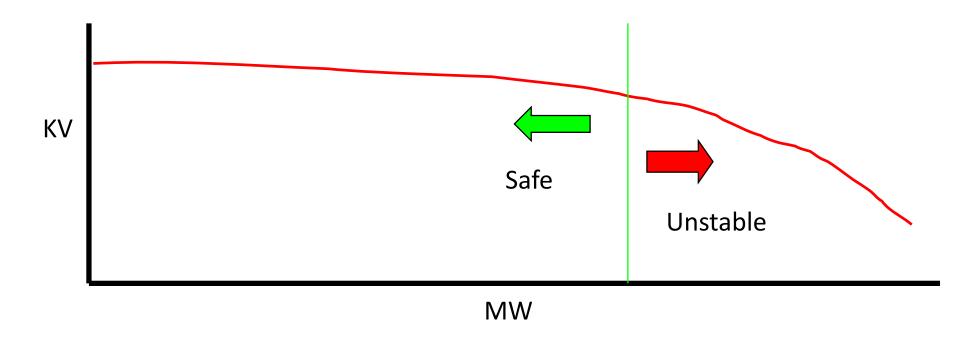
- Most common causes:
  - System voltage collapse
  - Frequency deviations
  - Dynamic instability
  - Cascading thermal outages
  - Severe weather event
    - Hurricane, Earthquake
  - Sabotage, acts of war




- Effect on other companies
  - May be blacked out or islanded
  - May be asked to provide assistance to neighbors
  - Will experience some operating problems
    - Power, voltage swings
- Effect on PJM
  - Similar to company effects
  - May need to coordinate multiple islands
  - Will need to adjust interchange schedules

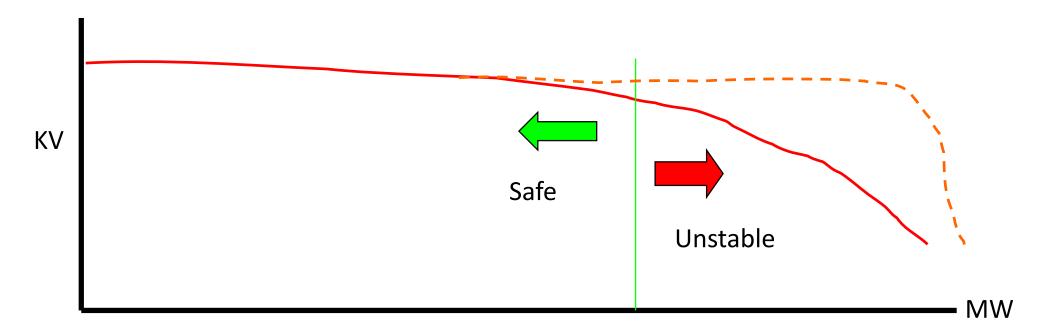
- Restoration Method
  - Dependent on if outside help is available
    - If it is, this opportunity should be investigated!
  - Dependent on individual company restoration philosophy
  - Details of the "Top down" and "Bottom up" methods will be presented later




# **System Disturbance Exercise**

#### **System Disturbance Exercise**






- Voltage Collapse
  - Deficit of MVAR Supply
  - Over the "knee" of the voltage curve
  - Results in system separations and generation trippings



## **Causes of Blackouts – Voltage Collapse**

- Impossible to predict boundaries of separation
- May be detected by looking for areas of voltage decay
  - However, use of shunt capacitors can maintain near normal voltage up to the point where voltage support resources run out
  - Voltage drop curve starts to look like a right angle

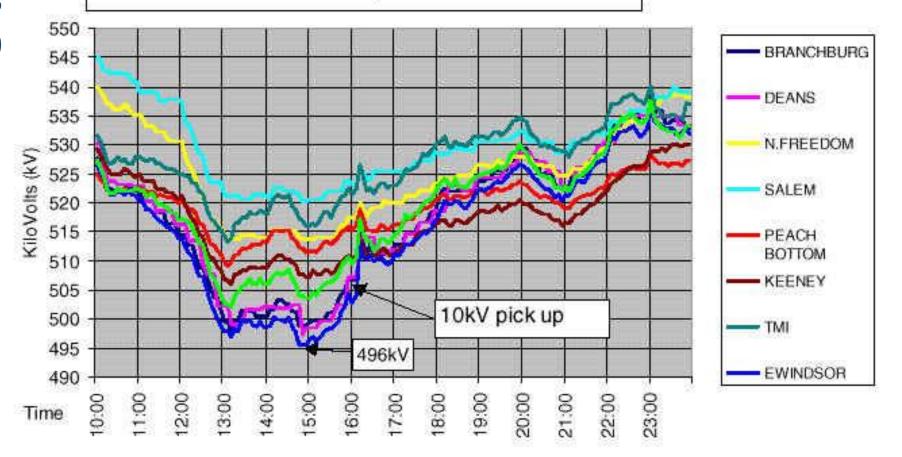


# **Causes of Blackouts – Voltage Collapse**

- Rapidly decaying voltage (especially in high load periods) should be considered an emergency situation
- Time frame: Minutes to tens of minutes

PJM Voltages July 6, 1999

#### Times of notable events


1358 - 5% Voltage Reduction

1500 - Cut 100 MWs of Spot Ins

1515 - TLR Issued (1202 MW's cut for 200 MW's relief)

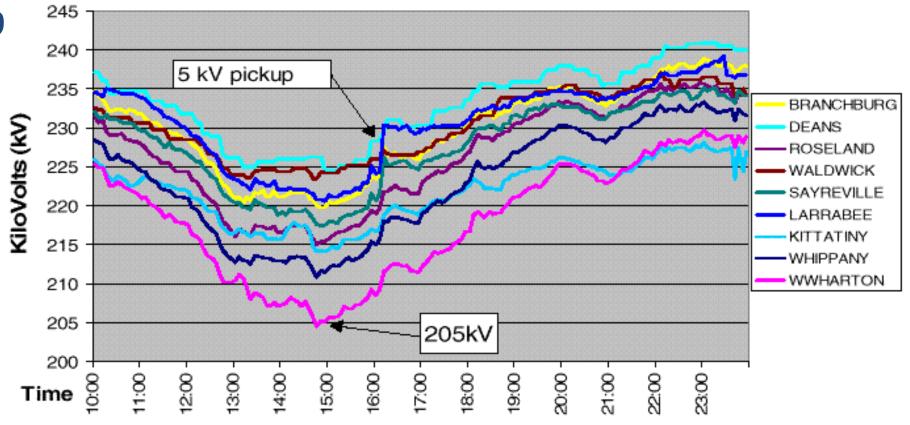
1600 - Cut 100 MWs of Spot Ins

1608 - Red Bank Station Trips

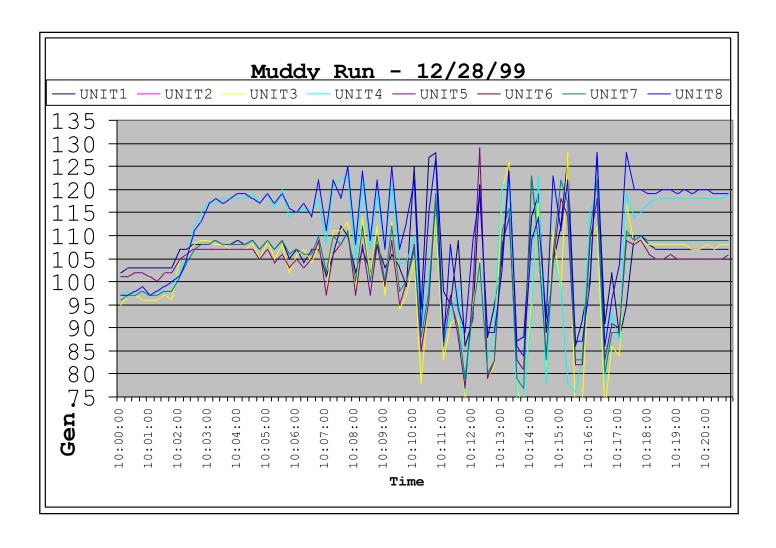


#### Times of notable events

1358 - 5% Voltage Reduction


1500 - Cut 100 MWs of Spot Ins

1515 - TLR Issued (1202 MW's cut for 200 MW's relief)

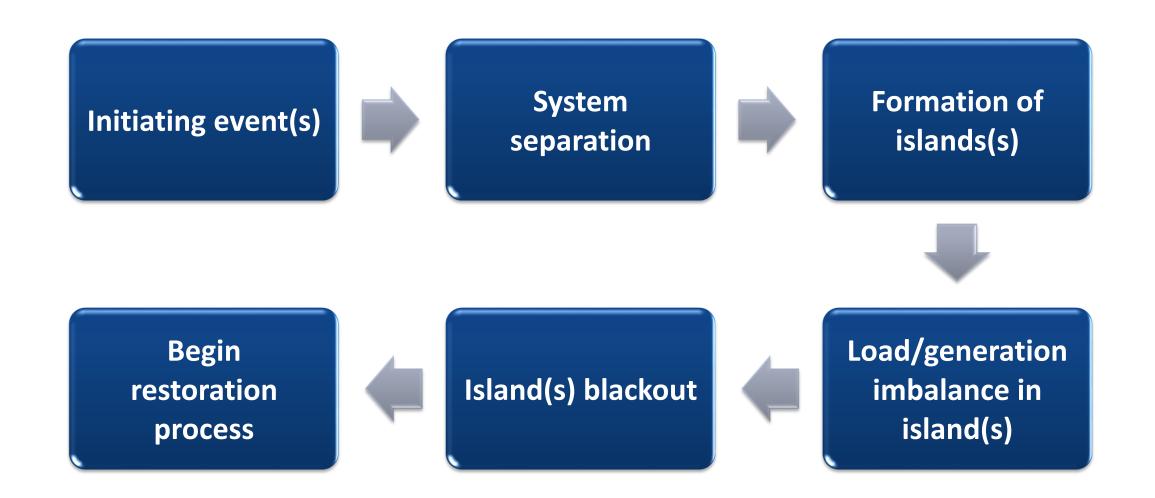

1600 - Cut 100 MWs of Spot Ins

1608 - Red Bank Station Trips





- Dynamic Instability
  - System does not damp out normal oscillations
  - Groups of generators "swing" against each other resulting in large oscillations in MW, MVAR
  - Could result in:
    - Generation trippings
    - Voltage collapse
    - Equipment damage
  - Time Frame: 5-15 seconds




### **Causes of Blackouts – Cascading Thermal Overloads**

- Transmission operating criteria is designed to prevent cascading overloads (first contingency)
  - No equipment can be operated such that the loss of a single facility causes any other facility to exceed it's emergency thermal rating
- Could also be caused by severe weather
- Time frame: Minutes to several hours

- Blackouts can (and have) occurred at all load levels, and during both peak and no-peak conditions
- Blackouts can happen during any type of weather
- No mater what the cause of the Blackout, your available system resources will determine your restoration strategy

### **Causes of Blackouts – Common Sequence of Events in Blackouts**





# **Determining System Status**

#### **Initial Assessment**

- First step of the restoration process is a complete assessment of the system
- Communication capability must be checked
- EMS SCADA indications must be confirmed and must be accurate if the process is to be successful
- Immediate assessment of generation resources before any process is initiated
- Black Start process can be developed based on actual unit availability

#### **Initial Assessment**

#### **EMS Alarms**

- First indication of a problem
- Barrage of alarms will appear
  - Some EMS systems have "smart" alarm processing to reduce the number of redundant alarms in a blackout situation
  - Don't delete the alarms. They will be helpful in system assessment and post-event analysis



#### **Initial Assessment**

#### Other EMS considerations

- State Estimators will not work in a complete or partial blackout situation
- If State Estimators is not working, Security Analysis functions will not work
- EMS performance may be slowed due to amount of alarm processing
- Telemetry and control may be spotty due to:
  - Communication failures
  - RTU failure or substation battery failure
- Data received may be of questionable integrity

#### **Initial Assessment – Communications**

- Functional communications are critical for the assessment of the extent of a blackout
- FIRST action following a blackout is to verify communication with:
  - PJM
  - Neighbors
  - Generating Stations
  - Substations
- Backup communication systems should also be verified since it may be necessary to utilize these systems





#### **Initial Assessment – Communications**

- Eliminate non-productive telephone communications
- Establish a communication center <u>outside</u> of dispatch center for communication with
  - Governmental agencies
  - Media
  - Customers
- Call for help
  - Extra dispatchers
  - Support personnel
  - Substation manpower



#### **Determining Generator Status**





Stabilize surviving on-line generation



Determine status of off-line generation



Restore auxiliary power to off-line generation



Prepare off-line generators for start-up



Determine preferred sequence of starting off-line generation

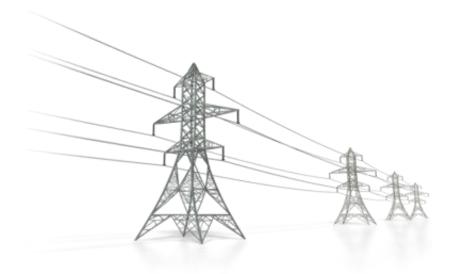
- For generation that is still <u>on-line</u> determine:
  - Location
  - Damage
  - Stability
    - Frequency of island
    - Can load be added
  - Unloaded capacity
  - Connectivity to the rest of the system
    - Islanded
    - Part of Eastern Interconnection



- For generation <u>off-line</u> determine:
  - Status prior to blackout (running, hot, on maintenance)
  - Blackstart capability of unit
  - Type of unit
    - Individual unit characteristics
  - Damage assessment
  - On-site source of power available or is off-site source (cranking power) required
  - Availability and location of cranking power

- Sequence of restoration of off-line generation will be determined by:
  - Type of generator
    - Hydro: Can be started quickly without outside source
    - CT-small CTs: Can be started quickly (10 minutes); large CTs will take longer (up to 1 hour)
    - Drum-Type Steam: 1-20 away hours depending on status
    - Super Critical Steam: 4-20 away hours depending on status
    - Nuclear: At least 24 hours away (probably 48 hours or longer)
  - State of operation of unit prior to blackout
    - Hot units may be returned quicker than cold units
  - Unit availability

- Auxiliary power should be restored to generation stations as soon as possible
- Short delays in restoring auxiliary power could result in long delays in restoring generation due to:
  - Congealed fuel oil
  - Sludge thickening in scrubbers (large demand of auxiliary power; as much as 30 MW)
  - Battery life expended
  - Bearing damage
  - Bowed shaft due to loss of turning gear

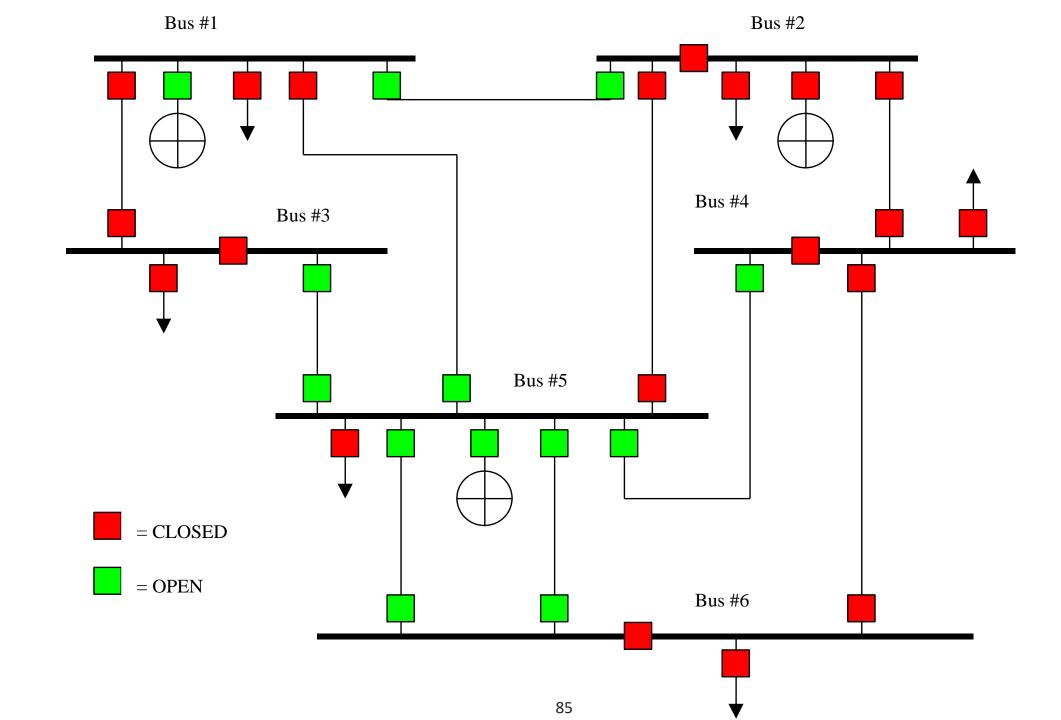



- Prioritization of available cranking power to off-line generation depends on:
  - NRC requirements (more on this later!)
  - Individual restoration plan
  - Start-up time of unit
  - Availability of on-site auxiliary power
  - Distance of cranking power from generation
- Effective communication with generating stations is essential in this process!

- Generating plant operators take actions to perform a safe plant shutdown
- Steam plant operators implement start-up procedures immediately following a plant shutdown unless instructed otherwise by the dispatcher
- Governors must be in service to respond to large frequency deviations
- Frequency control is maintained between 59.75 Hz and 61.0 Hz
- Plant operators must take action on their own to control frequency outside the range of 59.5 Hz - 61.0 Hz



- Key EMS indications to determine extent of outage include:
  - Frequency measurements (if available)
  - Voltage measurements
  - CB indications
  - If possible, verify EMS indications with field personnel
- Transmission map boards (mimics) are useful for this analysis




- Open circuit breakers may indicate:
  - Permanent faults which may have initiated system shutdown
  - Out of Step conditions
    - As system collapses, power flow may swing through the impedance settings of line relays and trip the line. (Remember  $R = \frac{V}{I}$ )
    - These lines do not have a fault and are available for restoration

- Open circuit breakers may indicate:
  - Temporary faults in lines, transformers, reactors and capacitors
    - Caused by cascading overloads and line sag
    - After shutdown, conductor has cooled and line is available for restoration
    - Caused by equipment supplying neutral over-current
    - Generally this equipment's relays lock out and must be manually reset
    - Equipment may be available for restoration, though may require additional testing to ensure no internal damage

- <u>Closed</u> circuit breaker may indicate:
  - De-energized line with no problem
  - Damaged equipment that was never cleared by relay action
  - Equipment that was damaged <u>after</u> the system shutdown
- Determination of initiating event of the system shutdown will go a long way in determining the status of transmission!

- Determining faulted transmission equipment may be difficult because circuit breaker position will <u>not</u> provide a reliable indication of faulted versus nonfaulted equipment!
- Use the following methods to help determine the true faulted equipment:
  - Oscillograph and DFR operations and outputs
  - Substation inspections
  - Substation relay targets
- Faulted equipment should be isolated from the system





# PJM Forms Required During a System Restoration

#### **PJM Restoration Forms**

- Information required for the following situations:
  - Initial Restoration Report
  - Generation Restoration Report
    - Submitted hourly
    - Which units are in service
    - Which units are expected in the near future
  - Transmission Restoration Report
    - Every 30 minutes

OR

Every 10 lines restored



| COMPAN                                                   | IY INITIAL RESTORA             | TION REPO | RT          |
|----------------------------------------------------------|--------------------------------|-----------|-------------|
| Reporting Company:                                       |                                | Date:     |             |
| Reporting Contact:                                       |                                | Time:     |             |
|                                                          |                                |           |             |
|                                                          |                                |           |             |
| Generation Lost (Capacity)                               |                                | MW        |             |
| Generation Still Operating (Capacity)                    |                                | MW        |             |
| Generation Still Operating (Energy)                      |                                | MW        |             |
| # of Generators on Line                                  |                                |           |             |
| # of Subsystems (Islands)                                |                                |           |             |
| Customers Load Lost                                      |                                | MW        |             |
| % of Customer Load Lost                                  |                                | %         |             |
| # of Customers Lost in (000)                             |                                | THS.      |             |
| % of Customers Lost                                      |                                | %         |             |
| Total Restoration Expected to be Completed by, Date/Time | :                              |           |             |
| Equipment Damage:                                        |                                |           |             |
|                                                          |                                |           |             |
|                                                          |                                |           |             |
|                                                          |                                |           |             |
|                                                          |                                |           | <del></del> |
|                                                          |                                |           |             |
|                                                          |                                |           |             |
| Comments (Any outside ties with systems external to PJM  | that may have survived, etc.): |           |             |
|                                                          |                                |           |             |
|                                                          |                                |           |             |
|                                                          |                                |           | -           |
| Capacity – Rated Load Carrying Capability                |                                |           |             |
| Energy - MW Loading on a Machine                         |                                |           |             |
|                                                          |                                |           |             |

|                                                |      |    |    |    |     |    |     |     | PJ  | МС  | omp   | oosite | Initia | l Rest | torati | on Re | port |     |     |              |      |     |      |      |       |
|------------------------------------------------|------|----|----|----|-----|----|-----|-----|-----|-----|-------|--------|--------|--------|--------|-------|------|-----|-----|--------------|------|-----|------|------|-------|
|                                                |      |    |    |    |     |    | Т   |     |     |     |       |        |        |        |        | Date: | 1    | 1   |     |              |      |     |      |      |       |
|                                                |      |    |    |    |     |    |     |     |     |     |       |        |        | Tin    | ne:    |       |      |     |     | HRs          |      |     |      |      |       |
|                                                |      |    |    |    |     |    |     |     |     | G   | enera | tion [ | ata by | transm | ission | Zone  |      |     |     |              |      |     |      |      |       |
| Company Report Time:                           |      |    |    |    |     |    |     | FE- | FE- | FE- |       |        |        |        |        |       |      |     |     |              |      |     |      |      | РЈМ   |
| Company:                                       | RECO | PS | PE | AE | DPL | PL | UGI | JC  | ME  | PN  | ВС    | PEP    | SMECO  | DOM    | FE-S   | DLCO  | DAY  | AEP | COM | Roch<br>elle | FE-W | CPP | DUKE | EKPC | Total |
| Generation Lost<br>(Capacity) MW               |      |    |    |    |     |    |     |     |     |     |       |        |        |        |        |       |      |     |     |              |      |     |      |      |       |
| Generation still<br>Operating Capacity<br>(MW) |      |    |    |    |     |    |     |     |     |     |       |        |        |        |        |       |      |     |     |              |      |     |      |      |       |
| Generation still<br>Operating Energy (MW)      |      |    |    |    |     |    |     |     |     |     |       |        |        |        |        |       |      |     |     |              |      |     |      |      |       |
| # of Generators on Line                        |      |    |    |    |     |    |     |     |     |     |       |        |        |        |        |       |      |     |     |              |      |     |      |      |       |
| # of Subsystems                                |      |    |    |    |     |    |     |     |     |     |       |        |        |        |        |       |      |     |     |              |      |     |      |      |       |
|                                                |      |    |    |    |     |    |     |     |     |     | Loa   | d Data | by Tra | nsmiss | sion Z | one   |      |     |     |              |      |     |      |      |       |
| Company Report Time:                           |      |    |    |    |     |    |     | FE- | FE- | FE- |       |        |        |        |        |       |      |     |     |              |      |     |      |      | РЈМ   |
| Company:                                       | RECO | PS | PE | AE | DPL | PL | UGI | JC  | ME  | PN  | вс    | PEP    | SMECO  | DOM    | FE-S   | DLCO  | DAY  | AEP | COM | Roch<br>elle | FE-W | CPP | DUKE | EKPC | Total |
| Customer Load Lost<br>MW                       |      |    |    |    |     |    |     |     |     |     |       |        |        |        |        |       |      |     |     |              |      |     |      |      |       |
| % of Customer Load<br>Lost                     |      |    |    |    |     |    |     |     |     |     |       |        |        |        |        |       |      |     |     |              |      |     |      |      |       |
| # of Customers Lost<br>(000)                   |      |    |    |    |     |    |     |     |     |     |       |        |        |        |        |       |      |     |     |              |      |     |      |      |       |
| % of Customers Lost                            |      |    |    |    |     |    |     |     |     |     |       |        |        |        |        |       |      |     |     |              |      |     |      |      |       |
| Estimate for Total<br>Restoration (Date/Time)  |      |    |    |    |     |    |     |     |     |     |       |        |        |        |        |       |      |     |     |              |      |     |      |      |       |

|      | Compan                                                                                                          | y Transmi        | ssion Rest          | oration Re       | port                               |                              |
|------|-----------------------------------------------------------------------------------------------------------------|------------------|---------------------|------------------|------------------------------------|------------------------------|
|      | Date:                                                                                                           |                  | Time                | :                |                                    |                              |
|      | Reporting Company:                                                                                              |                  |                     |                  |                                    |                              |
|      | Company Contact:                                                                                                |                  |                     |                  |                                    |                              |
|      | ** This report should be submitted every 10 lines rest<br>changes since the last report, no report is required. | ored or 30 minut | tes. During drills, | reports may be   | -mailed to RestorationF            | orms@pjm.com. If no          |
|      | EXAMPLE DATA                                                                                                    |                  |                     |                  |                                    |                              |
| ID   | Facility Identification                                                                                         | Voltage<br>Level | Date<br>Restored    | Time<br>Restored | Energized since<br>Last Report (?) | Expected in Next<br>Hour (?) |
| 5003 | Keystone – Conemaugh                                                                                            |                  | 01/01/00            | 0800             | X                                  |                              |
| 5004 | Keystone – Juniata                                                                                              |                  |                     |                  |                                    | Х                            |
|      |                                                                                                                 | 111-14           | I B-t-              | T                | id-i                               | I Supported in North         |
| ID   | Facility Identification                                                                                         | Voltage<br>Level | Date<br>Restored    | Time<br>Restored | Energized since<br>Last Report (?) | Expected in Next<br>Hour (?) |
|      |                                                                                                                 |                  |                     |                  |                                    |                              |
|      |                                                                                                                 |                  |                     |                  |                                    |                              |
|      |                                                                                                                 |                  |                     |                  |                                    |                              |
|      |                                                                                                                 |                  |                     |                  |                                    |                              |
|      |                                                                                                                 |                  |                     |                  |                                    |                              |
|      |                                                                                                                 |                  |                     |                  |                                    |                              |
|      |                                                                                                                 |                  |                     |                  |                                    |                              |
|      |                                                                                                                 |                  |                     |                  |                                    |                              |
|      |                                                                                                                 |                  |                     |                  |                                    |                              |
|      |                                                                                                                 |                  | 1                   |                  |                                    |                              |
|      |                                                                                                                 |                  |                     |                  |                                    |                              |

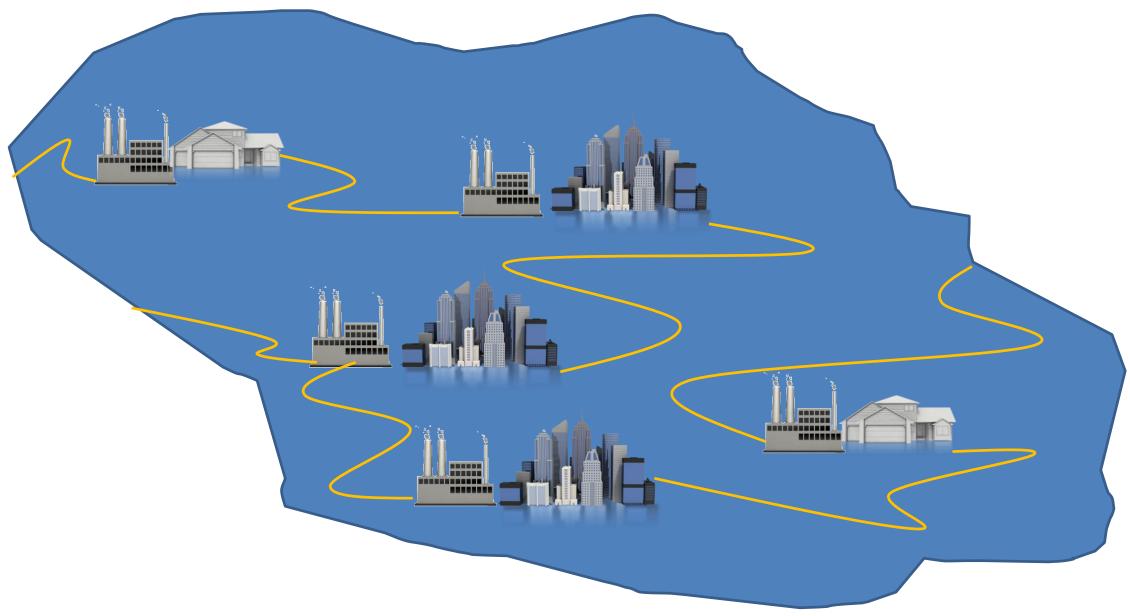
Exhibit 15: Company Transmission Restoration Report

| Date: Reporting Company: TransmissionZone: Company Contact: If no changes since last report GENERATION REPORT: |                 |               |       |           | Time:                               |      |      |
|----------------------------------------------------------------------------------------------------------------|-----------------|---------------|-------|-----------|-------------------------------------|------|------|
| TransmissionZone:  Company Contact:                                                                            |                 |               |       |           |                                     |      |      |
| Company Contact:                                                                                               |                 |               |       |           |                                     |      |      |
| lf no changes since last report                                                                                |                 |               |       |           |                                     |      |      |
| lf no changes since last report                                                                                |                 |               | - 11  | Estimated | Time to Complete Total Restoration: |      |      |
|                                                                                                                |                 |               |       | Date:     | Time:                               |      |      |
|                                                                                                                |                 |               |       | Date.     | 11116.                              |      |      |
| GENERATION REPORT:                                                                                             | submitted, rep  | ort is not re | •     |           |                                     |      |      |
|                                                                                                                |                 |               | MW    | LOAD      | RESTORATION REPORT:                 |      | MW   |
| Generation: Capacity on Line                                                                                   |                 |               |       | Total (   | Customer Load Restored              |      |      |
| Generation: Energy on Line                                                                                     |                 |               |       | # Of Cu   | ustomers Restored (000)             |      |      |
| # Of Generators on Line                                                                                        |                 |               |       | % Cust    | tomers Restored                     |      |      |
| # Of Subsystems (Islands)                                                                                      |                 |               |       | % Cust    | tomers Restored Last Hour           |      |      |
| CAPACITY DUE IN:                                                                                               |                 |               |       |           |                                     |      |      |
| Generation in One Hour                                                                                         | (1)             |               |       |           |                                     |      |      |
| Generation in Three Hours                                                                                      | (3)             |               |       | 1         |                                     |      |      |
| Generation in six Hours                                                                                        | (6)             |               |       | $\top$    |                                     |      |      |
| UNITS ON LINE SINCE LAST                                                                                       | REPORT          | Unit          |       | MW        | Station                             | Unit | MW   |
|                                                                                                                |                 |               |       |           |                                     |      |      |
|                                                                                                                |                 | +             |       | +         |                                     |      |      |
| UNITS EXPECTED DURING I                                                                                        | NEXT HOUR       |               |       |           |                                     |      |      |
| Station                                                                                                        |                 | Unit          |       | MW        | Station                             | Unit | MW   |
|                                                                                                                |                 |               |       | -         |                                     |      |      |
|                                                                                                                |                 |               |       |           |                                     |      |      |
|                                                                                                                |                 |               |       |           |                                     |      |      |
| Damage detected since last re                                                                                  | enort / comment | e.            |       |           |                                     |      |      |
| Damage detected strice idstite                                                                                 | -portr comment  | ٥.            |       |           |                                     | _    |      |
|                                                                                                                |                 |               |       |           |                                     |      |      |
|                                                                                                                |                 |               |       |           |                                     |      |      |
|                                                                                                                |                 |               |       |           |                                     |      |      |
|                                                                                                                |                 |               |       |           |                                     |      |      |
|                                                                                                                |                 |               |       |           |                                     |      |      |
| CRANKING POWER                                                                                                 |                 |               | - 1 - |           |                                     |      |      |
| From Company to Station                                                                                        |                 | kV            | 1     | Time      | From Company to Station             | kV   | Time |



# **Methods of System Restoration**

#### The "Bottom-Up" approach to restoration:


- Involves the formation of islands from black-start generation
- Has several variations that we will discuss in detail
- Is the only method of restoration available in a full system shutdown with no outside assistance available
- Should be the basis for company restoration plans

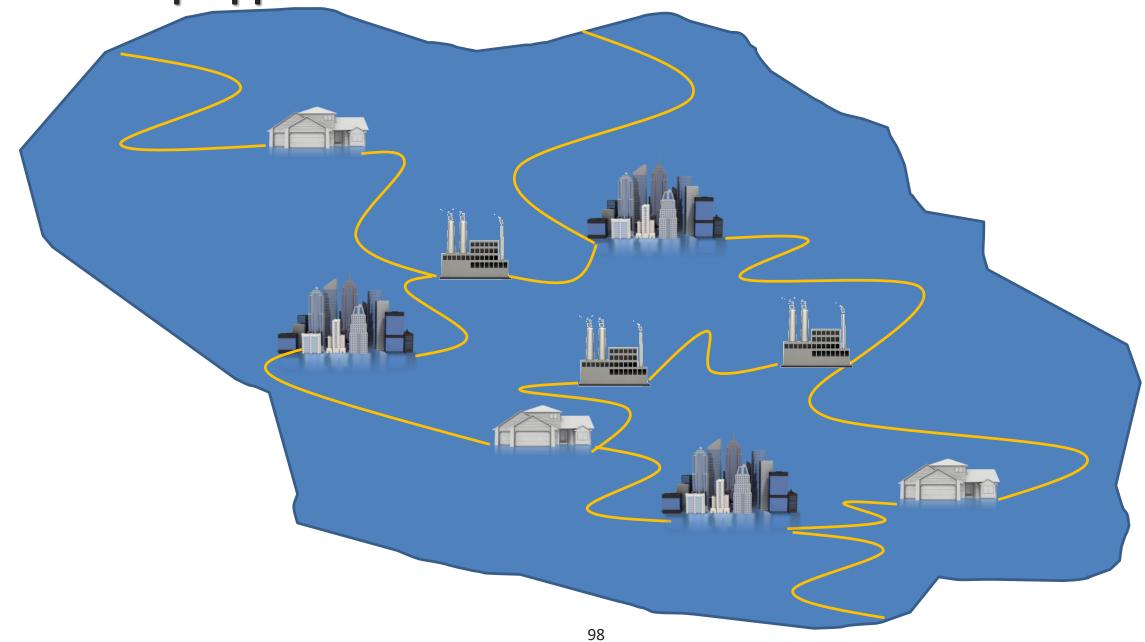


#### Steps involved in the "Bottom-Up Approach"

- 1. Select units to black-start
- 2. Start and stabilize black-start units
- 3. Determine restoration transmission path
- 4. Begin expanding island(s) by restoring transmission and load
- 5. Synchronize island(s) when appropriate

## **Bottom-Up Approach: Multiple Island Method**




#### "Multiple Island" method of restoration

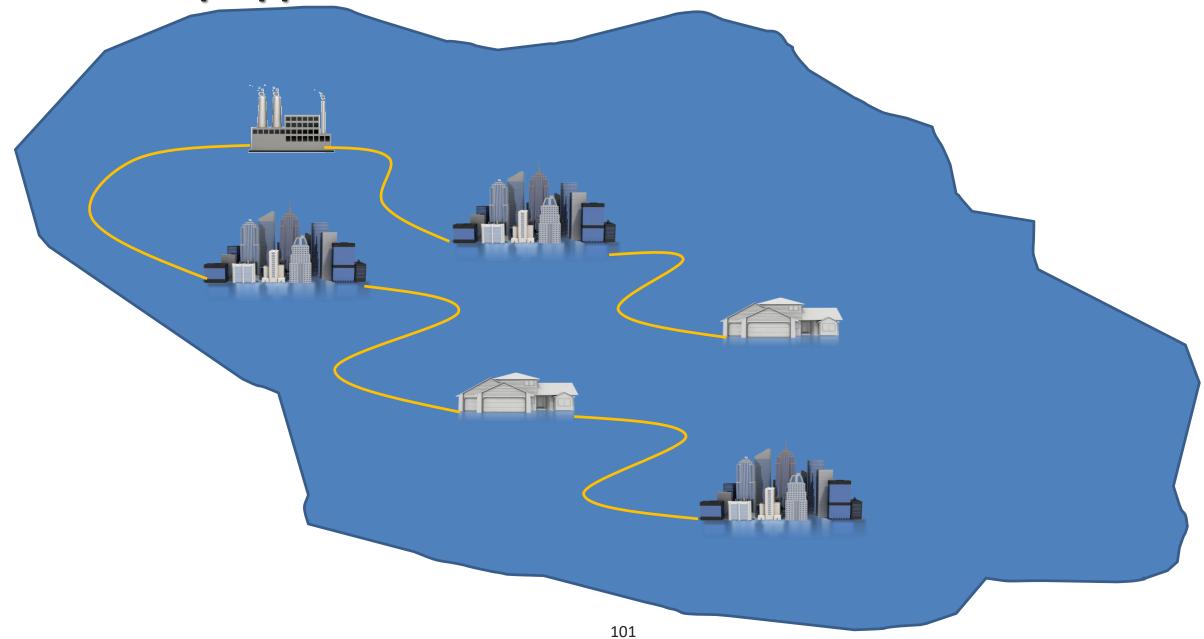
- Advantages
  - Multiple areas being restored in parallel
  - Faster restart of specific generation
  - If one island goes down, does not take down entire system
  - Allows for load pickup in critical geographic areas
  - High series reactance; high voltage drop

#### "Multiple Island" method of restoration

- Disadvantages
  - More difficult to control and interconnect multiple islands
  - Less stability due to smaller size of islands
    - Frequency will have greater variation due to less inertia
  - Generation operators must control frequency within their island
  - Slower overall restoration time
  - Reduced available fault current (possible clearing problems)

# **Bottom-Up Approach: Core Island Method**




#### "Core Island" method of restoration

- Advantages
  - Forms larger, more stable island with more generation
  - More focused control and switching
  - As island grows, allows for larger block of load restoration
    - U/F relaying can be restored earlier increased stability
  - Stable island more likely to be interconnected to neighboring systems.
  - Shorter overall restoration time
  - More available fault current, faster clearing times

#### "Core Island" method of restoration

- Disadvantages
  - If core island blacks out, process must be restarted
  - Restoration of critical load at generating or substations may be delayed if not in core island
  - Stations further from core island may run out of station battery power before light and power can be restored

# **Bottom-Up Approach: Backbone Island Method**

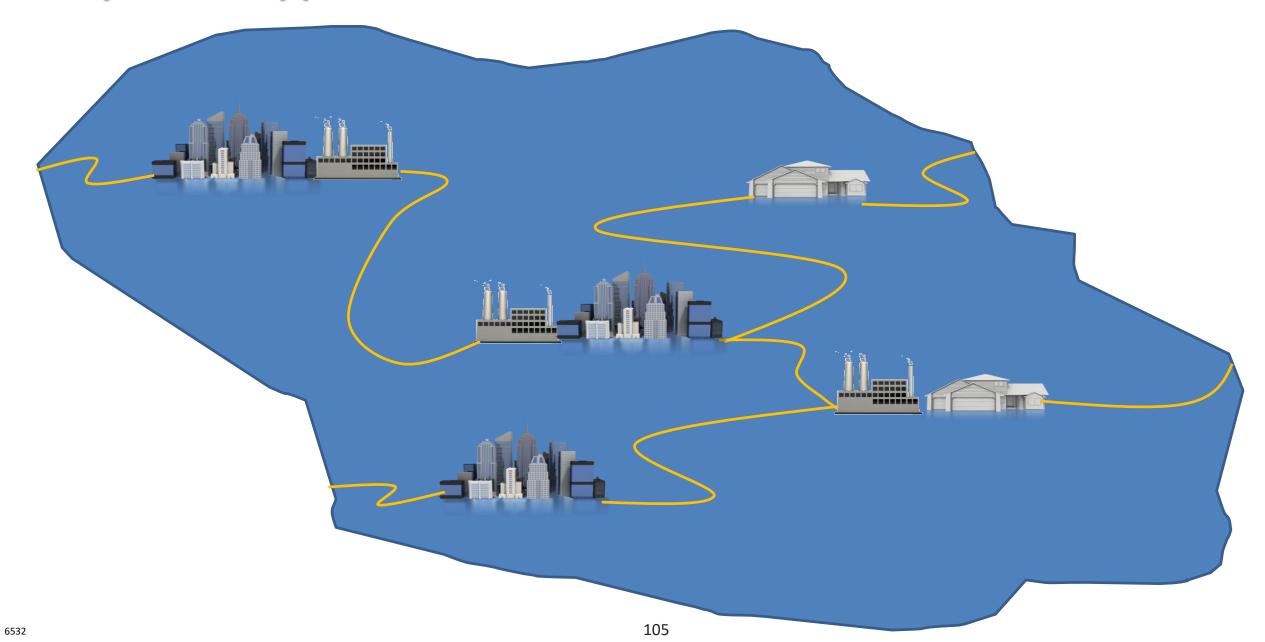


#### "Backbone Island" method of restoration

- Advantages
  - Restores critical auxiliary power to generating stations and light and power to substations very quickly
  - Focused control and switching
  - Restores a backbone of the transmission system quickly potentially allowing for outside assistance quicker

#### "Backbone Island" method of restoration

- Disadvantages
  - May experience high voltage due to excess line charging
    - Voltage control is difficult
  - Island may be unstable due to limited on-line generation and relatively longer transmission with less networking
  - May initially delay restoration of critical customer load


## **Top-Down Approach**

#### Steps involved in the "Top-Down Approach"

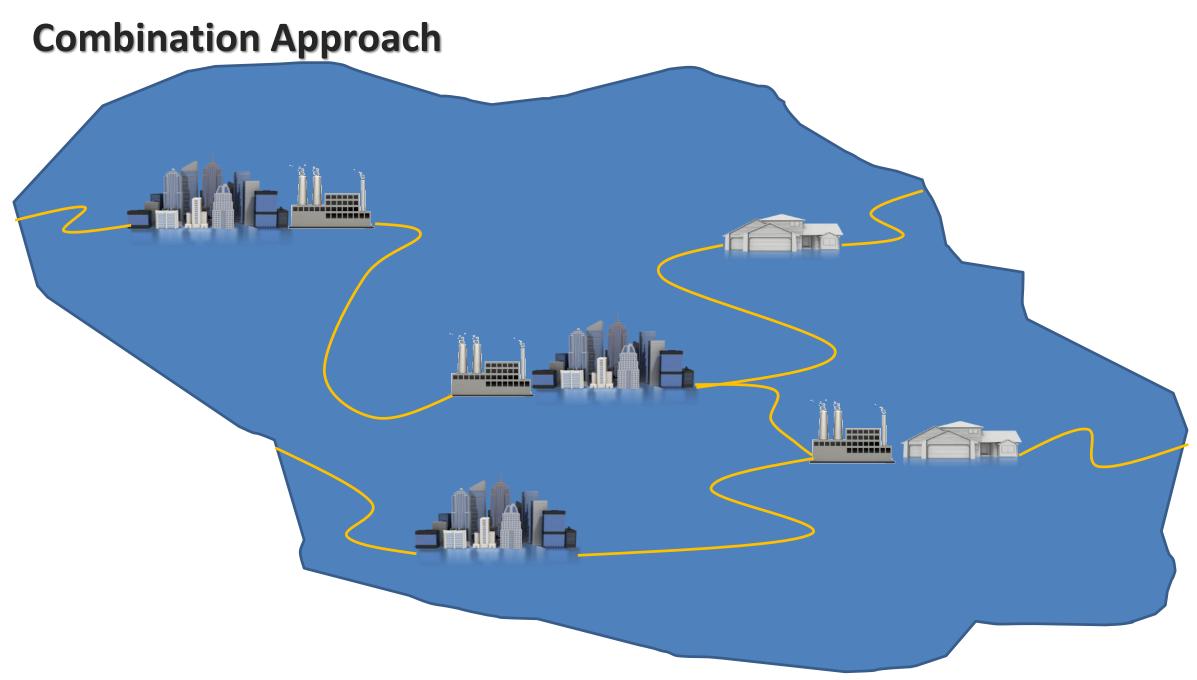
- 1. Restore backbone transmission system, usually from outside assistance
- 2. Restore critical generating station and substation load from transmission system
- 3. Bring on more generation
- 4. Restore underlying transmission system
- 5. Continue restoring load



## **Top-Down Approach**



## **Top-Down Approach**


#### "Top-Down" method of restoration

- Advantages
  - Restores critical auxiliary power to generating stations and light and power to substations very quickly
  - Can restore several areas of the system at the same time
  - System should be stable since connected to Eastern Interconnection
  - No synchronization required due to one island
- Disadvantages
  - May experience high voltage due to excess line charging
  - Reliant on neighbors ability to supply power
  - May experience transmission constraints

## **Combination Approach**

#### Combines the "Bottom-up" and "Top-down" approach

- The Combination approach includes:
  - 1. Restoring transmission from an outside source at the same time as building "islands" of generation
  - 2. Interconnecting "islands" with each other or outside source when able



# **Combination Approach**

#### "Combination" method of Restoration

- Advantages
  - Quickest way to restore critical auxiliary power to generating stations and light and power to substations
  - Can restore several areas of the system at the same time
  - Load connected to outside world is very stable
- Disadvantages
  - May experience high voltage due to excess line charging
  - Reliant on neighbors ability to supply power
  - Requires synchronization of multiple islands
  - Control of multiple islands and frequencies becomes complex

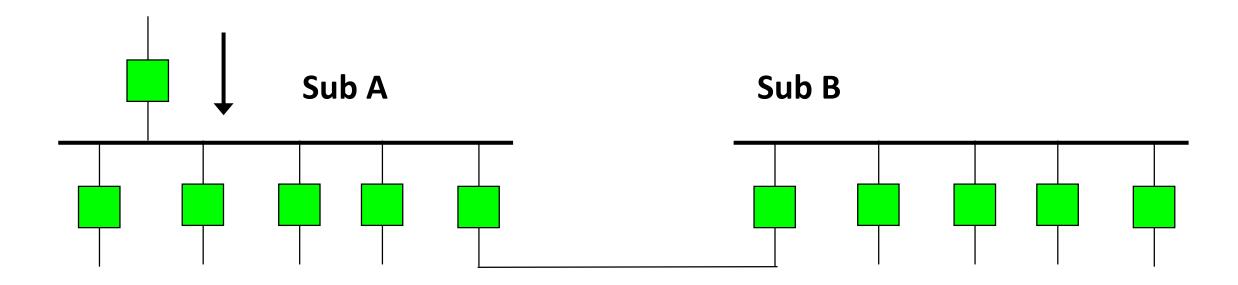
### **Selection of a Restoration Method**

- Restoration method chosen depends on:
  - Extent of blackout
  - Availability of outside assistance
  - Availability of internal black-start generation
- Company restoration plans based on worst case scenario and approved by PJM

When deviating from approved restoration plan, communication must occur between the TO and PJM



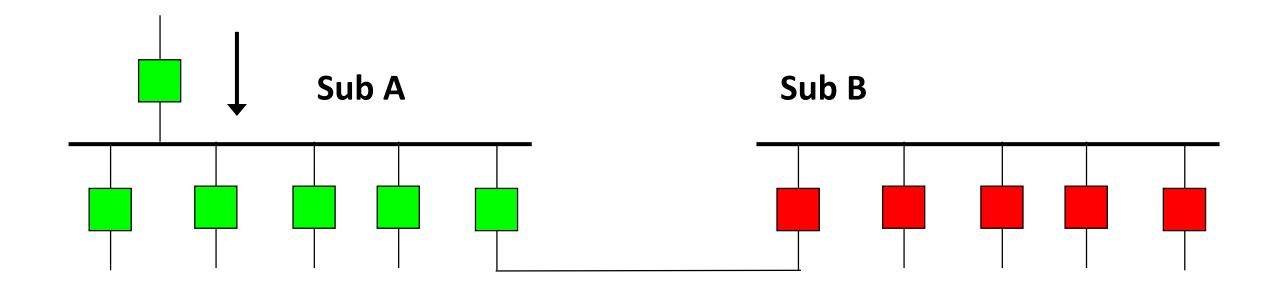
# **Choosing a Restoration Method Exercises**




# **Switching Strategies**

# **Switching Strategies – Restoration Switching Strategies**

## "All-Open" Approach


 All circuit breakers at blacked-out substations are opened prior to restoration process



# **Switching Strategies – Restoration Switching Strategies**

## "Controlled Operation" Approach

 Only those circuit breakers necessary to allow system restoration to proceed are opened



# **Switching Strategies – "All Open" Approach**

#### Advantages

- Simpler and safer configuration to re-energize
  - System collapse due to inadvertent load pickup less likely
  - Only breakers involved in restoration process need to be closed

#### Disadvantages

- Longer restoration time
- More stored energy required for greater number of breaker operations
  - Compressed air or gas, springs, station battery
  - Breakers should be capable of one open-close-open operation without ac station service

# **Switching Strategies – "Controlled Operation" Approach**

### Advantages

- Less stored energy requirements
  - Breakers not involved in the initial sectionalization and restoration remain closed
  - Some breaker operations may not be needed until after station service is re-established

#### Disadvantages

- Dispatcher must be continually aware of boundary between restored and deenergized systems
  - Switching process becomes more complex
  - Possibility of system shutdown due to inadvertent load pickup is increased

# **Switching Strategies – System Sectionalizing**

- Switching to disconnect load and capacitors from system prior to energization to prevent:
  - Large blocks of load pickup for frequency control
  - High voltage and generator under excitation
- May want to switch shunt reactors into service to prevent high voltage during transmission restoration
- Review transformer tap positions prior to energization especially if under automatic control
- Generator voltage regulators should be in service
- Protective relaying on all equipment should be in service



# **Restoring Power to Critical Facilities**

# **Cranking Paths**

- Generation units that shutdown and do not have black start capability require start-up cranking power from an off-site source
- To accommodate this, transmission and distribution lines and buses must be established
  - These Cranking Paths to non-black start unit must be identified in each TO's system restoration plan (SRP)
    - This includes any arrangements with other TOs or system to provide start-up assistance not available within the company's area

# **Cranking Paths**

The following types of Cranking Paths are defined:

- Cranking Path transmission path from a Black Start unit to another generator to facilitate startup of that generator to aid in the restoration process
- Critical Restoration Path (Nuclear) transmission path from a Black Start unit (or other source) that provides offsite power to a nuclear plant's auxiliary equipment to allow the nuclear plant to maintain safe shutdown
- Critical Restoration Path (Load) transmission path from a Black Start unit (or other source) to restore load that is identified as critical load
- Non-Critical Restoration Path transmission path from a Black Start unit (or other source) to restore non-critical loads or facilities as identified in the System Restoration plan

#### **Critical Load Restoration**

- Critical loads are restored by critical black start generation
- Minimum Critical Black Start Requirements for each transmission zone consists of:
  - Cranking power load to units with a "hot" start-up time of 4 hours or less
  - Off-site nuclear station light and power
    - Including units off-line prior to disturbance to maintain a <u>safe shutdown</u>
    - One feed into each facility
  - Critical gas infrastructure
    - Key in quick restoration of critical steam units

- Priority load provided by black start or generation
  - Nuclear Station Auxiliary Power
  - Cranking power to generation with a start time greater than 4 hours
  - Power to electric infrastructure
    - Light and power to substations
    - Pumping plants for underground cable systems
  - Communication equipment
  - Command and control facilities
  - Under frequency load shed circuits

- Nuclear Station Auxiliary Power (Priority load)
  - Emergency on-site generators provide for safe shutdown
  - NRC mandates restoration of at least two <u>independent</u> off-site power sources as a priority for a station start-up
    - Off site power should be provided consistent with the timelines identified in the TO restoration plan or NPIR agreements
  - Adequate voltages must be observed on the system
  - System frequency must be stable
  - Upon the availability of off-site power to non-safeguard busses a restart of the unit is possible, assuming no damage

#### Substation light and power required for:

- SF6 CBs heaters and compressor
  - Cold weather reduces time window for normal breaker conditions to as short as 30 minutes
  - Operation may be blocked by interlocks preventing operation with low pressure or temperature
  - May be manually operated but usually requires the breaker to be de-energized
- Battery chargers
  - Should have 8 hours of battery life
  - Battery capacity should handle all normal DC loads, largest credible substation event, and one open-close-open operation on each substation device

### **Pipe-Type Cable Installations**

- With no power at pumping plants:
  - 1) Oil pressure drops and cable system cools
  - 2) Gas pockets formed in pipe
  - 3) Vacuum could develop inside the terminators and line pipe
  - 4) Could result in immediate electrical failure or damage to cable upon re-energization
- Locations of pipe-type cable installations and pumping plants should be known by dispatchers
- Pressures should be verified prior to re-energization if cable and pumping plants have been off

## **Priority Customer Load**

- Circuits with load identified by company
  - Governmental, military facilities
  - Medical facilities
  - Public health (Water, sewage pumping stations)
  - Public communications (TV, Radio)
  - Communication facilities (phone)
  - Law enforcement (police, fire)





# **Black Start Generating Units**

- Required Black Start = 110% (Critical Load Requirement) on a locational basis
  - Accounts for an average forced outage rate (5%) plus an allowance for additional, unexpected Critical Load (5%)
  - Allows for redundancy for restoration even if some Black Start resources are unavailable, and a variance between Critical Load calculations and actual needs
- PJM will ensure, at a minimum, an allocation of two Black Start resources to each Transmission zone with a Critical Load requirement
  - Black start resources are not required to be physically located within the zone to which they are allocated (Cross Zonal Coordination)

- Must be tested annually
  - To ensure unit can start when requested from a "blackout" state
  - To ensure personnel are familiar with procedure
  - Have the ability to self-start without any outside source of power
  - Have the ability to close unit onto a dead bus within 3 hours of the request to start
  - Have the ability to run for 16 hours, or as defined by TO restoration plan
    - GOs must notify PJM and the TO if a critical blackstart fuel resource at max output falls below 10 hours
  - Have the ability to maintain frequency and voltage under varying load
  - The company must maintain black start procedures for each unit

- Exceptions or additions to the criteria above will be allowed with PJM approval:
  - SOS-T endorsement will be sought for these exceptions and additions
  - One example could be to address coping power needs for steam units that cannot be supplied by resources other than black start
  - Exceptions to critical cranking power are made for intermittent generation (i.e. wind, solar)
  - Exceptions to critical cranking power will be considered on a case by case basis for:
    - Complex cranking paths for minimum ICAP gain
    - Non-dispatchable units or units with very high minimum limits

## PJM Responsibilities:

- Ensure a minimum of two black start resources are "allocated" to each transmission zone with a critical load requirement
  - Not required to be physically located within the zone to which they are allocated
- In collaboration with the TOs,
  - Select Black Start units to meet Critical Load requirements during the 5-year Black Start Selection process
- Will utilize the Black Start Replacement Process, as described in
   PJM Manual M-14D for changes to Black Start availability or Critical Load requirements that occur within the 5-year period

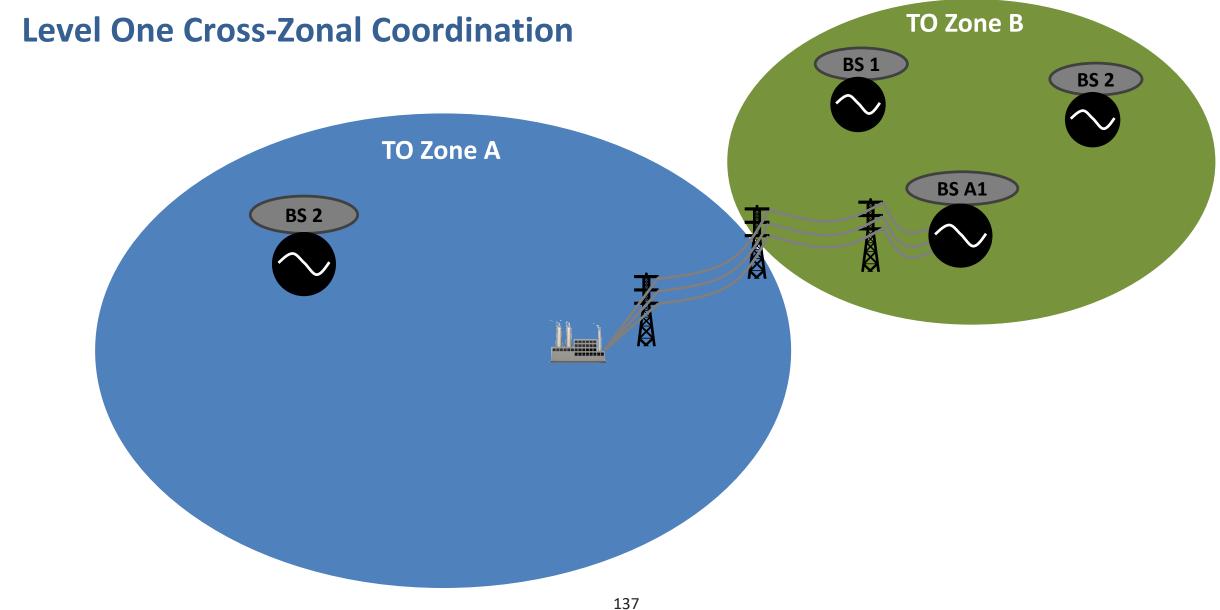
## PJM Responsibilities:

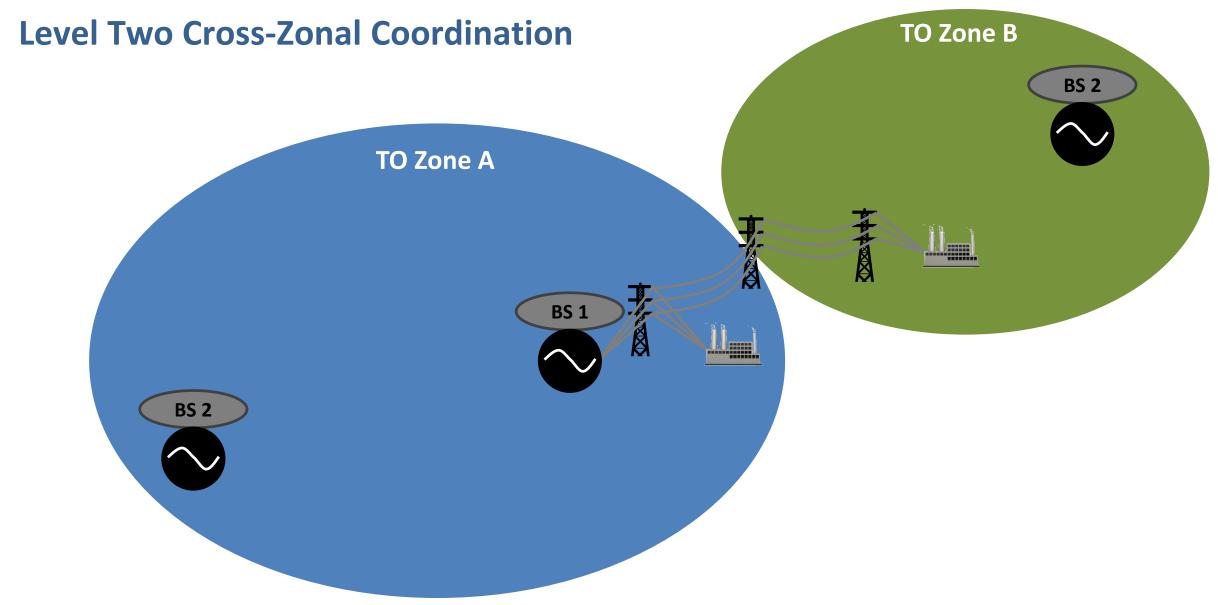
- Transmission Operator (TOP)
  - Responsible for selecting the Black Start resources for a system restoration plan
- Works closely with the TOs to identify these units based on:
  - Critical Load requirements
  - Available Black Start resources
  - Minimum number of Black Start resources allocated to a zone
  - Possible cross zonal coordination opportunities
    - Manual 36: System Restoration Attachment A: Minimum Critical Black Start Requirement

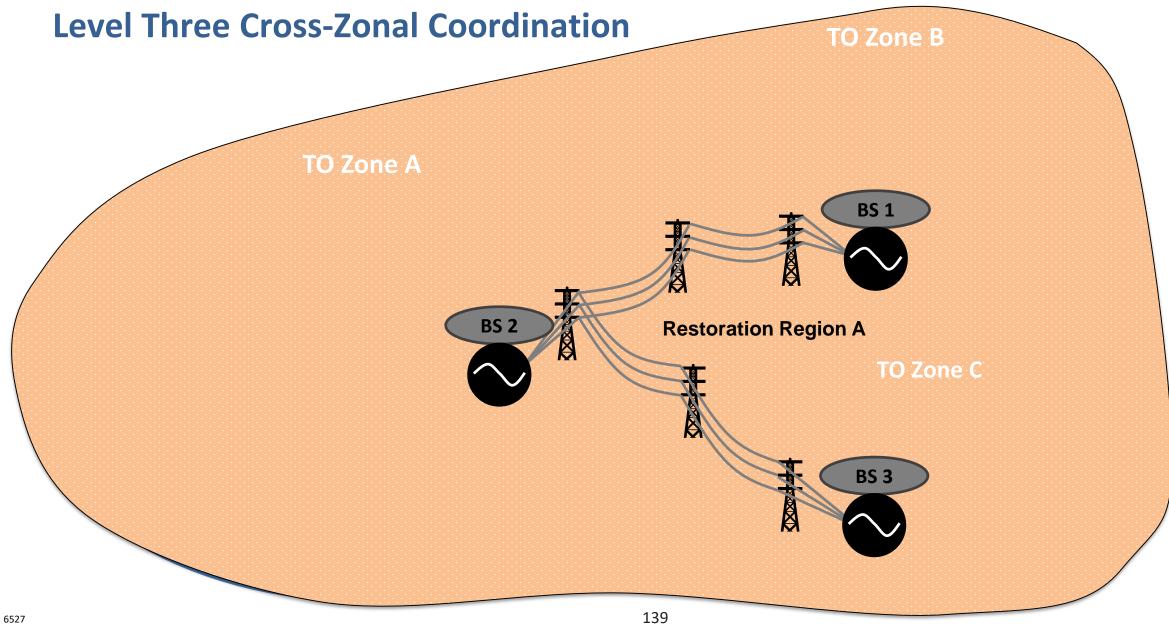
## PJM Responsibilities:

- Utilize the start time parameters and test data to evaluate the Black Start resources
  - Will they meet the requirements of the restoration plans
  - May require some Black Start resources to adhere to less than a 3-hour start time given critical load restoration timing requirements
    - These units will be notified of this timing requirement and tested to it during annual Black Start testing
  - Resources with three hour start times may not be appropriate to meet nuclear power off-site safe-shutdown load restoration requirements
    - Target restoration time for off-site power to nuclear stations is 4 hours

### **Member Responsibilities:**


- Adjust their system restoration plan based on the Black Start units allocated to it from this selection process
- Has the option of procuring additional Black Start resources (if not already procured by PJM), but the costs of these resources will be recovered, if necessary, outside of the PJM Open Access Transmission Tariff (OATT)
- Underfrequency Islanding Schemes and Load Rejection Schemes are considered an acceptable alternative to solely maintaining critical black start units, or can be utilized in conjunction with critical black start units as a means to serve critical load during restoration


#### **Member Responsibilities:**


- Should there be a disagreement about the location, amount or number of Black Start resources, or disagreement between the supplying TO, receiving TO or PJM about cross zonal coordination, the following process will be followed:
  - The parties involved would bring the issue to the SOS-T for consultation
  - If the parties continue to disagree, the issue would be referred to the Dispute Resolution Process as detailed in Schedule 5 of the PJM Operating Agreement
  - General notification of initiation and result of Dispute Resolution process will be given to the Operating Committee

Cross-Zonal Coordination is identifying areas within the RTO where it would be beneficial to coordinate individual TO restoration plans. Benefits include:

- Reliability Requirements
  - Procuring sufficient Black Start resources to meet critical load requirements
  - Meeting critical load restoration timing requirements
  - Meeting redundancy requirements
- Efficiency opportunities
  - Speed of restoration
  - Cost savings







### **Communications**

- Communication between the TO and the generating units is critical as the restoration progresses
- PJM policy is that during a system restoration Transmission Owners will direct the loading of all generation within their footprint
  - This includes both Black Start and conventional units
  - IPP units may participate when available, and to the extend their contracts permit

#### **Communications**

- Generating plant personnel should be aware of certain evolutions, because of the potential effects on the generator, and the need for the generator operator to take controlling actions
  - Picking up significant blocks of load
  - Energizing long transmission lines, and the resulting voltage swings
- Once PJM resumes control of an island, they will direct the operation and output of units



# **Coordinating Load Pickup**

#### **Transmission Restoration**

- Voltage Control
  - During restoration, operate so that reasonable voltage profiles (90% -105 % of nominal) are maintained
  - Where possible, maintain voltages at the minimum possible levels to reduce charging current
  - As transmission is energized, some load must be restored to reduce voltages. This could include:
    - Station light and power / auxiliary load
    - Shunt reactors / transformer excitation
    - Critical customer load
    - Generators / Synchronous condensers operating in the lead

#### **Transmission Restoration**

- Voltage Control
  - Shunt capacitors are removed until sufficient load (40%) has been restored to prevent high voltage
  - Shunt reactors
  - Automatic Static VAR Compensators
  - Automatic Voltage Regulators on generators



- Frequency Control
  - Maintain frequency between 59.75 and 61.00 with an attempt to regulate toward 60.00
  - Increase frequency to 60.00 60.50 prior to restoring a block of load
  - Manual load shedding may need to be used to keep the frequency above 59.50
  - As a guide, shed approximately 6-10% of the load to restore the frequency 1 Hz

- Frequency Control
  - Restore large blocks of load only if the system frequency can be maintained at 59.90 or higher
  - Restore load in small increments to minimize impact on frequency
  - Do not restore blocks of load that exceed 5% of the total synchronized generating capability
    - For example: If you have 1000 MW of generating capacity synchronized on the system, restore no more than 50 MW of load at one time

- Frequency Control
  - To estimate new frequency change following load pickup, use the following equation:
    - Frequency Change = (Load Change/Connected capacity) \* Governor Droop (in Hz)

147

New Frequency =
 Frequency prior to load pickup - Frequency change

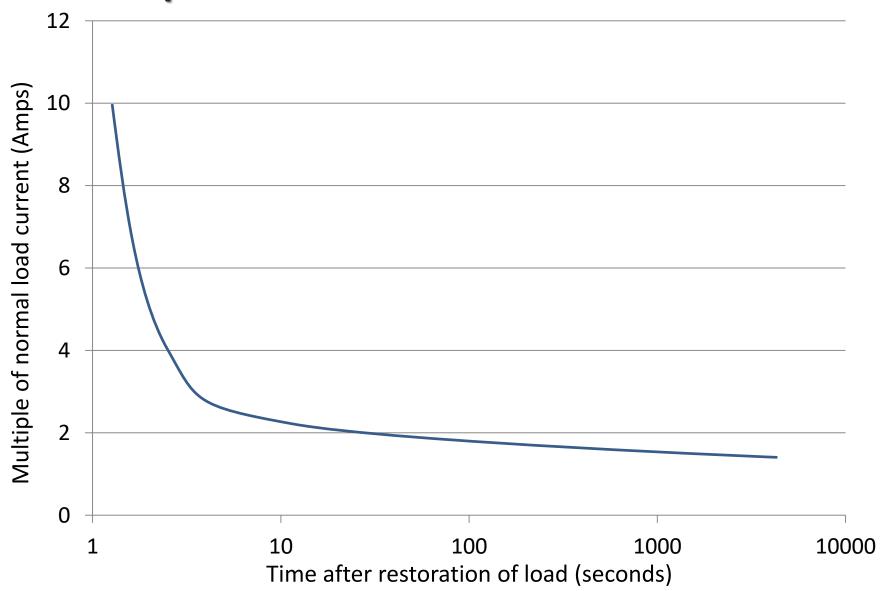


- Frequency Control Example
  - When restoring 100 MW of load with 3000 MW of capacity,
     frequency change is:
    - (100 MW/3000 MW)(3Hz) = (.033)(3Hz) = .1 Hz
  - However, if restoring the same 100 MW of load with 2000 MW of capacity,
     frequency change is:
    - (100 MW/2000 MW)(3Hz) = (.05)(3Hz) = .15 Hz
  - Smaller systems have larger frequency fluctuations when restoring load

#### **Frequency Control**

- Generators will trip off automatically due to:
  - Low Frequency at 57.50 Hz (under frequency relay)
    - High turbine blade vibration caused by harmonic resonance
  - High Frequency at 61.75 Hz (overspeed relay)

#### Cold Load


- Load which has been off for some time which has lost its diversity (cycling characteristics)
  - Time for load to get "cold" depends on weather conditions and duration of outage
  - This type of load is typically thermostatically controlled or cyclic and includes air conditioners, heaters, refrigerators and pumps
- Initial load current upon restoration can be as much as 10 times normal loading!
  - This is due to simultaneous starting of motors and compressors and light bulb filament heating

#### • Cold Load

- Effect of cold load will decay to about 2 times the normal load current in 2-4 seconds
- Load current will remain at a level of 150% to 200% of pre-shutdown levels for as long as 30 minutes

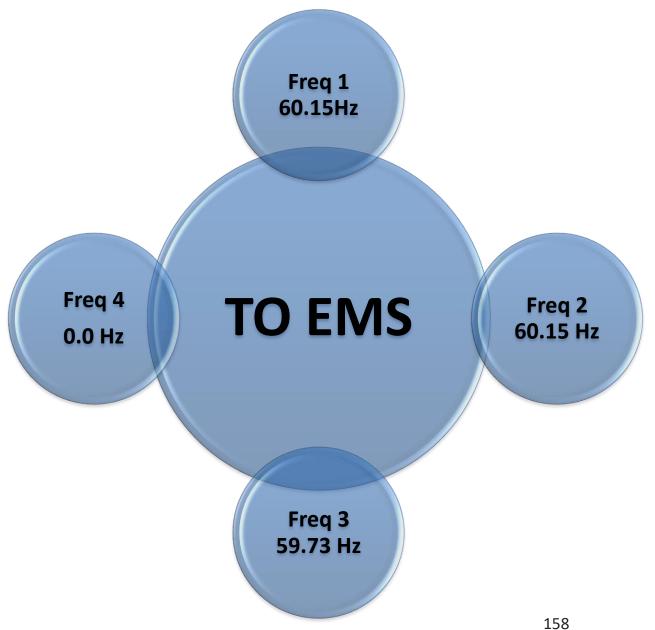


## **Cold Load Pickup**



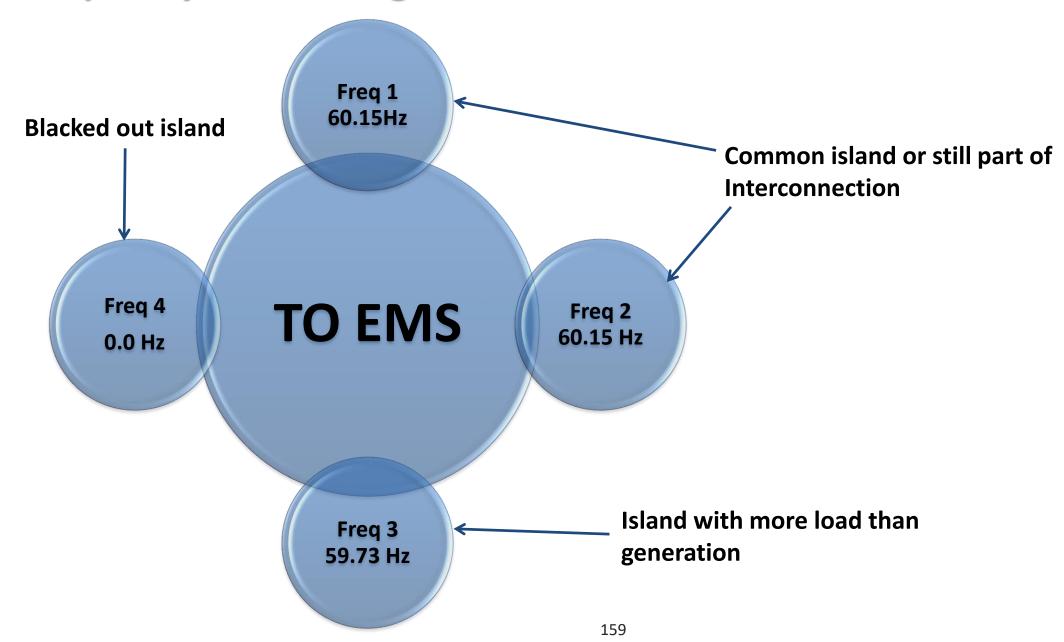
- Under-Frequency Load Shed
  - Feeder with relaying to automatically shed load if frequency decays below a specified level
  - Last resort to save system or island from frequency collapse
  - Considered as "Dynamic Reserve" (more later!)

- Under-Frequency Load Shed
  - Load equipped with under-frequency relaying should NOT be restored in early stages of restoration
    - Large frequency swings early in restoration process
    - Activated under-frequency relaying may cause high frequency on the unstable system
  - U/F load may be restored once system frequency is consistently above trip levels upon load restoration
    - Add load with under-frequency relays set at the lowest setting
    - As generation base continues to grow, load should be added with underfrequency relays set at the higher settings




# **Load Restoration Exercises**




# **Frequency Control**

- Each TO must monitor frequency in their zone
  - Monitoring frequency at multiple points throughout the TO zone will provide better situational awareness when analyzing the boundaries of an event that has led to system separation
    - Operators should be able to determine the number of islands and boundary of the affected area using frequency along with other measurements
    - It is also important to know what source the frequency measurement is coming from



If a TO is monitoring four frequencies in their area after a system disturbance, and their EMS indicates the following:

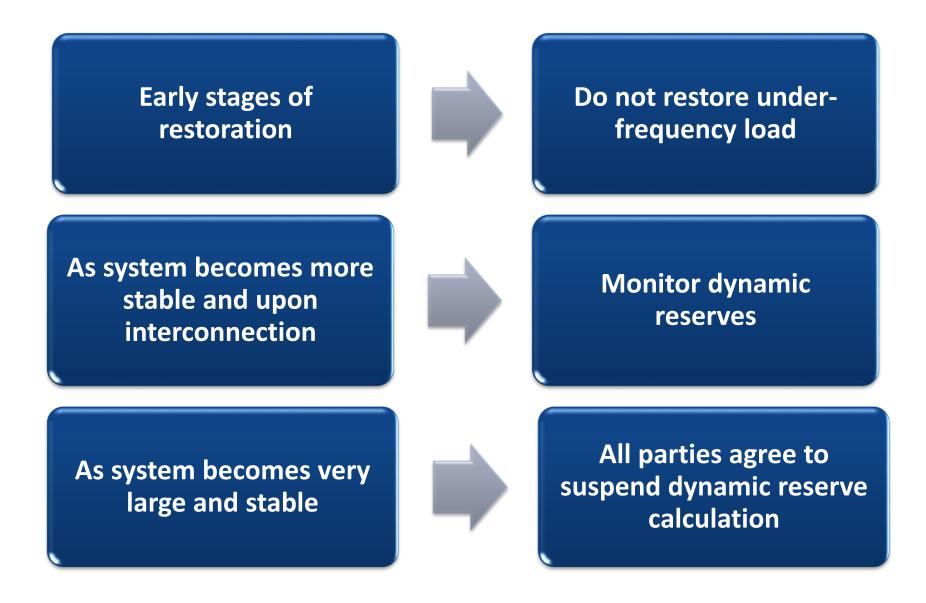
 What can be deduced from these measurements?

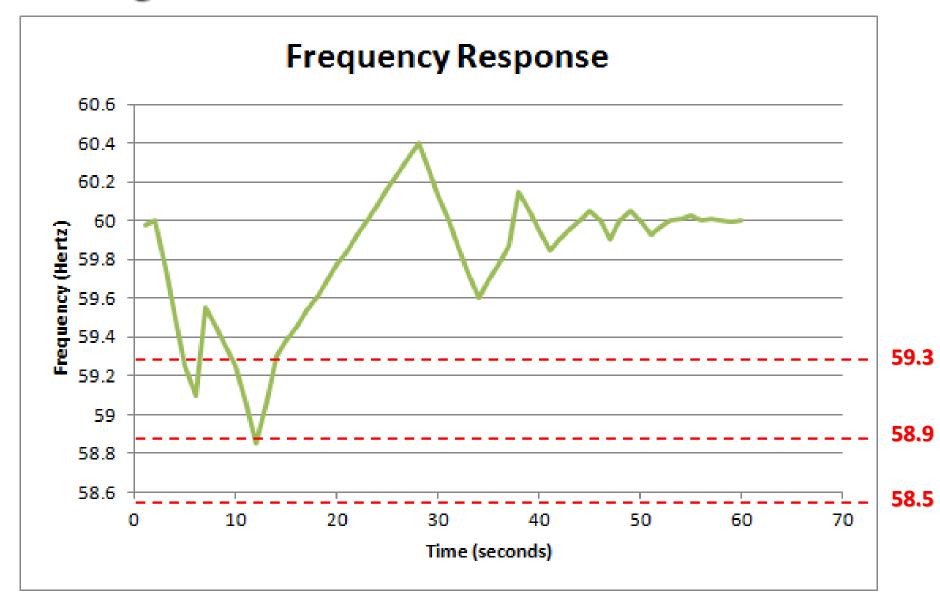


- Frequency Monitoring
  - During system restoration, the frequency of each island that is created will need to be monitored to ensure the balance of generation and load
  - Frequency will also be critical when it is time to interconnect these islands, as it
    must match to prevent damage to equipment or the shutdown of the island(s)
    - Generation or load may have to be adjusted in the islands in order to match the frequencies
    - Monitoring those frequencies is critical to verify those adjustments are having the intended effect



# **Maintaining Adequate Reserves**


- Two categories of reserves to be monitored in system restoration:
  - Synchronized reserve
  - Dynamic reserve
    - Enables system to be operated safely upon the loss of the largest energy contingency
- Calculation of other reserve categories (quick start, operating, etc.)
   that are not required during a system restoration


- Synchronized Reserve
  - For a system restoration, Synchronized reserve is defined as:
    - On-line generation that can be loaded within 10 minutes OR
    - Load (including customer load) that can be shed manually in 10 minutes
  - Enough synchronized reserve must be carried to cover an area's largest energy contingency
  - Largest contingency may or may not be the largest generator on the system
    - A transmission line carrying generation from a plant may cause more of a loss of generation than the loss of a single unit

- Dynamic Reserve
  - Amount of available reserve in order to preserve the system during a frequency disturbance
  - Amount of reserve must be enough to survive the largest energy contingency
  - Dynamic reserve consists of two components:
    - Reserve on generators that is available via governor action
    - Load with under-frequency relaying
  - Dynamic reserve is automatic, as opposed to synchronous reserve, which is manual
  - Dynamic reserve must be calculated for each island

- Dynamic Reserve from Generation
  - Amount of Dynamic Reserve needed is determined by generator
     "Load Pickup Factors" for units synchronized to the system
  - Load Pickup Factors = maximum load a generator can pick up as a percentage of generator rating without incurring a decline in frequency below safe operating levels (57.5 Hz)
  - "Rule of Thumb" load pickup factors are:
    - Fossil steam = 5% of unit's capacity
    - Hydro = 15% of unit's capacity
    - CTs = 25% of unit's capacity
    - OR unloaded capacity, whichever is less

- Dynamic Reserve from Under-frequency relaying
  - Load is tripped at frequencies above where units are disconnected from the system (57.5 Hz)
  - Arrests further frequency decay
  - Results in "step-function" frequency recovery
  - Resist restoring under-frequency load early in restoration process due to unstable frequency
  - Under-frequency relay load should be no more than 50% of total
     Dynamic Reserve
    - If more U/F load is restored, can only take credit for up to 50% of total Dynamic Reserve





- Dynamic Reserve Sample Calculation
  - A system has 300 MW of steam capacity, 400 MW of CT capacity, and 100 MW of hydro capacity
  - The load pick-up factors are 5%, 25% and 15% respectively.
    50 MW of under-frequency load shed is restored.
    Largest contingency is a 100 MW steam unit

#### **Governor Response**

(5%)(300 MW) = 15 MW (25%)(400 MW) = 100 MW (15%)(100 MW) = 15 MW= 130 MW

## **Largest Contingency Adjustment**

(5%)(100 MW) = -5 MW

#### **Governor Response Total**

= 125 MW

U/F Load = 50 MW

**Dynamic Reserve** = 175 MW

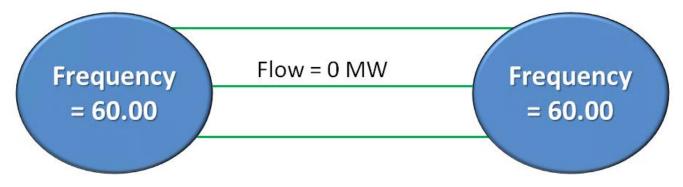


# **Dynamic Reserve Exercises**



# **Coordinating Synchronization of Islands**

- Islanded systems must be stable before attempting to interconnect with another company
  - PJM Interconnection Checklist is designed to ensure this (more later)
- Interconnection of a small stable island with a small unstable island will most likely result in a larger, but still unstable area
- If island is connecting to Eastern Interconnection, synchronism is still required, but stability issues are less of a concern


- How do I know if my system is stable?
  - Voltage within limits
  - Small voltage deviations when restoring load or transmission
  - Frequency within 59.75 and 61.0
  - Small frequency deviations when restoring load
  - Adequate reserves (synchronous and dynamic)
  - Significant amount of U/F relayed load picked up

### Synchronization

- Islands cannot be connected unless they are in synchronism
  - Frequencies of islands must match
  - Voltage magnitudes and phase angles must match
  - Frequency and voltage of the smaller island should be adjusted to match the frequency and voltage of larger island
  - Frequency and voltage in a smaller system are able to be moved more easily with smaller generation shifts
- Failure to match frequency and voltage between the two areas can result in significant equipment damage and possible shut-down of one or both areas

- Synchronization
  - Synchro-check relay
    - Measures voltage on each side of breaker
    - Set for angular difference (~20 degrees) with timer
    - Will only prevent closure if out of synchronism
      - Will not synchronize!
  - Synchroscope
    - Permits manual closing of breaker when two systems are in sync

- Pre-Tie Preparations
  - Identify transmission line to tie area together
    - Must be able to handle expected flow on tie
  - Identify substation and circuit breaker to use for synchronism
    - Circuit breaker must be equipped with either synchro-check relay or synchroscope availability
  - Ensure reliable communications between field personnel, control center and generating stations



- Post-synchronism
  - If possible, close any other available tie-lines between the two newly connected systems to strengthen stability
  - The larger company will control frequency while the other company(s) will control tie-line schedule
    - Larger company has more resources to control frequency
    - Large company will run flat frequency control
    - Other company(s) will run tie line control

- Benefits of Island Interconnection
  - Provides a more stable combined system
    - More system inertia
    - Enables quicker load pickup
  - Allows for sharing of reserves
    - Reserves allocated based on share of total capacity
  - Allows for supply of cranking power or energy for load among connected areas
  - Additional AGC control and regulation

Any opportunity to connect to the Eastern Interconnection should be taken!

- Expectations of Interconnected Island
  - Cranking power should be supplied to requesting companies as a priority to restoring native load
  - Companies/areas that have restored all native load (or never lost it) are expected to consider supplying both cranking power *and* energy for load to requesting system
    - Up to normal operating limits
    - As long as security of supplying company is not compromised

### **Interconnection of TOs**

#### **PJM Actions:**

- Act as coordinator and disseminator of information relative to generation and transmission availability
- Keep Member Companies apprised of developing system conditions
- Provide updated hydro capability
- Direct the restoration of the EHV system
- Direct synchronizing of islands in the RTO
- Coordinate with neighboring RCs and TOPs to establish external interconnections and establish tie schedules

#### **Member Actions:**

- Prior to synchronizing, each TO must ascertain that adequate reserves are available to cover the largest contingency within the interconnected area
  - Frequency of the smaller area is adjusted to match the frequency of the larger area
  - Area voltages and frequencies are controlled as close as possible prior to synchronization
  - Phase angle deviation of the voltages are as close to zero as possible
- TOs may share reserves and agree on a plan to act in a coordinated manner to respond to area emergencies

#### **Member Actions:**

 Identification of the coordinating TO controlling Flat-Frequency control and,

| ntification of the TO controlling Flat Tie-Lin | e control                                      |
|------------------------------------------------|------------------------------------------------|
| Nich comment to the Access                     | 1                                              |
|                                                | ntification of the TO controlling Flat Tie-Lin |

 During a restoration process, does your company have the capability to control either Flat Frequency, or Flat Tie Line?

#### **Member Actions:**

- Frequency is maintained between 59.75 Hz and 61.0 Hz, adjusting it slightly above 60 Hz prior to picking up load
- Synchronous Reserve and manual load dump is used to keep frequency above 60 Hz
  - 6-10% load shed to restore frequency 1.0 Hz
- Dynamic Reserve is allocated/assigned proportionally to the available
   Dynamic Reserve in each area

#### **Member Actions:**

- After synchronization, the TOs continue to strengthen and stabilize the interconnected area by the closure of additional TO-to-TO tie lines
- As additional areas are added to the interconnected area, reserve assignments and regulation shall be recalculated and reassigned
- TOs/GOs continue to maintain communications with PJM to provide updated status of system conditions, in addition to the hourly report

# Interconnection Checklist

|            | INTER                                                                         | CONNE      | CTION CHE              | CKLIS                                            | Γ        |          |          |              |
|------------|-------------------------------------------------------------------------------|------------|------------------------|--------------------------------------------------|----------|----------|----------|--------------|
| DATE:      |                                                                               |            | TIME:                  |                                                  |          |          |          |              |
| SLAND "A": |                                                                               |            | ISLAND "B":            |                                                  |          |          |          |              |
| CONTACT:   |                                                                               |            | CONTACT:               |                                                  |          |          |          |              |
|            | INF                                                                           | ORMA       | TION EXCH              | ANGE                                             |          |          |          |              |
|            |                                                                               |            |                        |                                                  | ISLAN    | D "A"    | ISLAND   | ) <b>-B-</b> |
| 1          | Are you currently interconnected?                                             |            |                        |                                                  |          |          |          |              |
|            | If YES, which company (ies)                                                   |            |                        |                                                  |          |          |          |              |
| 2          |                                                                               |            |                        |                                                  | YES      | NO       | YES      | NO           |
|            |                                                                               |            |                        |                                                  |          |          |          |              |
|            | Existing Tie-line schedules                                                   |            |                        |                                                  |          |          |          |              |
| 3          | FROM:                                                                         | TO:        |                        |                                                  |          | MV       |          | MW           |
|            | FROM:                                                                         | TO:        |                        |                                                  |          | MV       |          | MW           |
| 4          | FROM:                                                                         | TO:        |                        |                                                  | YES      | NO NO    | YES      | NO NO        |
| 4          | Do you need start-up power?  4a If YES, how much?                             |            |                        |                                                  | 165      | MW       | TES      | NO<br>MW     |
| 5          | Can you supply energy?                                                        |            |                        |                                                  | YES      | NO       | YES      | NO.          |
|            | 5a If YES, how much?                                                          |            |                        |                                                  |          | MV       |          | MW           |
|            |                                                                               | OADI       | NFORMATI               | ON                                               |          |          |          |              |
| 6          | Load Restored                                                                 |            |                        |                                                  |          | MV       |          | MW           |
| •          | 6a % of Load Restored                                                         |            |                        |                                                  |          | 7.       |          | 2            |
|            | Load Restored With Underfrequency Relay                                       | ying Enabl | ed:                    |                                                  | Hz       | MV       | Hz       | MW           |
| 7          |                                                                               |            |                        |                                                  | Hz       | MV       | Hz       | MW           |
| ,          |                                                                               |            |                        |                                                  | Hz<br>Hz | MV<br>MV | Hz<br>Hz | MW<br>MW     |
|            | 7a Total Load Restored will Under                                             | requency)  | <br>Relaying In-Servio | ne ne                                            | 112      | MV       | 112      | MW           |
|            |                                                                               |            | IERGY INFO             |                                                  | ON       |          |          |              |
| 8          | Largest Engery Contingency                                                    | ,          | EROT III C             | 1                                                | -        | MV       |          | Mw           |
| 9          | Generation On-line: Total Capacity                                            |            |                        |                                                  |          | MV       |          | MW           |
| 10         | Generation On-line: <i>Energy</i>                                             |            |                        |                                                  |          | MW       |          | MW           |
| 11         | Synchronous (Spinning) Reserve                                                |            |                        |                                                  |          | MV       |          | MW           |
| 12         | (Not including Load Shedding):<br>Governor Reserve:                           |            |                        |                                                  |          | MW       |          | Mw           |
| 12         | Total Dynamic Reserve:                                                        |            |                        |                                                  |          | IVIW     |          | MW           |
| 13         | (Governor Reserve + Total Restored Under                                      | erfrequenc | y Relaying) (Row       | 7a + 12)                                         |          | MV       |          |              |
|            | (N/A if company is tied to the Eastern Inter                                  |            |                        |                                                  |          |          |          |              |
| 14         | Frequency Range over the Last Hour:                                           |            |                        |                                                  |          | Hz       |          | Hz           |
|            | (N/A if company is tied to the Eastern Inte                                   |            |                        |                                                  |          |          |          |              |
|            | TIE-LINE LOCATION                                                             | ON ANI     | D SCHEDUL              | ING INF                                          | -ORMAT   | ION      |          |              |
| 15         | Tie-line to be established:                                                   |            |                        |                                                  |          |          |          |              |
| 16<br>17   | Tie-line schedule to be established: Which company will coordinate synchroniz | ation2     |                        | <del>                                     </del> |          |          |          | MW           |
| 18         | Which breaker / substation will be used for                                   |            | ization?               |                                                  |          |          |          |              |
| 19         | Which company will control frequency?                                         |            |                        |                                                  |          |          |          |              |
| 20         | Which company will control tie-line flow?                                     |            |                        |                                                  |          |          |          |              |
| 21         | Voltage At Boundary Buses:                                                    |            |                        |                                                  |          | kV       |          | k\/          |
| 22         | Relay or SPS concerns @ sync locations?                                       |            |                        | <u> </u>                                         |          |          |          |              |
|            |                                                                               | SYNCH      | IRONIZATIO             | ON                                               |          |          |          |              |
| 20         | What time will synchronization occur?                                         |            |                        |                                                  |          |          |          |              |
| 23         | 23a Contact name:<br>23b Phone #:                                             |            |                        |                                                  |          |          |          |              |
| 24         | What is maximum amount of load pick-up                                        | without no | otification?           |                                                  |          | MV       |          | MW           |
|            | Conditions that would cause the opening                                       |            |                        |                                                  |          |          |          |              |
| 25         |                                                                               |            |                        |                                                  |          |          |          |              |
|            |                                                                               |            |                        |                                                  |          |          |          |              |
| ADDITION   | NAL                                                                           |            |                        |                                                  |          |          |          |              |
|            |                                                                               |            |                        |                                                  |          |          |          |              |
|            |                                                                               |            |                        |                                                  |          |          |          |              |
|            |                                                                               |            | 100                    |                                                  |          |          |          |              |
|            | <u> </u>                                                                      |            | 185                    |                                                  |          |          |          |              |

#### **Member Interconnection Scenarios**

- 1. Member Company Transmission Owner connecting to another Member Company Transmission Owner within the RTO
- 2. Member Company Transmission Owner connecting with an external entity:
  - Islanded TO connecting to Eastern Interconnection
- 3. Cross Zonal Coordination:
  - Black Start of one zone supplying critical load of adjacent zone

## (1) Interconnection Checklist (TO to TO)

|             | INTER                                     | CONNECTION CHECK           | LIST      |          |            |          |
|-------------|-------------------------------------------|----------------------------|-----------|----------|------------|----------|
| DATE:       |                                           | TIME:                      |           |          |            |          |
| ISLAND "A": |                                           | ISLAND "B":                |           |          |            |          |
| CONTACT:    |                                           | CONTACT:                   |           |          |            |          |
|             | INF                                       | ORMATION EXCHANG           | E         |          |            |          |
|             |                                           |                            | ISLAI     | ND "A"   | ISLAN      | ID "B"   |
| 1           | Are you currently interconnected?         |                            |           |          |            |          |
|             | If YES, which company (ies):              |                            |           |          |            |          |
| 2           |                                           |                            | YES Check | NO Check | YES  Check | NO Check |
| -           |                                           |                            |           |          |            |          |
|             | Existing Tie-line schedules               |                            |           |          |            |          |
|             | FROM:                                     | TO:                        |           | MW       |            | MW       |
| 3           | FROM:                                     | TO:                        |           | MW       |            | MW       |
|             | FROM:                                     | TO:                        |           | MW       |            | MW       |
| 4           | Do you need start-up power?               |                            | YES Ched  | NO Check | YES Check  | NO Check |
|             | 4a If YES, how much?                      |                            |           | MW       |            | MW       |
| 5           | Can you supply energy?                    |                            | YES Ched  | NO Check | YES Check  | NO Check |
|             | 5a If YES, how much?                      |                            |           | MW       |            | MW       |
|             |                                           | LOAD INFORMATION           |           |          |            |          |
| 6           | Load Restored                             |                            |           | MW       |            | MW       |
| 0           | 6a % of Load Restored                     |                            |           | %        |            | %        |
|             | Load Restored With Underfrequency Relayir | ng Enabled:                | Hz        | MW       | Hz         | MW       |
|             |                                           |                            | Hz        |          |            |          |
| 7           |                                           |                            | Hz        |          |            |          |
|             |                                           |                            | Hz        |          |            |          |
|             | 7a Total Load Restored w/ Underfree       | quency Relaying In-Service |           | MW       | <u> </u>   | MW       |

## (1) Interconnection Checklist (TO to TO)

| 8  | Largest Engery Contingency                                                                                                                               |            | MW  | MW    |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----|-------|
| 9  | Generation On-line: Total Capacity                                                                                                                       |            | MW  | MW    |
| 10 | Generation On-line: Energy                                                                                                                               |            | MW  | MW    |
| 11 | Synchronous (Spinning) Reserve (Not including Load Shedding):                                                                                            |            | MVV | MV    |
| 12 | Governor Reserve:                                                                                                                                        |            | MW  | MW    |
| 13 | Total Dynamic Reserve: (Governor Reserve + Total Restored Underfrequency Relaying) (Row 7a + 12) (N/A if company is tied to the Eastern Interconnection) |            | MW  | MVV   |
| 14 | Frequency Range over the Last Hour:<br>(N/A if company is tied to the Eastern Interconnection)                                                           | -N36       | Hz  | - Hz  |
|    | TIE-LINE LOCATION AND SCHEDULING                                                                                                                         | INFORMATIO | N   |       |
| 15 | Tie-line to be established:                                                                                                                              |            |     |       |
| 16 | Tie-line schedule to be established:                                                                                                                     |            |     | MW    |
| 17 | Which company will coordinate synchronization?                                                                                                           |            |     |       |
| 18 | Which breaker / substation will be used for synchronization?                                                                                             |            |     |       |
| 19 | Which company will control frequency?                                                                                                                    |            |     |       |
| 20 | Which company will control tie-line flow?                                                                                                                |            |     |       |
| 21 | Voltage At Boundary Buses:                                                                                                                               |            | kV  | kV    |
| 22 | Relay or SPS concerns @ sync locations?                                                                                                                  |            |     |       |
|    | SYNCHRONIZATION                                                                                                                                          |            |     |       |
|    | What time will a make mission a surf                                                                                                                     |            |     |       |
|    | What time will synchronization occur?                                                                                                                    |            |     |       |
| 23 | 23a Contact name:                                                                                                                                        |            |     |       |
| 23 |                                                                                                                                                          |            |     |       |
| 23 | 23a Contact name:                                                                                                                                        |            | MVV | 10 MW |

## (2) Interconnection Checklist (TO to Eastern Interconnection)

|             |            | INTE                            | RCONNEC         | TION CHECKLI            | ST        |          |           |          |
|-------------|------------|---------------------------------|-----------------|-------------------------|-----------|----------|-----------|----------|
| DATE:       |            |                                 | TII             | ME:                     |           |          |           |          |
| ISLAND "A": |            |                                 | IS              | LAND "B":               |           |          |           |          |
| CONTACT:    |            |                                 | C               | ONTACT:                 |           |          |           |          |
|             |            | IN                              | FORMATION       | ON EXCHANGE             |           |          |           |          |
|             |            |                                 |                 |                         | ISLA      | ND "A"   | ISLAN     | ND "B"   |
| 1           | Are you co | urrently interconnected?        |                 |                         |           |          |           |          |
|             | If YES, wh | nich company (ies):             |                 |                         |           |          |           |          |
| 2           |            |                                 |                 |                         | YES Check | NO Check | YES Check | NO Check |
|             |            |                                 |                 |                         |           |          |           |          |
|             | Existing T | ie-line schedules               |                 |                         |           |          |           |          |
| 3           | FROM:      |                                 | TO:             |                         |           | MW       |           | MW       |
| 3           | FROM:      | FROM: TO:                       |                 |                         | MW        |          | V M       |          |
|             | FROM:      |                                 | TO:             |                         |           | MW       |           | MW       |
| 4           | Do you ne  | ed start-up power?              |                 |                         | YES Ched  | NO Check | YES Check | NO Check |
|             | 4a         | If YES, how much?               |                 |                         |           | MW       |           | MW       |
| 5           |            |                                 |                 | dk YES ☐ Check NO ☐ Che |           |          |           |          |
|             | 5a         | If YES, how much?               |                 |                         |           | MW       |           | MW       |
|             |            |                                 | LOAD INF        | FORMATION               |           |          |           |          |
| 6           | Load Rest  | ored                            |                 |                         |           | MW       |           | MW       |
| 0           | 6a         | % of Load Restored              |                 |                         |           | %        |           | %        |
|             | Load Rest  | ored With Underfrequency Relay  | ing Enabled:    |                         | Hz        | MW       | Hz        | MW       |
|             |            |                                 |                 |                         | Hz        |          |           |          |
| 7           |            |                                 |                 |                         | Hz        |          |           |          |
|             |            |                                 |                 |                         | Hz        |          |           |          |
|             | 7a         | Total Load Restored w/ Underfre | equency Relayin | g In-Service            |           | MW       |           | MW       |

## (2) Interconnection Checklist (TO to Eastern Interconnection)

|    | CAPACITY / ENERGY INFORM                                                                                                                                 |              |            |   |       |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------|---|-------|
| 8  | Largest Engery Contingency                                                                                                                               |              | MW         |   | MW    |
| 9  | Generation On-line: Total Capacity                                                                                                                       |              | MW         |   | MW    |
| 10 | Generation On-line: Energy                                                                                                                               |              | MW         |   | MW    |
| 11 | Synchronous (Spinning) Reserve (Not including Load Shedding):                                                                                            |              | MVV        |   | MW    |
| 12 | Governor Reserve:                                                                                                                                        |              | MW         |   | MW    |
| 13 | Total Dynamic Reserve: (Governor Reserve + Total Restored Underfrequency Relaying) (Row 7a + 12) (N/A if company is tied to the Eastern Interconnection) |              | MW         |   | MW    |
| 14 | Frequency Range over the Last Hour:<br>(N/A if company is tied to the Eastern Interconnection)                                                           | -N36         | Hz         | - | Hz    |
|    | TIE-LINE LOCATION AND SCHEDULIN                                                                                                                          | G INFORMATIO | N          |   |       |
| 15 | Tie-line to be established:                                                                                                                              |              |            |   | ,     |
| 16 | Tie-line schedule to be established:                                                                                                                     |              |            |   | MW    |
| 17 | Which company will coordinate synchronization?                                                                                                           |              |            |   |       |
| 18 | Which breaker / substation will be used for synchronization?                                                                                             |              |            |   |       |
| 19 | Which company will control frequency?                                                                                                                    |              |            |   |       |
| 20 | Which company will control tie-line flow?                                                                                                                |              |            |   |       |
| 21 | Voltage At Boundary Buses:                                                                                                                               |              | kV         |   | k۷    |
| 22 | Relay or SPS concerns @ sync locations?                                                                                                                  |              |            |   |       |
|    | SYNCHRONIZATION                                                                                                                                          |              |            |   |       |
|    | What time will synchronization occur?                                                                                                                    |              |            |   |       |
| 23 | 23a Contact name:                                                                                                                                        |              |            |   |       |
|    | 23b Phone #:                                                                                                                                             |              |            |   |       |
| 24 | What is maximum amount of load pick-up without notification?                                                                                             |              | MW         | 1 | 10 MW |
| 25 | Conditions that would cause the opening of the tie-line:                                                                                                 | •            | . <b>.</b> |   |       |

## (3) Interconnection Checklist (Cross Zonal Coordination)

|             | INTER                                    | RCONNECTION CHECKL         | IST       |          |            |          |
|-------------|------------------------------------------|----------------------------|-----------|----------|------------|----------|
| DATE:       |                                          | TIME:                      |           |          |            |          |
| ISLAND "A": |                                          | ISLAND "B":                |           |          |            |          |
| CONTACT:    |                                          | CONTACT:                   |           |          |            |          |
|             | INI                                      | FORMATION EXCHANGE         |           |          |            |          |
|             |                                          |                            | ISLAN     | ID "A"   | ISLAN      | ND "B"   |
| 1           | Are you currently interconnected?        |                            |           |          |            |          |
|             | f YES, which company (ies):              |                            |           |          |            |          |
| 2           |                                          |                            | YES Check | NO Check | YES  Check | NO Check |
| -           |                                          |                            |           |          |            |          |
|             | Eviation Tie line enhadules              |                            |           |          |            |          |
|             | Existing Tie-line schedules FROM:        | TO:                        |           | MW       |            | MW       |
| 3           | FROM:                                    | TO:                        | -         | MW       |            | MW       |
|             | FROM:                                    | TO:                        | <u> </u>  | MW       |            | MW       |
| 4           | Do you need start-up power?              | 10.                        | YES Check |          | YES Check  |          |
|             | 4a If YES, how much?                     |                            |           | MW       |            | MW       |
| 5           | Can you supply energy?                   |                            | YES Check | NO Check | YES Ched   | NO Check |
|             | 5a If YES, how much?                     |                            |           | MW       |            | MV       |
|             | -                                        | LOAD INFORMATION           |           |          |            |          |
| 6           | Load Restored                            |                            |           | MW       |            | MW       |
| 6           | 6a % of Load Restored                    |                            |           | %        |            | %        |
|             | Load Restored With Underfrequency Relayi | ng Enabled:                | Hz        | MW       | Hz         | MV       |
|             |                                          |                            | Hz        | MW       |            |          |
| 7           |                                          |                            | Hz        | MW       |            |          |
|             |                                          |                            | Hz        | MW       |            |          |
|             | 7a Total Load Restored w/ Underfre       | quency Relaying In-Service |           | MW       |            | MW       |

## (3) Interconnection Checklist (Cross Zonal Coordination)

| 8              | Largest Engery Contingency                                                                                                                                                                |           | MW |   | MW     |  |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----|---|--------|--|
| 9              | Generation On-line: Total Capacity                                                                                                                                                        |           | MW |   | MW     |  |
| 10             | Generation On-line: Energy                                                                                                                                                                |           | MW |   | MW     |  |
| 11             | Synchronous (Spinning) Reserve<br>(Not including Load Shedding):                                                                                                                          | MW        |    |   | MV     |  |
| 12             | Governor Reserve:                                                                                                                                                                         | MW        |    |   | MW     |  |
| 13             | Total Dynamic Reserve: (Governor Reserve + Total Restored Underfrequency Relaying) (Row 7a + 12) (N/A if company is tied to the Eastern Interconnection)                                  | MVV       |    |   | MW     |  |
| 14             | Frequency Range over the Last Hour:<br>(N/A if company is tied to the Eastern Interconnection)                                                                                            | -N36      | Hz | - | Hz     |  |
|                | TIE-LINE LOCATION AND SCHEDULING I                                                                                                                                                        | NFORMATIO | N  |   |        |  |
| 15             | Tie-line to be established:                                                                                                                                                               |           |    |   |        |  |
| 16             | Tie-line schedule to be established:                                                                                                                                                      |           |    |   | MW     |  |
| 17             | Which company will coordinate synchronization?                                                                                                                                            |           |    |   |        |  |
| 18             | Which breaker / substation will be used for synchronization?                                                                                                                              |           |    |   |        |  |
|                | Which company will control frequency?                                                                                                                                                     |           |    |   |        |  |
| 19             |                                                                                                                                                                                           |           |    |   |        |  |
| 20             | Which company will control tie-line flow?                                                                                                                                                 |           |    |   |        |  |
|                | · · ·                                                                                                                                                                                     |           | kV |   | k\     |  |
| 20             | Which company will control tie-line flow?                                                                                                                                                 |           | kV |   | k\     |  |
| 20<br>21       | Which company will control tie-line flow?  Voltage At Boundary Buses:                                                                                                                     |           | kV |   | k\     |  |
| 20<br>21       | Which company will control tie-line flow?  Voltage At Boundary Buses:  Relay or SPS concerns @ sync locations?                                                                            |           | kV |   | k\     |  |
| 20<br>21       | Which company will control tie-line flow?  Voltage At Boundary Buses:  Relay or SPS concerns @ sync locations?  SYNCHRONIZATION                                                           |           | kV |   | k\     |  |
| 20<br>21<br>22 | Which company will control tie-line flow?  Voltage At Boundary Buses:  Relay or SPS concerns @ sync locations?  SYNCHRONIZATION  What time will synchronization occur?                    |           | kV |   | k\     |  |
| 20<br>21<br>22 | Which company will control tie-line flow?  Voltage At Boundary Buses:  Relay or SPS concerns @ sync locations?  SYNCHRONIZATION  What time will synchronization occur?  23a Contact name: |           | kV |   | 10 MVV |  |



## **Coordinating Frequency and Tie Line Control**

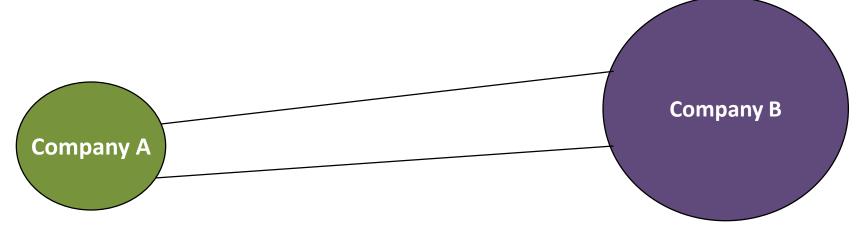
- Manual Control
  - No ACE is calculated
  - Regulation dispatched manually via ALL-CALL
  - Frequency controlled manually
  - Any required load shedding assigned on a proportional basis based on load
  - Emergency procedures initiated as required

- Tie-Line Bias Control
  - Used when control area to control area tie lines are in service
  - This is the normal control mode
  - Frequency bias (1% of load) needs to be adjusted as load changes
  - PJM will facilitate delivery of energy from remote systems

 $\textit{ACE} = \left(\textit{Frequency Deviation} \ (\textit{HZ}) * \ \textit{Frequency Bias} \ \left(\frac{\textit{MW}}{\textit{0.1 HZ}}\right) * \ \textit{10}\right) + \ (\textit{Tie Schedule} - \textit{Tie Actual})$ 



• Single Island




## Flat Frequency Control

Requires: Frequency Source, Frequency Bias

Frequency Bias = (0.01)(Company A Load)

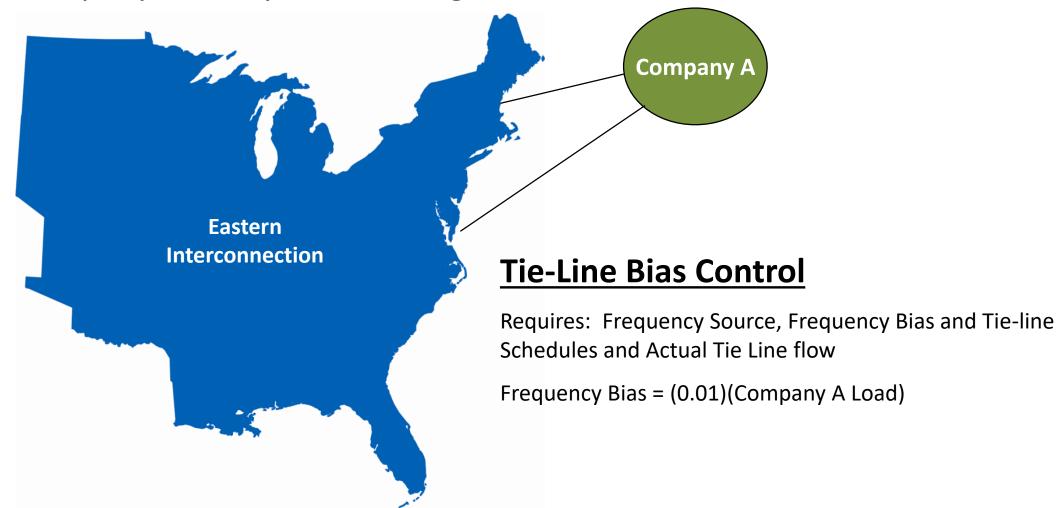
Multiple Islands



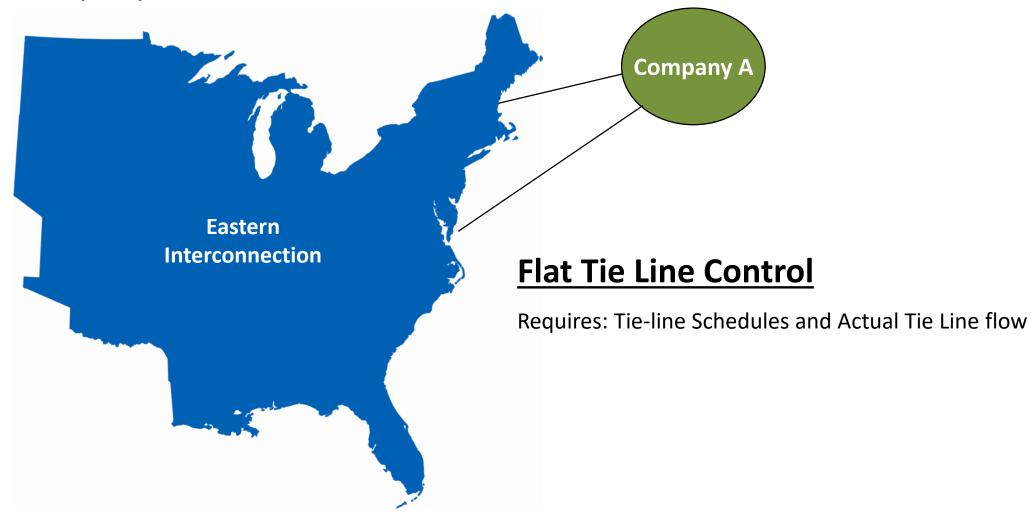
#### **Flat Tie Line Control**

Requires: Tie Line Schedule,
Actual Tie line flow

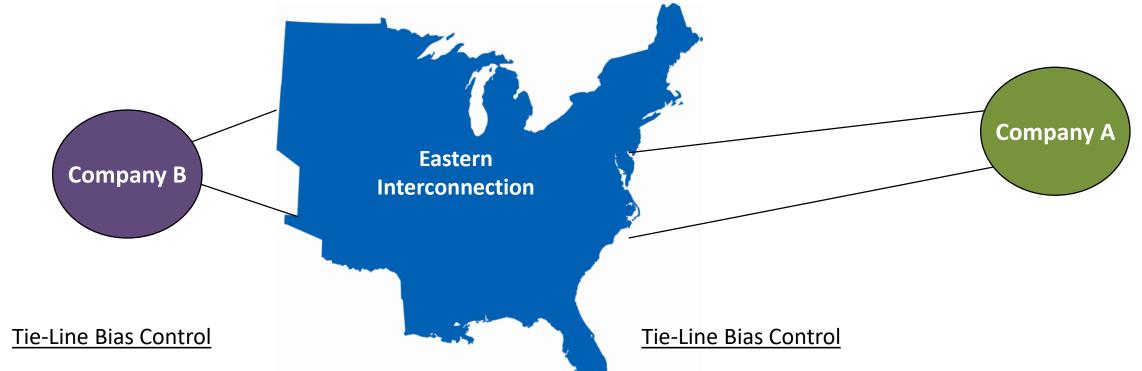
ACE = (Tie Schedule - Tie Actual)


#### **Flat Frequency Control**

Requires: Frequency Source, Frequency Bias


Frequency Bias =

(0.01)(Total System Load)


• If Company A has synchronized generation



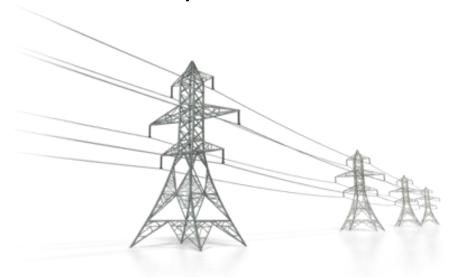
• If Company A is radial load:



Two Companies with Synchronized Generation

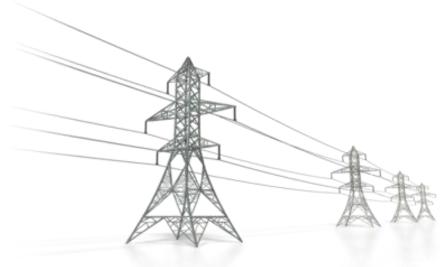


Requires: Frequency Source, Frequency Bias and Tieline Schedules Eastern Interconnection and Actual Tie line flows with Eastern Interconnection Requires: Frequency Source, Frequency Bias and Tie-line Schedules with Eastern Interconnection and Actual Tie line flows with Eastern Interconnection

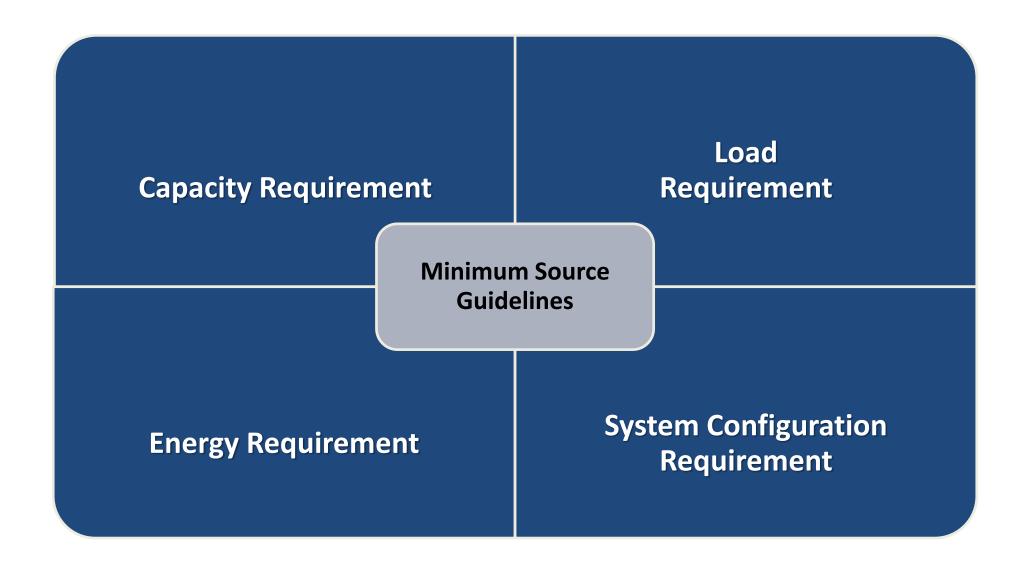

- When conditions permit, PJM will notify TO that PJM Control Area is returning to normal operation:
  - Free flowing internal ties
  - Generation under AGC control
  - Control area tie line control
  - Published regulation and reserve requirements



## **Identifying Minimum Source Guidelines**


#### **Transmission Restoration**

- EHV Energization Concerns
  - Steady-state overvoltage caused by excessive MVAR supply from the capacitance of the EHV line
  - Reduction in proper relaying protection reliability due to insufficient fault current
    - Critical in restoration due to higher probability of faulted equipment due to overvoltage and unclear system status

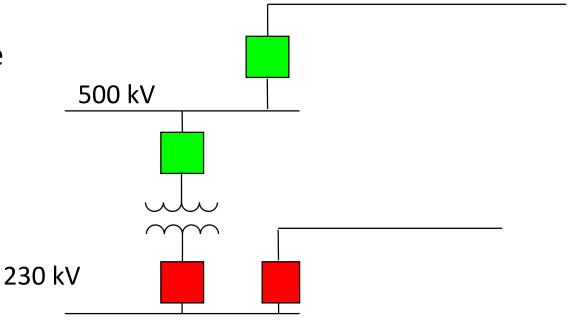



#### **Transmission Restoration**

- "Minimum Source Guidelines"
  - Requirements that must be met prior to the energization of EHV transmission
  - Identified to prevent or reduce the EHV energization concerns listed on the previous slide
  - PJM has established minimum source requirements for energization of 500
     & 765 kV lines



- Determine the ability to safely energize the 500 kV and 765 kV systems with respect to voltage profiles and fault current availability
  - Conservative and can be used in the absence of more detailed study results
  - Situations may dictate energizing EHV without all of these guidelines being met




- PJM 500 & 765 kV Minimum Source Guidelines
  - Primary and backup relays in service
  - Shunt capacitors out of service
  - Generation
    - 600 MW of electrically close generation (energy) connected at 230 kV or higher
      - Electrically close is defined as less than 50 230 kV miles
      - Provides adequate short circuit current for fault clearing
    - Minimum of 30 MW of generation (capacity) per mile of energized 500 or 765 kV
      - Provides approximately 2 MVAR/mile VAR absorbing capability

- PJM 500 & 765 kV Minimum Source Guidelines: Load
  - Minimum of 20 MW of load per mile of energized 500 or 765 kV line
    - Energized line = Already energized + Line being energized
    - Provides approximately 1.8 MVAR/mile VAR load
    - Helps balance the capacitive voltage rise

- Engineering guidelines are:
  - Clear dead bus sections
  - Reduce 500 kV / 765 kV voltage via tap changer
  - Reduce sending end voltage to 475 kV or lower and 230 kV or lower
  - Energize lines from strongest source
  - Parallel with 500 kV / 765 kV circuit break

- Other switching considerations
  - Energize 500 & 765 kV lines and transformers separately.
    - Helps prevent dynamic overvoltage due to transformer saturation and harmonics
    - Energize transformers from low side to allow for use of transformer tap changer to reduce voltage



- Other switching considerations
  - Add load to energized lines prior to energizing additional transmission lines
  - Energize only lines that will carry significant load
    - Prevents unwanted MVARS

 When detailed information about the system is known, the following guidelines can be used

| Description                                                                                                                                                                                                                                                                         | Reason                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| VAR Absorption - A minimum of 3.0 MVAR of electrically close VAR absorption per mile of 500kV/765kV line connected must be available. May be generator reactive (leading), reactive load, shunt reactors, etc. Static VAR compensator may assist in accomplishing this if available | This will control line voltage less than 500kV / 765kV                   |
| At least 3 MW of load per mile control of 500kV / 765kV line to be energized must be established on the underlying system.                                                                                                                                                          | To provide damping to dynamic over-voltage when energizing transformers. |

 When detailed information about the system is lacking, the following guidelines provide a 2:1 safety factor

| Description                                                                     | Reason                                                                                                                                                 |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Minimum Generating Capacity - 30 MW/ mile of 500kV / 765kV line to be connected | Provides approximately two MVAR/mile VAR absorbing capability at full load                                                                             |
| Minimum Load - 20 MW/mile of 500kV / 765kV line to be connected                 | Provides approximately 1.8 MVAR/mile VAR load to prevent machine from excessive loading operation. This will help balance the capacitive voltage rise. |

PJM 500 & 765 kV Minimum Source Guidelines: Example

- You have 1200 MW of load restored, 1700 MW of generating capacity and your frequency is 60.00
- All your relays are in service and capacitors are switched off
- You wish to energize a 50 mile 500 or 765 kV line
- Do you meet all the minimum source guidelines?

- PJM 500 & 765 kV Minimum Source Guidelines: Example
  - Required Energy for fault current clearing = 600 MW
    - You have 1200 MW load at 60.00 Hz Condition Met!
  - Required Load for MVAR absorption = 20 MW/mile
    - (50 miles)(20 MW/mile) = 1000 MW load required
    - We have 1200 MW of load Condition met!
  - Required Capacity for MVAR absorption = 30 MW/mile
    - (50 miles)(30 MW/mile) = 1500 MW capacity required
    - We have 1700 MW of capacity Condition met!

#### **Transmission Line Charging**

| Nominal Voltage  | Charging MVAR/Mile |
|------------------|--------------------|
| 69 kV Line       | 0.025              |
| 115/138 kV Line  | 0.100              |
| 230 kV Line      | 0.300              |
| 345 kV Line      | 0.800              |
| 500 kV Line      | 1.700              |
| 115/138 kV Cable | 2.0-7.0            |
| 230 kV Cable     | 5.0-15.0           |
| 345 kV Cable     | 15.0-30.0          |



## **Minimum Source Guidelines Exercises**

#### **Minimum Source Guidelines Exercise**

For the following scenarios, assume that no detailed load flow analysis is available to analyze the situations described below. Also, assume all generation and load is electrically close to the energization point, all shunt capacitors are out of service and all protective relaying is in service



## **Transferring Control Back to PJM**

- PJM assumes control of an area when:
  - Control of the area becomes too burdensome for any one TO
  - PJM desires to assume control to facilitate EHV restoration or establish tie lines with adjacent system
  - Requested by a Member
- PJM needs accurate system status information prior to assuming control of the restoration!

|                                                                            |                                                       | PJM Assumes                                  | s Control                                           |          |    |      |
|----------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------|-----------------------------------------------------|----------|----|------|
| Date:                                                                      |                                                       |                                              | Time:                                               |          |    |      |
| Reporting Company:                                                         |                                                       |                                              |                                                     |          |    |      |
| Regulation                                                                 |                                                       | MW                                           | Synchronous Reserv                                  | е        |    | MW   |
| Frequency Controlle                                                        | d by:                                                 |                                              | Frequency Maintaine                                 | d From   | to | HZ   |
| Dynamic Reserves: Percent at 59.5 HZ Percent at 59.0 HZ Percent at 58.5 HZ | % Percent                                             | Underfrequence<br>at 59.3 HZ%<br>at 58.9 HZ% | y Relays:<br>Percent at 59.1 H<br>Percent at 58.7 H | Z%<br>Z% |    |      |
| Steam MW                                                                   |                                                       | Governor Re<br>MW                            | Hydro                                               | MW       |    |      |
| Total Governor Res<br>Total Dynamic Res                                    | derfrequency Relayir<br>ponse:<br>serves:             | ng                                           | 5% Hydro Unit MWMW MW To Company, Comp              |          |    |      |
| From Co.                                                                   | To Co.                                                |                                              |                                                     |          |    |      |
| Trom co.                                                                   | 10 Co.                                                | MW                                           | From Co.                                            | To Co.   | 1  | MW   |
| Trom co.                                                                   | 10 Co.                                                | MVV                                          | From Co.                                            | To Co.   | 1  | VIVV |
| Troil co.                                                                  | 10 Co.                                                | MW                                           | From Co.                                            | To Co.   |    | MVV  |
| Troil co.                                                                  |                                                       | MVV                                          | From Co.                                            | To Co.   |    | MVV  |
|                                                                            | Connected Load                                        |                                              | From Co.                                            | To Co.   |    | ww   |
| 765 kV MW of Co                                                            | Connected Load                                        | MW                                           | From Co.                                            | To Co.   |    | ww   |
|                                                                            | Connected Load                                        |                                              | From Co.                                            | To Co.   |    | ww   |
| 765 kV MW of Co                                                            | Connected Load nnected Load nnected Load              | MW                                           | From Co.                                            | To Co.   |    | ww   |
| 765 kV MW of Co<br>500 kV MW of Co                                         | Connected Load nnected Load nnected Load nnected Load | MW                                           | From Co.                                            | To Co.   |    | ww   |
| 765 kV MW of Co<br>500 kV MW of Co<br>345 kV MW of Co                      | Connected Load nnected Load nnected Load nnected Load | MW<br>MW                                     | From Co.                                            | To Co.   |    | ww . |
| 765 kV MW of Co<br>500 kV MW of Co<br>345 kV MW of Co<br>230 kV MW of Co   | Connected Load nnected Load nnected Load nnected Load | MW<br>MW                                     | From Co.                                            | To Co.   |    |      |

#### **PJM Actions:**

- Assimilates required information on reporting form
- Determines required Dynamic and Synchronous reserve for area based on largest contingency
  - Assign reserve proportional to capacity
- Determine regulation requirement
  - 2% of interconnected area load
  - Assign regulation proportional to connected load
- Coordinate hydro operations
- Updates the DMT to reflect unit capability as reported by the GOs

#### **Member Actions:**

- Continue returning generation and load to maintain frequency
- Report returning units to PJM dispatcher
- Respond to emergency procedures as initiated by PJM
- Maintain established tie scheduled with other TOs until PJM returns to freeflowing tie conditions
  - Coordinate with PJM any change to pre-existing schedules (internal or external)
- Maintain communications with PJM to provide an updated status of system conditions, in addition to the hourly report

#### **Member Actions:**

- TO requests PJM approval prior to the closure of any reportable transmission line or a line that establishes an interconnection to an external system
- The TOs assure that adequate underlying transmission capability is electrically connected at the interconnection point of the 500 kV and above bulk transmission system to provide adequate fault current (relay protection) and VAR absorption capability when the line is energized (overvoltage)
- TO's/GO's continue to return generating units to on-line status and restore native load in small increments to maintain generation and load balance



## Questions?

**PJM Client Management & Services** 

**Telephone:** (610) 666-8980

**Toll Free Telephone: (866) 400-8980** 

Website: www.pjm.com



The Member Community is PJM's self-service portal for members to search for answers to their questions or to track and/or open cases with Client Management & Services

#### **Resources & References**



- PJM. (2019). *PJM Manual 36: System Restoration (rev 26)*. Retrieved from <a href="http://pjm.com/~/media/documents/manuals/m36.ashx">http://pjm.com/~/media/documents/manuals/m36.ashx</a>
- NERC. (2013). Standard EOP-005-2 System Restoration from Blackstart Resources. Retrieved from <a href="http://www.nerc.com/layouts/PrintStandard.aspx?standardnumber=EOP-005-2&title=System Restoration from Blackstart Resources&jurisdiction=United States">http://www.nerc.com/layouts/PrintStandard.aspx?standardnumber=EOP-005-2&title=System Restoration from Blackstart Resources&jurisdiction=United States</a>
- NERC. (2012). *Arizona-Southern California Outages on September 8, 2011.* Retrieved from <a href="http://www.nerc.com/pa/rrm/ea/September%202011%20Southwest%20Blackout%20Event%20Document%20L/AZOutage\_Report\_01MAY12.pdf">http://www.nerc.com/pa/rrm/ea/September%202011%20Southwest%20Blackout%20Event%20Document%20L/AZOutage\_Report\_01MAY12.pdf</a>
- NERC. (2004). Final Report on the August 14, 2003 Blackout in the United States and Canada: Causes and Recommendations. Retrieved from <a href="http://www.nerc.com/pa/rrm/ea/Pages/Blackout-August-2003.aspx">http://www.nerc.com/pa/rrm/ea/Pages/Blackout-August-2003.aspx</a>

#### **Resources & References**



- NERC. (2009). *Order on 2008 Florida Blackout*. Retrieved from <a href="http://www.nerc.com/FilingsOrders/us/FERCOrdersRules/Order\_FPL\_Settlement\_10082009.pdf">http://www.nerc.com/FilingsOrders/us/FERCOrdersRules/Order\_FPL\_Settlement\_10082009.pdf</a>
- Ohno, T. & Imai, S. (2006). *The 1987 Tokyo Blackout*. Available from <a href="http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4075764&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs-all.jsp%3Farnumber%3D4075764">http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4075764&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs-all.jsp%3Farnumber%3D4075764</a>
- AEMO. (2016). BLACK SYSTEM SOUTH AUSTRALIA FINAL REPORT. Retrieved from <a href="http://www.aemo.com.au/-">http://www.aemo.com.au/-</a>
  <a href="mailto:/media/Files/Electricity/NEM/Market Notices and Events/Power System Incident Reports/2017/Integrated-Final-Report-SA-Black-System-28-September-2016.pdf">http://www.aemo.com.au/-</a>
  <a href="mailto:/media/Files/Electricity/NEM/Market Notices and Events/Power System Incident Reports/2017/Integrated-Final-Report-SA-Black-System-28-September-2016.pdf">http://www.aemo.com.au/-</a>
  <a href="mailto:/media/Files/Electricity/NEM/Market Notices">http://media/Files/Electricity/NEM/Market Notices and Events/Power System Incident Reports/2017/Integrated-Final-Report-SA-Black-System-28-September-2016.pdf">http://media/Files/Electricity/NEM/Market Notices and Events/Power System Incident Reports/2017/Integrated-Final-Report-SA-Black-System-28-September-2016.pdf</a>
- Washington Post. (2016). Russian operation hacked a Vermont utility, showing risk to U.S. electrical grid security. Retrieved from <a href="https://www.washingtonpost.com/world/national-security/russian-hackers-penetrated-us-electricity-grid-through-a-utility-in-vermont/2016/12/30/8fc90cc4-ceec-11e6-b8a2-8c2a61b0436f">https://www.washingtonpost.com/world/national-security/russian-hackers-penetrated-us-electricity-grid-through-a-utility-in-vermont/2016/12/30/8fc90cc4-ceec-11e6-b8a2-8c2a61b0436f</a> story.html?utm term=.50f183ba7095