Generation Interconnection Facility Study Report

For

PJM Generation Interconnection Request
Queue Position AC1-164

Chickahominy 230kV
220.8 MW Capacity / 320 MW Energy

December 2019
General
This Facilities Study has been prepared in accordance with the PJM Open Access Transmission Tariff §207, as well as the Facilities Study Agreement between sPower Development Company, LLC, (Interconnection Customer (IC)) and PJM Interconnection, LLC (Transmission Provider (TP)). The IC has proposed a solar generating facility located in Charles City County, VA. The installed facilities will have a total capability of 320 MW with 220.8 MW of this output being recognized by PJM as capacity. The proposed in-service date for this project is 06/1/2021. This study does not imply an ITO commitment to this in-service date.

Point of Interconnection
AC1-164 will interconnect with the ITO transmission system via a new breaker bay into the Chickahominy 230kV substation.

Cost Summary
The AC1-164 project will be responsible for the following costs:

<table>
<thead>
<tr>
<th>Description</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attachment Facilities</td>
<td>$1,561,701</td>
</tr>
<tr>
<td>Direct Connection Network Upgrades</td>
<td>$0</td>
</tr>
<tr>
<td>Non Direct Connection Network Upgrades</td>
<td>$1,477,900</td>
</tr>
<tr>
<td>Allocation for New System Upgrades</td>
<td>$31,194</td>
</tr>
<tr>
<td>Contribution for Previously Identified Upgrades</td>
<td>$206,556</td>
</tr>
<tr>
<td>Total Costs</td>
<td>$3,277,351</td>
</tr>
</tbody>
</table>
A. Transmission Owner Facilities Study Summary

1. Description of Project
Queue AC1-164 is a request to interconnect a 320 MW solar generating facility located in Charles City County, Virginia. The scope of the project AC1-164 includes necessary network upgrades and attachment facilities to connect the generation to the Dominion transmission network. Attachment Facility and Network upgrade construction is estimated to be 8 - 12 months.

2. Amendments to the System Impact Study data or System Impact Study Results
None

3. Interconnection Customer’s Submitted Milestone Schedule
- Plan to break ground: September 1, 2020
- Permits – state level Permit By Rule and county level Final Site Plan approval complete: September 1, 2020
- Substantial site work completed: October 15, 2020
- Delivery of major electrical equipment: November 15, 2020
- Back Feed Power: May 15, 2021
- Commercial Operation: June 1, 2021

4. Scope of Customer’s Work
IC will build a solar generating facility in Charles City County, Virginia. The generating facility (Keydet Solar) will be comprised of 160 Power Electronics FS2200CU inverters and 80 4,400 kVA step up transformers. The generating facility will connect to the Point of Interconnection (POI) via one 230/34 kV grounded wye/grounded wye transformer with a rating of 284/320/356 MVA. The AC1-164 POI will be at the Chickahominy 230kV substation.

5. Description of Facilities Included in the Facilities Study
The project will add a 230 kV bay in the breaker and a half Chickahominy substation and build a short 230 kV transmission line to connect the generation to the ring bus. The ITO will build and own one span of the transmission line between the Chickahominy substation backbone and a new structure outside the fence. A line switch will be installed just outside of Chickahominy substation, on the property provided by the developer, and risers will be dropped from the line to the switches. Metering equipment, including metering accuracy CT’s and metering accuracy CCVT’s, will be installed just before the line switches. The developer collector station will be located on the property adjoining the Dominion Substation. The developer will bring the bus from the adjacent collector station to the line switches over the fence.

The substation general arrangement drawing (Attachment 2) was developed by the ITO during PJM’s Generation Queue Process. The single line is shown in Attachment 1.
6. Total Costs of Transmission Owner Facilities included in Facilities Study

<table>
<thead>
<tr>
<th>Work Description</th>
<th>Direct Labor</th>
<th>Direct Material</th>
<th>Indirect Labor</th>
<th>Indirect Material</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attachment Facilities</td>
<td>$733,665</td>
<td>$603,116</td>
<td>$132,444</td>
<td>$92,476</td>
<td>$1,561,701</td>
</tr>
<tr>
<td>Total Attachment Facilities Cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chickahominy 230kV sub expansion (n6252)</td>
<td>$712,616</td>
<td>$574,488</td>
<td>$117,885</td>
<td>$72,911</td>
<td>$1,477,900</td>
</tr>
<tr>
<td>Chickahominy wave trap replacement on line #557 to Elmont. (n5464)</td>
<td>$14,483</td>
<td>$12,791</td>
<td>$2,070</td>
<td>$1,850</td>
<td>$31,194</td>
</tr>
<tr>
<td>Ladysmith and Elmont wave trap replacements (n5483)</td>
<td>$30,997</td>
<td>$27,376</td>
<td>$4,430</td>
<td>$3,960</td>
<td>$66,764</td>
</tr>
<tr>
<td>Ladysmith and Possum Pt. wave trap replacements (n6063)</td>
<td>$19,619</td>
<td>$17,328</td>
<td>$2,804</td>
<td>$2,507</td>
<td>$42,258</td>
</tr>
<tr>
<td>North Anna wave trap replacement for Midlothian line #576. (n6055)</td>
<td>$12,608</td>
<td>$11,136</td>
<td>$1,802</td>
<td>$1,611</td>
<td>$27,157</td>
</tr>
<tr>
<td>Total Network Upgrades</td>
<td>$790,323</td>
<td>$643,119</td>
<td>$128,991</td>
<td>$82,839</td>
<td>$1,645,273</td>
</tr>
<tr>
<td>Total Project Costs</td>
<td>$1,523,988</td>
<td>$1,246,235</td>
<td>$261,435</td>
<td>$175,315</td>
<td>$3,206,974</td>
</tr>
</tbody>
</table>

7. Summary of Milestone Schedules for Completion of Work Included in Facilities Study:
Facilities are estimated to take 16 - 20 months to construct and this is based on the ability to obtain outages to construct and test the proposed facilities.

Proposed Schedule
- Detailed design: 6 - 8 months
- Permitting: 6 -12 months (Timeline runs concurrent with design)
- Construction 10 - 12 months

B. Transmission Owner Facilities Study Results

1. Attachment Facilities
The Attachment Facilities include that portion of the interconnecting switching station which is associated solely with the single feed to the generating facilities. The project’s Attachment Facilities include some 230 KV bus work required to create the new line position and one span of 230 kV transmission line from the substation to a structure outside the substation. Metering equipment, including metering accuracy CT’s and metering accuracy CCVT’s, will be installed in the Chickahominy substation. The equipment associated with the Attachment Facilities includes the following:

Purchase and install substation and line material:
Purchase and install substation material at Chickahominy substation:
1. Three (3), 230kV metering accuracy CCVT’s
2. Three (3), 230kV metering accuracy CT’s
3. Three (3), 180 kV, station class arresters
4. Conductors, connectors, conduits, control cables, foundations, steel structures and grounding.

Purchase and install relay material at Chickahominy substation:
1. One (1), 1808 – 28” Dual SEL-311L Line Diff. w/ Lockouts Panel
2. One (1), 1808 – 24” Dual SEL-311L Line Diff. w/ Lockouts Panel (Note: This panel to be installed on opposite end of line and owned by the developer).
3. One (1), 1425 – Dual SEL-735 Transmission & G. I. Metering
4. One (1), 4524 – Revenue Metering C.T. M.U. Box
5. One (1), 4506 – 3 phase CCVT Potential M.U. Box
6. One (1), 1323 – Dual SEL-487E/735 PMU & PQ

2. Transmission Line – Upgrades
None

3. New Substation/Switchyard Facilities
None

4. Upgrades to Substation / Switchyard Facilities

PJM Network Upgrade #n6252 – Expand Chickahominy 230kV substation. Add a 230 kV bay in the breaker and a half Chickahominy substation. Costs include the following:

Purchase and install substation material at Chickahominy Substation:
1. Two (2) 230 kV, 3000A, 50 kA SF6 circuit breakers
2. Four (4) 230 kV, 3000A, 3-phase center break gang operated switches
3. Two (2), 2” conduits from the substation backbone to the cable trough
4. Conduit tracer wire, 1/C #10, green
5. Expand the control enclosure by 10 FT.
6. Conductors, connectors, conduits, control cables, foundations and grounding materials as per engineering standards
7. One (1) 230 kV, heavy duty steel backbone

Purchase and install relay material at Chickahominy Substation:
1. Two (2), 1510 – 24” Dual SEL-351 transmission breaker w/ reclosing panel
2. Two (2), 4510 - SEL-2411 breaker annunciator
3. Two (2), 4526_A – circuit breaker fiber optic M.U. box

PJM Network Upgrade #n6063 - Line #568 Ladysmith – Possum Point 500kV: Replace wave trap at both Ladysmith and Possum Point Substations for the Ladysmith – Possum Pt
500kV line #568. Estimated to take 14-16 months to engineer and construct. Costs include the following:

Purchase and install at Ladysmith Substation:

1. One (1), 500 kV, 5000 amp wave trap
2. One (1), line tuner, downlead and conduits
3. Conductor, connectors, steel structures, foundations and grounding material according to current engineering standards.

Purchase and install at Possum Point Substation:

1. One (1), 500 kV, 5000 amp wave trap
2. One (1), line tuner, downlead and conduits
3. Conductor, connectors, steel structures, foundations and grounding material according to current engineering standards.

PJM Network Upgrade #n5464 – Line #557 Chickahominy – Elmont: Replace wave traps at Chickahominy substation on line #557 to Elmont. Estimated to take 14-16 months to engineer and construct. Costs include the following:

Purchase and install at Chickahominy:

1. Two (2), 500 kV, 5000 amp wave traps
2. Two (2), line tuners, downleads and conduits
3. Conductor, connectors, steel structures, foundations and grounding material according to current engineering standards.

PJM Network Upgrade #n5483 – Line #574 Ladysmith – Elmont: Replace wave traps at Ladysmith and Elmont substations on the #574 line. Estimated to take 14-16 months to engineer and construct. Costs include the following:

Purchase and install at Ladysmith:

1. Two (2), 500 kV, 5000 amp wave traps
2. Two (2), line tuners, downleads and conduits
3. Conductor, connectors, steel structures, foundations and grounding material according to current engineering standards.

Purchase and install at Elmont:

1. Two (2), 500 kV, 5000 amp wave traps
2. Two (2), line tuners, downleads and conduits
3. Conductor, connectors, steel structures, foundations and grounding material according to current engineering standards.
PJM Network Upgrade #n6055 – Line #576 Midlothian – North Anna: Replace wave trap at North Anna substation on the #576 line. Estimated to take 14-16 months to engineer and construct. Costs include the following:

Purchase and install at North Anna:

1. One (1), 500 kV, 5000 amp wave trap
2. One (1), line tuner, downlead and conduits
3. Conductor, connectors, steel structures, foundations and grounding material according to current engineering standards.

5. Metering & Communications

PJM Requirements

The IC will be required to install equipment necessary to provide Revenue Metering (KWH, KVARH) and real time data (KW, KVAR) for IC’s generating Resource. See PJM Manuals M-01 and M-14D, and PJM Tariff Section 8 of Attachment O Appendix 2.

ITO Requirements

Metering and SCADA/Communication equipment must meet the requirements outlined in section 3.1.6 Metering and Telecommunications of ITO’s Facility Interconnection Connection Requirement NERC Standard FAC-001 which is publically available at www.dom.com.

At the IC’s expense, the ITO will supply and own at the Point of Interconnection bi-directional revenue metering equipment that will provide the following data:

a. Hourly compensated MWh received from the Customer Facility to the ITO;
b. Hourly compensated MVARh received from the Customer Facility to the ITO;
c. Hourly compensated MWh delivered from the ITO to the Customer Facility; and
d. Hourly compensated MVARh delivered from the ITO to the Customer Facility.

The IC will supply and own metering equipment that will provide Instantaneous net MW and MVar per unit values in accordance with PJM Manuals M-01 and M-14D, and Sections 8.1 through 8.5 of Appendix 2 to the ISA;

The IC will access revenue meter via wireless transceivers or fiber cabling to meter with RS-485 or Ethernet communication port for dial-up reads. IC must provide revenue and real time data to PJM from Interconnection Customer Market Operations Center per “PJM Telemetry Data Exchange Summary” document available at PJM.com.

6. Environmental, Real Estate and Permitting Issues

The project will require permitting for the transmission line construction as well as the substation work. The actual permits required for the project will not be known until the permitting team engages with the local and state agencies upon execution of the ISA.
Attachment 1
Single Line

Chickahominy 230kV Substation

Transformer #1
500 / 230kV

Line #2012
Waller

Line #2075
Old Church

Line #2129
Lanexa

Line #2024
Line #2001
Lanexa
Portugee DP

176 MVar

ICI

Chesterfield

Interconnected Transmission Owner
Interconnection Customer

34.5kV

339MW Solar

Queue AC1-164

Key
- Point of Interconnection
- Future
- Conductor, Line or Bus
- Attachment Facilities
- Power Transformer
- Circuit breaker
- Revenue Meter

Date Revised: 11/04/2019

© PJM Interconnection 2019. All rights reserved. 8 AC1-164 Chickahominy 230kV
Attachment 2.
AC1-164 Chickahominy 230kV Substation General Arrangement